Lecture 3: Electrical Power and Energy

Recall from Lecture 2

$\mathrm{E} \rightarrow$ Voltage
Similar to water pressure Unit: Volts (V)
$I \rightarrow$ Current
Similar to water flow
Unit: Amperes (A)
$R \rightarrow$ Resistance
Similar to water pipe friction Unit: Ohms (Ω)

Recall from Lecture 2

R
Ohm's Law:

$$
\begin{aligned}
E & =I R \\
I & =\frac{E}{R} \\
R & =\frac{E}{I}
\end{aligned}
$$

Defines the relationship between electric circuit current, component resistance, and the voltage drop across the component

- Book definition: Overcoming resistance through a distance
- Mechanical:
- If force not constant in space: $W=\int F(D) d D$
- If force constant: $W=F D$
- Units of measure:
- SI: Joule (J) $\rightarrow 1$ N•m, 1 W•s
- Common in US: ft-lb ${ }_{f}$
$-1 \mathrm{~J}=0.7376$ foot-pounds (ft-lb)
- Book definition: Measurement of the rate of doing work.
- If work performed is not constant with time: $P=\frac{d W}{d T}$
- If work performed is constant: $P=W / T$
- Units of measure:
- SI: Watts (W)
- Common in US: hp (horsepower)
$-1 \mathrm{hp}=746 \mathrm{~W}$

$$
\begin{equation*}
h p=\frac{f+1 b / \mathrm{min}}{33,000} \tag{Eq.3.1}
\end{equation*}
$$

Power (cont'd)

Electrical Power:

$$
\begin{equation*}
P=I E\left(I=\frac{P}{E} \text { or } E=\frac{P}{I}\right) \tag{Eq.3.2}
\end{equation*}
$$

where $P=$ power, in watts (W)

$$
\begin{aligned}
& I=\text { current, in amperes }(\mathrm{A}) \\
& E=\text { electrical pressure, in volts }(\mathrm{V})
\end{aligned}
$$

Power (cont'd)

Electrical Power:

PIRE wheel

All you REALLY need to remember:

- $E=I R$
- $P=I E$
- algebra

Power (cont'd)

Proof 1: Show that

$$
P=I^{2} R
$$

Proof 2: Show

$$
I=\sqrt{\frac{P}{R}}
$$

Power (cont'd)

Proof 1: Show that

$$
P=I^{2} R
$$

$$
\begin{array}{lr}
P=I E & \leftarrow \text { Power equation } \\
E=I R & \leftarrow \text { Ohms Law } \\
P=I(I R) & \leftarrow \text { Sub in Ohms Law for } \mathrm{E} \\
P=I^{2} R & \leftarrow \text { Rearrange (associative) }
\end{array}
$$

FIGURE 3-2 PIRE wheel.

Proof 2: Show

$$
I=\sqrt{\frac{P}{R}}
$$

$$
P=I^{2} R \quad \leftarrow \text { From above proof }
$$

$$
I^{2}=\frac{P}{R}
$$

\leftarrow Rearrange Equation
$I=\sqrt{\frac{P}{R}}$
\leftarrow Take square root

Power (cont'd)

Example: An electric heater draws 15 A of current. What is the resistance of the heating element if the electric heater is rated for 2.25 kW ?

Power (cont'd)

Example: An electric heater draws 15 A of current. What is the resistance of the heating element if the electric heater is rated for 2.25 kW ?

$$
\begin{aligned}
& R=\frac{P}{I^{2}} \quad \leftarrow \text { Equation for resistance, given current and power } \\
& I=15 \mathrm{~A} \leftarrow \text { Current through heater } \\
& P=2.25 \mathrm{~kW} \quad \leftarrow \text { Power rating of heater } \\
& R=\frac{2250 \mathrm{~W}}{15 \mathrm{~A}^{2}} \\
& R=10 \Omega \quad \leftarrow \text { Heater element resistance }
\end{aligned}
$$

Energy

- Book definition: Energy is the ability to do work
- Cannot be destroyed or consumed (at least for our purposes)
- Forms of energy are light, heat, mechanical, electrical and chemical
- Energy conversion is used to perform work

Energy (cont'd)

- Units of Measure
- SI: Joule (J) - same as work
- Others: BTU, kWh
- $\mathrm{BTU} \rightarrow$ energy required to heat 1 lb water by $1^{\circ} \mathrm{F}$
- Often used in power generation
- kWh is standard in electrical distribution systems
- See your electric bill
- 1 BTU $=0.29 \mathrm{~Wh}$
$-1 \mathrm{kWh}=3600 \mathrm{~kJ}$

Energy (cont'd)

- Relationship with Power
- If Power not constant with time Energy $=\int P(T) d T$
- If Power constant Energy $=P T$
- System Efficiency:

$$
\% \mathrm{Eff}=\frac{\text { Useful energy output }}{\text { Total energy input }} \times 100 \quad \text { (Eq. 3.9) }
$$

$$
\begin{equation*}
\% \mathrm{Eff}=\frac{\text { Power output }}{\text { Power input }} \times 100 \tag{Eq.3.10}
\end{equation*}
$$

Energy / Power Example

An electric motor has a rated current of 30 A when powered from a 240 V supply. (a) What is the power input to the motor? (b) If the motor is run for 5 hours, what is the total energy input? (c) If the motor has an efficiency of 80%, what is the total output energy?

Energy / Power Example

An electric motor has a rated current of 30 A when powered from a 240 V supply. (a)What is the power input to the motor? (b)If the motor is run for 5 hours, what is the total energy input? (c)If the motor has an efficiency of 80%, what is the total output energy?
(a)
(b)
(c)
$P=I E$
$P=30 \mathrm{~A} * 240 \mathrm{~V}$
$P=7.2 \mathrm{~kW}$

Energy / Power Example

An electric motor has a rated current of 30 A when powered from a 240 V supply. (a)What is the power input to the motor? (b)If the motor is run for 5 hours, what is the total energy input? (c)If the motor has an efficiency of 80%, what is the total output energy?
(a)
(b)

$$
\begin{array}{ll}
P=I E & \text { Energy }=P T \\
P=30 \mathrm{~A} * 240 \mathrm{~V} & \text { Energy }=7.2 \mathrm{~kW} * 5 \mathrm{~h} \\
P=7.2 \mathrm{~kW} & \text { Energy }=36 \mathrm{kWh}
\end{array}
$$

(c)

Energy / Power Example

An electric motor has a rated current of 30 A when powered from a 240 V supply. (a)What is the power input to the motor? (b)If the motor is run for 5 hours, what is the total energy input? (c)If the motor has an efficiency of 80%, what is the total output energy?
(a)
(b)
(c)

$$
\begin{aligned}
& P=I E \\
& P=30 \mathrm{~A} * 240 \mathrm{~V} \\
& P=7.2 \mathrm{~kW}
\end{aligned}
$$

$$
\text { Energy }=P T
$$

$$
\text { Energy }=7.2 \mathrm{~kW} * 5 \mathrm{~h}
$$

$$
\text { Eff }=\frac{\text { Energy out }}{\text { Energy in }}
$$

$$
\text { Energy }=36 \mathrm{kWh}
$$

$$
\text { Energy out }=\text { Eff } * \text { Energy in }
$$

Energy out $=80 \% * 36 \mathrm{kWh}$
Energy out $=28.8 \mathrm{kWh}$

Mechanical Transmission of Power

- Driving machine
- Delivers power to the machine being driven
- Examples: gasoline engines, steam turbines, electric motors
- Driven machine
- Receives power
- Examples: presses, lathes, elevators, pumps and saws

Mechanical Drives

- Connections between driving machines and driven machines
- Examples: pulleys, chains on sprockets, gear assemblies, and direct drives
- Speed Requirements
- If speeds of both machines are the same, may use direct drive
- If not, require a mechanical drive

Mechanical Drives (cont'd)

- Pulleys: Speed of machine determined by size of pulleys.
Speed machine $1 \longrightarrow \frac{N_{1}}{N_{2}}=\frac{D_{2}}{D_{1}} \longleftrightarrow$ Diameter motor pulley 2
Speed machine $2 \longrightarrow N_{2}=\frac{N_{1}}{D_{1}}$
Diameter motor pulley 1
- Gears: Speed determined by number of teeth in gears.

$$
\frac{N_{1}}{N_{2}}=\frac{T_{2}}{T_{1}} \longleftarrow \text { Num. teeth motor gear } 2
$$

Mechanical Drives (cont'd)

Mechanical Power:

- Equation considering SI units:

- Equation given in book:

$$
\begin{equation*}
h p=\frac{T N}{5252} \tag{Eq.3.13}
\end{equation*}
$$

where hp = horsepower

$$
\begin{aligned}
T= & \text { torque, in pound-feet }(\mathrm{lb} \mathrm{ft}) \\
N= & \text { speed, in revolutions per } \\
& \text { minute }(\mathrm{r} / \mathrm{min})
\end{aligned}
$$

Mechanical Drives (cont'd)

Example: What is the torque of an electric motor rated at 10 hp if the speed of the machine is 1200 RPM?

Mechanical Drives (cont'd)

Example: What is the torque of an electric motor rated at 10 hp if the speed of the machine is 1200 RPM?

$$
\begin{aligned}
& h p=\frac{T N}{5252} \\
& T=\frac{5252 h p}{N} \\
& T=\frac{5252 * 10}{1200} \\
& T=43.8 \mathrm{lbft}
\end{aligned}
$$

What about using standard equation:

$$
\begin{gathered}
\omega=\frac{2 \pi}{60} N=126 \mathrm{rad} / \mathrm{s} \\
P=746 \mathrm{hp}=7.46 \mathrm{~kW} \\
T=P / \omega \\
T=59.2 \mathrm{~N}-\mathrm{m}
\end{gathered}
$$

Conversion factor:
$1 \mathrm{lb} \mathrm{ft}=1.35 \mathrm{~N}-\mathrm{m}$

Other Mechanical Considerations

- Starting Torque
- Torque developed at instant motor is energized
- Starting Current
- Current drawn from motor at the instant it is energized.
- Other Factors:
- Size, weight, efficiency (heat management), shaft type

Motor Sizing

- Depends on speed, torque, and efficiency
- Downsides to undersizing or oversizing

$$
\begin{equation*}
\mathrm{hp}=\frac{\mathrm{Wh}}{33,000 \times \mathrm{Eff}} \tag{Eq.3.14}
\end{equation*}
$$

where $\mathrm{hp}=$ mechanical power, in horsepower

$$
\begin{aligned}
W= & \text { weight lifted, in pounds }(\mathrm{lb}) \\
h= & \text { height lifted, in feet per minute } \\
& (\mathrm{ft} / \mathrm{min})
\end{aligned}
$$

Eff $=$ efficiency, in percent (\%)

Homework

Chapter 3:
Answer the multiple choice questions 1 through 10.
Solve problems 3, 6, 8, 9, 12, 19.

Due: Week from today. Wednesday 9/11/13

