Lecture 16: Transformers

Electrical Transmission

- Electrical equipment use low voltage
 120 V, 240 V, 277 V, 480 V
 - Electricity generated at medium voltages
 - Generally between 13 kV to 100 kV
- Electrical transmission at high voltages
 100 kV to 765 kV
- Long distance transmission (rural areas)
 - Greater than 765 kV

•

Electrical Transmission cont.

- Electrical equipment use low voltage
 - Primarily for safety
- Electrical transmission at high voltages
 - Efficient
 - Cost effective
- Transmission Losses – Some resistance in cables $P = I^2 R$

Reduce current = less loss

Transformers

- Used to change the voltage level
 - Step-up transformers increase voltage
 - Step-down transformers decrease voltage
- Power system applications
 - Step-up for transmission
 - Step-down for distribution
 - Maintain voltage levels of distribution
- Other applications
 - Electrical isolation
 - Impedance matching (e.g. audio systems)

Applied AC current induces magnetic flux

AC magnetic flux induces voltage on output

For ideal transformerLoad(100% efficient),and thpower in equals power out

Load draws current and thus, power

Current draw at output Causes current draw at input

Power in: $P_p = I_p E_p$ From before: $\frac{E_p}{E_s} = \frac{N_p}{N_s}$

Power out: $P_s = I_s E_s$ and $P_p = P_s$ (if 100% efficient) So combined $\frac{I_s}{I_p} = \frac{N_p}{N_s}$

A transformer for a house is designed to decrease the line distribution voltage from 7800 V to 120 V. Assuming an ideal transformer, what should the turns ratio be?

Turns ratio: $\frac{N_p}{N_s}$

A transformer for a house is designed to decrease the line distribution voltage from 1200 V to 120 V. Assuming an ideal transformer, what should the turns ratio be?

Turns ratio:

$$\frac{N_p}{N_s}$$

$$\frac{N_p}{N_s} = \frac{E_p}{E_s} = \frac{1200}{120} = 10$$

Thus, there should be 10 turns on the secondary for every single turn on the primary.

Another Example

If the transformer is connected to a load drawing 50 A of current, how much current is being drawn on the primary? Assume an ideal transformer.

Another Example

If the transformer is connected to a load drawing 50 A of current, how much current is being drawn on the primary? Assume an ideal transformer.

$$\frac{I_s}{I_p} = \frac{N_p}{N_s} \longrightarrow I_p = \frac{N_s}{N_p} I_s$$
$$\frac{N_p}{N_s} = 10$$
$$I_s = 50 A$$
$$I_p = \frac{N_s}{N_p} I_s = \frac{1}{10} 50 = 5 A$$

Non-idealities

- Of course, no transformer is ideal
 - Power transformers generally 85% to 99% efficient
 - Small transformers less so
 - Efficiency depends on materials, construction, and load
- Power Losses
 - Copper losses
 - Resistance in windings ($I^2 R$)
 - Magnetic losses
 - Primary current required for magnetic flux excitation
 - Magnetic flux leakage
 - Magnetic hysteresis
 - Eddy current losses

Transformer Model

Symbol in a circuit diagram:

When considering losses and reactance:

Transformer Model

Two general methods to indicate same relative polarity:

- Dots
- Letter markings (usually H for primary, X for secondary)

Transformer Losses Modeled

Resistances used to model various losses

Inductors used to model self-inductance

Transformer Construction

Primary and secondary windings usually wound together

- minimize leakage

Transformer core

- Typically iron or steel
- Laminated sheets to minimize eddy current losses

Methods for Cooling Transformers

- Losses result in heat
- Small transformers generally air cooled (5 kVA or less)
- Small to medium distribution transformers cooled by oil
- Large transformers require external radiators

Special Transformers

Tapped Transformers

- Multiple connection points on one side of transformer
 - Mechanically removes turns from transformer
 - Used to regulate voltages in power system

Autotransformers

Autotransformers

- Only has one winding

 One portion of winding for both primary and secondary
- Standard equations still apply
- Require less copper
 - Cheaper
 - Smaller
- Disadvantage is more hazardous

Upcoming in class

3-phase systems

- Circuits
 - Delta and Wye connections
- Transformers
- New homework on D2L
 - Due Wednesday 11/06
- CHANGE TO SYLLABUS
 - There IS lab next week
 - We will do project later (probably week before Thanksgiving)