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Modern filter design

Filter Design - Introduction

A filter will modify the magnitude or phase of a signal to
produce a desired frequency response or time response.

* One way to classify ideal filters is by frequency response
— Lowpass |H(0<f<B)|=1, |H(f)|=0 elsewhere
— Highpass |H(f>B)|=1, |H(f)|=0 elsewhere
— Bandpass |H( f1<f<f2)=1, |H(f)|=0 elsewhere B=f2-f1

— Bandstop |H(f1<f<f2| =0, |[H(f)|=1 elsewhere B=f2=f1
also called a band-reject filter

— Allpass [H(f)|=1, argH()=06(f)




Filter Design - Introduction

* An ideal filter will pass desired frequencies with no loss
or phase distortion, and provide infinite attenuation to
unwanted frequencies.

* It may be shown that an ideal rectangular filter response
would require an infinite number of poles to realize.

» Modern analog filter design results in an approximation
to the desired ideal response.
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|deal Filter-Magnitude, Phase/Delay

For a transfer function H(s), at real frequencies, with s=jo,

H(j2rf ) =|H (j2f )0 = G(w)e

Where G(w) and 6(w) are the gain and phase components.

j0(w)

Phase Delay Pd(w) is defined as: Pd(w) = — ()
Group Delay t4(w) is defined as: 7 (a)) = — ag(a))
@

|deal Filter-Magnitude, Phase/Delay

Linear Phase: 6(w)=60(0)-7r,0m
Linear Phase Distortion: 8(w) = 8(0) - 7,0 - r,00° — ...

The 12 term is called the parabolic
group delay distortion and has units
of sec?




|deal Filter-Magnitude, Phase/Delay

* Both Pd(») and t4(w) are functions of frequency

* Phase delay Pd(w) is the absolute delay and is
usually of little significance

» Group Delay t4(®) is used as the criterion to
evaluate phase nonlinearity. Group Delay is
constant for all frequencies in the passband of
an ideal filter.

|deal Filter-Magnitude, Phase/Delay

 Linear phase variation with frequency (over a
band of frequencies) implies a constant Group
Delay —no phase distortion in that band of
frequencies

 In order to preserve the integrity of a pulse x(t), it
Is mandatory that the Group Delay of the system
be constant up to the maximum frequency
component of the pulse. This implies equal time
delay for all frequencies of interest.




Convolution of a rectangle and an exponential.

W(0) = W () * W, () = [ (Dw,(t- 2)d2
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Power Signal Through a Filter:

Input waveform

x(t)

— |

Linear system

h(t) <— H(f)

Output waveform

y(1)

s

Some descriptions
for the input

X(f)
R\(7)
Pu(f)

“Voltage” spectrum

Autocorrelation function
Power spectral density

Some descriptions
for the output

Y(f)
R, (7)
P(f)
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Power Signal Through a Filter:

y(t) = f x(t)h(r — 1)drt

o0

time average or power autocorr:

l +% o0 ~C
Ry(t) = lim — h(Dx(t — ) du h(Wx™(t — 1 —v)dv | dt.
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Periodic Signal Through a Filter:
Time Average Autocorrelation
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R,(7)= Ti x(t)x"(t—7)dt for a periodic signal
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Discreet Time Average Autocorrelation
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Power Signal Through a Filter

By making a change of variables w =t — u and changing the order of integration

we obtain
Ry(1) = ffh(u)h (v)

f.' [x(w)x*(u +w— 1 —v)dw] dudv

x lim —
T T £

[[ Ro(t + v — k()™ (v) du dv

hf [Ri(t+v) 2 h(z +v)] A" (v)dv

= Ro(t)xh(t) xh' (1),
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S,(f) = S(HHNHH(f)
= S(AIHHE




Discrete Time Average Autocorrelation
Through a LTI System
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Power Autocorrelation: R(0)= power

+%

R.(r) = ?!me % f _ S x(x*(r — r)dr.
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Su(f) = FIR(1)]. 7
= Ry(0).

