# EELE 354: Electric Power Applications 

Lecture 15: AC Circuits Practice

10/23/2013

1. For the circuit shown in Figure 1, assume the voltage source $\left(V_{\text {in }}\right)$ is a $120 \mathrm{~V}, 60 \mathrm{~Hz}$ source. Assume the resistance is $R=5 \mathrm{k} \Omega$, and the inductance is $L=10 \mathrm{H}$.

- Draw a phasor diagram for the impedance (consists of resistance, inductor, and total impedance phasors). Use resistance as your reference.
- What is the total impedance of the circuit from the perspective of the power source? Give in terms of a complex number. Then, convert that number to a magnitude $(|Z|)$ and phase ( $\phi_{Z}$ ).
- What is the magnitude of the current $(|I|)$ ?
- What is the magnitude of the voltages across the resistor and the inductor?
- Draw a phasor diagram for the voltage (consists of the resistance voltage, inductor voltage and input voltage phasors). Use resistance voltage as your reference.
- What is the real power $(P)$, the reactive power $(Q)$, and the total apparent power $\left(P_{\text {app }}\right)$ drawn by the circuit?
- Draw a phasor diagram for the power (consists of the real, reactive, and apparent power phasors). Use the real power phasor as your reference.
- What is the power factor $(P F)$ of the circuit? Is it leading or lagging?


Figure 1: Practice Circuit 1

Show work:
2. For the circuit shown in Figure 2, assume the voltage source $\left(V_{i n}\right)$ is a $120 \mathrm{~V}, 60 \mathrm{~Hz}$ source. Assume the resistance is $R=5 \mathrm{k} \Omega$, and the inductance is $L=10 \mathrm{H}$.

- What is the total impedance of the circuit from the perspective of the power source? Give in terms of a complex number. Then, convert that number to a magnitude $(|Z|)$ and phase $\left(\phi_{Z}\right)$.
- Determine the current magnitudes through the resistor and the inductor.
- Draw a phasor diagram for the current (consists of the resistance, inductor, and total circuit current phasors). Use resistance current as your reference.
- What is the magnitude of the total circuit current $(|I|)$ ?
- What is the real power $(P)$, the reactive power $(Q)$, and the total apparent power $\left(P_{\text {app }}\right)$ drawn by the circuit?
- Draw a phasor diagram for the power (consists of the real, reactive, and apparent power phasors). Use the real power phasor as your reference.
- What is the power factor $(P F)$ of the circuit? Is it leading or lagging?


Figure 2: Practice Circuit 2

Show work:
3. For the circuit shown in Figure 3, assume the voltage source $\left(V_{i n}\right)$ is a $277 \mathrm{~V}, 60 \mathrm{~Hz}$ source. Assume the resistance is $R=1 \mathrm{k} \Omega$, and the capacitance is $C=4 \mu \mathrm{~F}$.

- Draw a phasor diagram for the impedance (consists of resistance, capacitor, and total impedance phasors). Use resistance as your reference.
- What is the total impedance of the circuit from the perspective of the power source? Give in terms of a complex number. Then, convert that number to a magnitude $(|Z|)$ and phase $\left(\phi_{Z}\right)$.
- What is the magnitude of the current $(|I|)$ ?
- What is the magnitude of the voltages across the resistor and the capacitor?
- Draw a phasor diagram for the voltage (consists of the resistance voltage, capacitor voltage and input voltage phasors). Use resistance voltage as your reference.
- What is the real power $(P)$, the reactive power $(Q)$, and the total apparent power $\left(P_{\text {app }}\right)$ drawn by the circuit?
- Draw a phasor diagram for the power (consists of the real, reactive, and apparent power phasors). Use the real power phasor as your reference.
- What is the power factor $(P F)$ of the circuit? Is it leading or lagging?


Figure 3: Practice Circuit 3

Show work:
4. For the circuit shown in Figure 4, assume the voltage source $\left(V_{i n}\right)$ is a $277 \mathrm{~V}, 60 \mathrm{~Hz}$ source. Assume the resistance is $R=1 \mathrm{k} \Omega$, and the capacitance is $C=4 \mu \mathrm{~F}$.

- What is the total impedance of the circuit from the perspective of the power source? Give in terms of a complex number. Then, convert that number to a magnitude $(|Z|)$ and phase $\left(\phi_{Z}\right)$.
- Determine the current magnitudes through the resistor and the capacitor.
- Draw a phasor diagram for the current (consists of the resistance, capacitor, and total circuit current phasors). Use resistance current as your reference.
- What is the magnitude of the total circuit current $(|I|)$ ?
- What is the real power $(P)$, the reactive power $(Q)$, and the total apparent power $\left(P_{\text {app }}\right)$ drawn by the circuit?
- Draw a phasor diagram for the power (consists of the real, reactive, and apparent power phasors). Use the real power phasor as your reference.
- What is the power factor $(P F)$ of the circuit? Is it leading or lagging?


Figure 4: Practice Circuit 4

Show work:
5. For the circuit shown in Figure 5, assume the voltage source $\left(V_{i n}\right)$ is a $480 \mathrm{~V}, 60 \mathrm{~Hz}$ source. Assume the resistance is $R=100 \Omega$, the inductance is $L=0.5 \mathrm{H}$, and the capacitance is $C=10 \mu \mathrm{~F}$.

- Draw a phasor diagram for the impedance (consists of resistance, inductor, capacitor, and the resulting total impedance phasors). Use resistance as your reference.
- What is the total impedance of the circuit from the perspective of the power source? Give in terms of a complex number. Then, convert that number to a magnitude $(|Z|)$ and phase ( $\phi_{Z}$ ).
- What is the magnitude of the current $(|I|)$ ?
- Draw a phasor diagram for the voltage (consists of the resistance voltage, inductor voltage, capacitor voltage and input voltage phasors). Use resistance voltage as your reference.
- What is the power factor $(P F)$ of the circuit? Is it leading or lagging?


Figure 5: Practice Circuit 5

Show work:
6. For the circuit shown in Figure 6, assume the voltage source $\left(V_{i n}\right)$ is a $480 \mathrm{~V}, 60 \mathrm{~Hz}$ source. Assume the resistance is $R=100 \Omega$, the inductance is $L=0.5 \mathrm{H}$, and the capacitance is $C=10 \mu \mathrm{~F}$.

- What is the total impedance of the circuit from the perspective of the power source? Give in terms of a complex number. Then, convert that number to a magnitude $(|Z|)$ and phase $\left(\phi_{Z}\right)$.
- What is the magnitude of the current $(|I|)$ ?
- Draw a phasor diagram for the current (consists of the resistance current, inductor current, capacitor current and input current phasors). Use resistance current as your reference.
- What is the power factor $(P F)$ of the circuit? Is it leading or lagging?


Figure 6: Practice Circuit 6

Show work:

