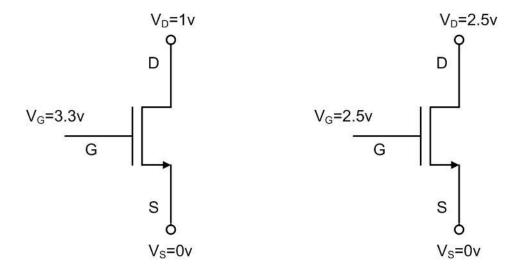
## EELE 414 – Introduction to VLSI Design Homework #2 due 10/22/15

| Name:  |     |  |
|--------|-----|--|
| Grade: | /10 |  |

- 1) MOS Behavior:
  - (3 Points)
  - a) For a MOS structure with p-type Silicon, sketch the locations of the charge carriers during *depletion*. You can indicate electrons as  $e^-$  and holes as  $\oplus$ . Indicate the location of the depletion region and any polarization that occurs in the oxide. Indicate where  $x_d$  is located. Assume that  $V_B=0v$  and that  $V_G>0$  (small).
  - b) Now sketch the locations of the charge carriers during *inversion*. Show the depletion region, the inversion layer, and any polarization that occurs in the oxide. Indicate where  $x_{dm}$  is located. Assume that  $V_B=0v$  and that  $V_G>0$  (large).
  - c) If we dope the p-type silicon to a carrier concentration of  $N_A=10^{16} cm^{-3}$  and a resulting Fermi potential of  $\phi_{Fp}=-0.35$  V, what is the maximum depletion depth ( $x_{dm}$ ) during inversion?
- 2) MOSFET Behavior (3 Points)
  - a) For a MOSFET structure with p-type Silicon, sketch the locations of the charge carriers during *depletion*. Indicate the location of the depletion region and any polarization that occurs in the oxide. Assume that  $V_B=V_S=V_D=0$ v and that  $V_G>0$  (small).
  - b) Now sketch the locations of the charge carriers during *inversion*. Show the depletion region, the inversion layer, and any polarization that occurs in the oxide. Assume that  $V_B=V_S=V_D=0v$  and that  $V_G>0$  (large).
  - c) When we apply a voltage to the Gate, it causes a depletion region beneath it. If  $V_S=V_D=0v$ , why is there a depletion region around the Source and Drain?

## 3) Threshold Voltage (3 Points)

a) Given a MOSFET system with the following parameters: (2 points)


$$t_{ox}=200~\textrm{Å}$$
  $\varphi_{GC}=\text{-}0.245~\textrm{V}$  (Built in potential of the Gate-to-Channel MOS system)  $N_A=2\cdot 10^{15}~\textrm{cm}^{\text{-}3}$   $Q_{ox}=q\cdot 2\cdot 10^{11}~\textrm{C/cm}^2$ 

Find the threshold voltage  $V_{T0}$  under zero substrate bias at room temperature (T=300 k). Note that  $\epsilon_{ox}=3.97\cdot\epsilon_0$  and  $\epsilon_{Si}=11.7\cdot\epsilon_0$ .

b) Now assume that there is a substrate bias of  $V_{SB} = 0.5V$  and find the new threshold voltage  $(V_T)$ . You are given that  $\gamma = 0.39~V^{1/2}$ . Note: you will need some of your answer from part a  $(V_{T0} \& \varphi_F)$ . Hint, your answer from part (a) should have been between  $0.2 < V_{T0} < 0.4$ . If it isn't, use  $V_{T0} = 0.3v$  for this part. (1 point)

## 4) MOSFET Modes of Operation (1 Point)

What regions are the following NMOS transistors operating in if  $V_T=1$  v?