Py = R:(0})
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Filters-Applications

Modify the frequency spectrum of a signal
— remove out of band distortion

— Reduce the magnitude of unwanted signals,
example 60 Hz hum

reduce noise power by reducing
bandwidth

Waveform Shaping:  y(t)=x(t)*h(t)
Matched signal detection
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http://en.wikipedia.org/wiki/Butterworth filter

Linear analog electronic filters

Butterworth filter

Chebyshev filter

Elliptic (Cauer) filter

Bessel filter

Gaussian filter

Optimum "L" (Legendre) filter
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Filter Example:

© O
|
v T T C Vy
VX
H(s) = vy
1 —t —_t
H(s) := 1+ R-C-s h(t) _ RL.C-ER'C _ %.e
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Filter Example:
Let S=j21'cf:jm
! 1
H(O)) = - 0= "
1+ —
@o
1
H(f) = _ c
141 0™ R-C

0(w) = tan” Yo -R-C) = tan~ 1(&}
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Filter Example:

The Group delay of the RC low pass is:

Td(O)) —

14(f) =

21
Figure 2-15 Characteristics of an RC low-pass filter.
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Figure 2—16 Distortion caused by an RC low-pass filter.
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Figure 2—16 Distortion caused by an RC low-pass filter.
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Figure 2—16 Distortion caused by an RC low-pass filter.
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A LPF Distortion Problem:

« Assume we want the amplitude Linearity
<2%

» and the group delay variation (linearity
<5%

* Find the usable bandwidth of the 1st order
Butterworth filter if the 3dB bandwidth is 1
MHz

26
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A LPF Distortion Problem:

Constraints:

[HO)| - |H(fa)| e <002 2% Voltage amplitude error
[H(O)| :

t4(0) — t4( T,

d d( ¢) =& < 0.05 5% delay variation
74(0)

6 1

=10 = — 1
Tty HO=—— o 1 T
fo *t1o
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A LPF Distortion Problem:

So the amplitude error will limit the usable bandwidth to 203 KHz

Filter Magnitude Response
1

0.8
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110° 1ad 110° 110

28
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A LPF Distortion Problem:

Filter Phase Response
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A LPF Distortion Problem:
Filter Group Delay Response
0.2
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Amplitude Error:

A LPF Distortion Problem:

Phase Error:

2
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fo=f = -1
a~ o [o.gsj

f,=2031x10° Hz

f

2
o o
P~ yJogs ©
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A LPF Distortion Problem: stop 2-3
Filter Amplitude and Phase Error
E i iy Sl .05
Ll
.02]
1-10°
. 10°
Hz
—— Amplitude Error
---- Group Delay Error
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Filter Noise Equivalent Bandwidth

We often equate the -3dB bandwidth of a real
Filter to the bandwidth of an ideal filter that would
Pass the same noise power.

33

Filter Noise Equivalent Bandwidth

White Sa()

Real Filter 3 dB

Noise

A Find W

For
Equal

Ideal Filter W Powers

From
— | Filters

S, (f) is a White Noise Power Density N, Watts/Hz
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Filter Noise Equivalent Bandwidth

P:J Sn(f)-(|H(f)|)2df:No-L (|H(H])? of
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—® eq
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Butterworth lowpass filters

(JH(D])? =

*Where n is the filter order (number of poles)
* Note that n=1 is the RC lowpass

36
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Butterworth lowpass filters

— 1
1 Hyp(f.m) = 10-1
HL.0) = ‘I In astt D{l—-’i)‘;n}
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Butterworth lowpass filters

Butterworth Filter Response

0 i
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IDEAL FILTER n x 6 dB per octive

n x 20 dB per decade ,

8
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Butterworth lowpass filters

EQUIVELENT NOISE BANDWITH FOR BUTTERWORTH FILTERS

B = Noise_Power_From_Real_Filter_With_3db_Bandwidth_of 1
- Noise_Power_From_Ildeal_Filter_With_Bandwidth_of 1

note that:
n:=1..6 filter orders from 1 to 6
00
1 1
© 1 5 df = =7
————dif 1+(H 2
1+(H°" 0
Bn = 0
00
J 0 (f, 1) df ne  By=-
0 1.571
1111 T o1sn
First order filter with a 3dB bandwidth of 1 passes 1.047 2
57% more noise power when compared with an 1.026
ideal filter with a bandwidth of 1. A 3rd order filter 1.017
only passes 4.7% more noise power when 1.012

compared with an ideal filter. 39
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