Lecture 19: Electrical Distribution continued

Remaining Course Schedule

MONTANA STATE UNIVERSITY

11/19 Tuesday -Last day to drop courses.

Grades on D2L are up to date.

Upcoming Exam

- Exam topics will be posted on D2L by end of day
- Scheduled review session
 - Tomorrow (Thursday, 11/7) Roberts Hall Room 102 6 pm
- In class. Start at exactly 9 am. Go until 9:55 am.
- 1 equation sheet allowed, front and back.

HW # 6 Assignment

- On transformers and 3-phase circuits.
- Will be up on D2L by end of day.
- Due Monday 11/18
- However, will be very beneficial for test as both topics will be on exam 2. Worth doing as part of studying for test.

Electrical Distribution

NOTE: Book defines everything post-generation pre-use as distribution. Typically though, this system is broken-up into transmission and distribution.

Primary-side Distribution

Radial Distribution Network

- Power delivered along a single distribution path
- Cheapest to build
- Used often in rural areas
- Grid disruption → shut down entire line

Primary-side Distribution

Loop Distribution Network

- Power delivered
 by loop(ed)
 distribution path(s)
- More expensive than radial
- Allows isolation of grid disruptions with minimal effect on customers

Secondary-side Distribution

Radial Distribution Network

Secondary-side Distribution

Loop Distribution Network

FIGURE 13-3B Consumer loop distribution system. Disconnecting means may be installed anywhere in the distribution loop to provide for isolating sections.

Residential Secondary Distribution

Harmonic Distortion

- Distortion in sinewave
- Caused by nonlinear loads
 - Fluorescent lights
 - Power
 electronics
 - Etc.
- Can cause increased power losses/conductor heating

Harmonic Distortion

- North American power systems operate at 60 Hz
- Harmonics multiples of supply frequency – e.g. 120 Hz, 180 Hz, etc.
- Cause additional current to flow
 - Additional power loss
 - Additional heating (3-5 percent typical) in line conductors
 - Additional heating (big! As much as 90%) in neutral
 - Might need to increase neutral conductor size if large nonlinear loading on distribution circuits

Conductor Sizes

- Systems of Measurement
 - American Wire Gauge (AWG)
 - Ranges from #50 to #4/0 (#0000, pronounced #0000)
 - #50 is smallest, #4/0 is biggest
- Conductors Smaller or Larger than AWG scale measured in circular mils.
- Circular Mils:
 - Unit of area given by $A = d^2$ where d is measured in mils (1/1000 of an inch)
 - NOT equivalent to square mils

Conductor Sizes

- AWG #50 equivalent to 1 cmil (circular mil)
- AWG #4/0 equivalent to 212 kcmil (212,000 cmil)
- In U.S., generally use AWG scale, unless conductors outside that range, then use cmils.
- Note, kcmil often abbreviated MCM (means thousand circular mils)
- Both used on stranded wire or solid wire.
 - Describes cross-sectional area of metal (solid or stranded)
 - Thus, stranded wire slightly larger due to spacing between strands.

Conductor Resistivity

All conductors have some resistance (at normal temperatures at least)

$R = \frac{K\ell}{\Lambda}$	(Eq. 9.6)
A	(=

- where R = resistance of the conductor, in ohms (Ω) K = resistivity
 - ℓ = length, in feet (ft)
 - A =area, in circular mils (cm)
- Note: Resistivity
 - More often denoted by ρ
 - More often given in Ω -m

Materials	Resistivity (K) at 20°C or 68°F	Coefficient (a) per °C*		
Aluminum	17.7	0.0043		
Carbon	20,000	-0.0005		
Constantan	296	0		
Copper	10.4	0.0043		
German Silver Wire	200	0.0004		
Iron wire	60	0.006		
Iron (cast)	500	0.0008		
Manganin	266	0.00002		
Nichrome	660	0.0002		
Nickel	60	0.006		
Silver	9.5	0.004		
Steel (soft)	90	0.0044		
Steel (hard)	275	0.0016		
Tungsten (annealed)	26	0.005		
Tungsten (hard drawn)	33	0.005		

*Average of values between 0° and 100°C

Thermal Effects

- As temperature increases resistivity increases
- Equation in book (Chapter 9):

 $R_o = R(1 + a t_o)$

- R_o Is operating resistance
- R Is resistance at 0° C
- a Is temperature coefficient
- t_o Is operating temperature

Materials	Resistivity (K) at 20°C or 68°F	Temperature Coefficient (a) per °C*	
Aluminum	17.7	0.0043	
Carbon	20,000	-0.0005	
Constantan	296	0	
Copper	10.4	0.0043	
German Silver Wire	200	0.0004	
Iron wire	60	0.006	
Iron (cast)	500	0.0008	
Manganin	266	0.00002	
Nichrome	660	0.0002	
Nickel	60	0.006	
Silver	9.5	0.004	
Steel (soft)	90	0.0044	
Steel (hard)	275	0.0016	
Tungsten (annealed)	26	0.005	
Tungsten (hard drawn)	33	0.005	

*Average of values between 0° and 100°C

Choosing Conductors

TABLE 8–1 Allowable ampacities of insulated conductors rated 0 through 2000 volts, 60°C through 90°C [140°F through 194°F], not more than three current-carrying conductors in raceway, cable, or earth (directly buried), based on ambient temperature of 30°C [86°F].

		Temperature Roting of Conductor (See Table 310.13.)						
	60°C (140°F) Types TW, UF	75°C (167°F) Types BHW, THEW, THW, THEW, XHHW, USI, ZW	99°C [194°F] Types PEP, FEPB, MG, BHH, BHW-2, THHN, THHNK, THW-2, THHNK, THW-2, THHNK, THW-2, XHHYK, XHENK-2, ZW-2	SO'C (140'F) Types TW. UF	75°C (167°F) Types RHW, THHW, THW, THHW, XDUW, USE	90°C (194'P) 7ypes 185, SA, SIS, Taelk, Telow, TTIW-2, TelwN2, BHH, EHW 2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Size AWO	
								or konil
ia -	-	-	14	-		-		
16	-		18	-	-		-	
1.4*	-20	20	25	-	-	-	-	
12*	25	25	30	20	20	25	12.	
10*	30	25	40	25	30	- 35	10*	
	40	50	55	30	40	45	0	
	55	65	.25	4D	50	40	0	
4	70	85	95	55	65	75	4	
1	65	100	110	65	75	85	3	
2	95	11.5	130	75	90	100	2	
1	110	130	1.50	65	100	115	1	
1,40	125	1.90	170	100	120	135	1,10	
2/0	145	178	195	115	125	1.50	3/0	
3/0	165	200	225	130	155	175	3/0	
4/0	195	230	265	150	160	205	4/0	
250	215	255	290	170	205	200	250	
300	240	285	320	190	230	255	200	
350	260	310	350	210	250	290	350	
400	280	835	380	225	270	325	400	
500	320	38D	430	260	310	350	500	
600	355	420	475	285	3.43	355	600	
200	385	065	520	210	375	420	700	
750	400	475	\$35	320	385	435	750	
800	410	490	555	330	295	439	000	
900	435	520	585	355	425	482	- 900	
1000	455	545	615	375	445	500	1000	
1250	495	590	665	405	485	545	1250	
1500	520	625	705	435	520	383	1500	
1750	545	650	735	455	545	815	1730	
2000	560	665	7.50	470	560	010	2000	

Ambient Temp. (*C)	For ambient temperatures ofter them 30°C (86°F), multiply the allowable emposities shown above by the appropriate actor shown below						Ambient Temp. ("F)
21-25	1.08	1.05	1.04	1.08	1.05	1.04	70-77 78-86
31-35	0.91	0.94	0.98	0.91	0.94	0.96	\$7-95
36-40	0.92	0.88	0.91	0.82	0.88	0.91	96-104
41-45	0.71	0.82	0.87	0.71	0.82	0.87	105-113
46-50	0.58	0,75	0.82	0.58	0.75	0.82	116-122
51-55	0.41	0.67	0.76	0.41	0.67	0.76	123-101
55-60	3223	0.58	0.71	-	0.50	0.71	132-1.40
A1-20	-	0.13	0.58	-	0.33	0.58	141-158
71-80	-	-	D.41	-		0.41	159-176

*Sim 240.001

Replated with permanent how NERA 70.2008 Namenal Electrical Cashift Cashift © 2007, National Fee Protector Association. This replated notectal is not the complete and efficient permanent of the NERA on the vehanced subject which is inferenced by the mandatal is in writing. 644 Table values based on empirical thermal effects measurements on conductors.

Voltage Drop in Conductors

- NEC allows a maximum voltage drop of 3% for branch circuits
- 5% for combined feeder and branch-circuit
- Assume FULL load.

% Voltage Drop =
$$\frac{E_1 - E_2}{E_1}$$

- E_1 Is source voltage
- E_2 Is load voltage

Power Loss

- NEC allows a maximum voltage drop of 3% for branch circuits
- 5% for combined feeder and branch-circuit
- Assume FULL load.

$$P_{loss} = (E_1 - E_2)I$$
$$P_{loss} = \frac{(E_1 - E_2)^2}{R_{wire}}$$
$$P_{loss} = \frac{I^2 P_{loss}}{I_{wire}}$$

$$P_{loss} = I^2 R_{wire}$$

Questions

