EELE 414 – Introduction to VLSI Design Homework #3 (show work for full credit)

Name: _____/10

1) Ideal N-Channel MOSFET IV Characteristics: (4 Point Each)

For the following N-Channel, enhancement-type MOSFET.

V_{T0}	= 0.37 v
k'	= 178 uA/V^2 (notice the <u>uA</u> and the ')
W	$= 2.5 \ um$
L	$= 0.25 \ um$
λ	= 0.05

a) Find I_{DS} if:

$$\label{eq:VG} \begin{split} V_G &= 1.0v\\ V_S &= 0v\\ V_D &= 0.3v\\ V_B &= 0v \end{split}$$

b) Find I_{DS} if:

$$V_{G} = 1.0v$$
$$V_{S} = 0v$$
$$V_{D} = 2.0v$$
$$V_{B} = 0v$$

- c) Find I_{DS} if:
 - $V_G = 1.5v$ $V_S = 0v$ $V_D = 0.3v$ $V_B = 0v$

d) Find I_{DS} if:

- $V_{G} = 1.5v$ $V_{S} = 0v$ $V_{D} = 2.0v$ $V_{B} = 0v$
- e) Run a DC simulation using S-Edit & T-SPICE using the Generic 0.25um Level 1 model to verify your calculations in parts 1.a-1.d. The parameters for your hand calculations above were taken from the SPICE model so the simulations should match your solutions. You are to produce a <u>single</u> IV plot that indicates the solutions for all 4 of your calculations (i.e., Vds vs. Ids). This can be done by sweeping VDS from 0v-2.5v in linear steps of 0.1v while sweeping VGS from 1v-1.5v in a linear step of 0.5v. Indicate clearly on your plot the current from parts a-d. Also turn in a print of your final S-edit schematic.

2) N-Channel MOSFET IV Characteristics with Body Effect (3 Points)

Now consider how a voltage on the body of the transistor effects I_{DS}:

$$\gamma = 0.029 V^{\frac{1}{2}}$$

 $2 \cdot |\phi_{\rm F}| = 0.279 v$

a) Find I_{DS} if:

 $V_{G} = 1.0v$ $V_{S} = 0v$ $V_{D} = 0.3v$ $V_{B} = 0.5v$

b) Find I_{DS} if:

$$V_G = 1.0v$$
$$V_S = 0v$$
$$V_D = 2.0v$$
$$V_B = 0.5v$$

- c) Find I_{DS} if:
 - $V_G = 1.5v$ $V_S = 0v$ $V_D = 0.3v$ $V_B = 0.5v$

d) Find I_{DS} if:

- $$\label{eq:VG} \begin{split} V_G &= 1.5 v \\ V_S &= 0 v \\ V_D &= 2.0 v \\ V_B &= 0.5 v \end{split}$$
- e) Run a DC simulation using S-Edit & T-SPICE to verify your calculations in 2.a-2.d. Consider using an ideal DC voltage source to set the body terminal of the NMOS to 0.5v. You are to produce a <u>single</u> IV plot that indicates the solutions for all 4 of your calculations. Indicate clearly on your plot the current from parts 2.a-2.d. Also turn in a print of your final S-edit schematic.

3) Ideal P-Channel MOSFET IV Characteristics: (3 Points)

For the following P-Channel, enhancement-type MOSFET.

V _{T0} k' W L	= -0.49 v = 63 uA/V^2 (notice the <u>uA</u> and the ') = 5 um = 0.25 um = 0.05
λ	= 0.05

- a) Find I_{DS} if:
 - $$\label{eq:VG} \begin{split} V_G &= 1.5v\\ V_S &= 2.5v\\ V_D &= 2.2v\\ V_B &= 2.5v \end{split}$$

b) Find I_{DS} if:

$$V_G = 1.5v$$
$$V_S = 2.5v$$
$$V_D = 0.5v$$
$$V_B = 2.5v$$

c) Find I_{DS} if:

$$V_{G} = 1.0v$$
$$V_{S} = 2.5v$$
$$V_{D} = 2.2v$$
$$V_{B} = 2.5v$$

d) Find I_{DS} if:

$$V_{G} = 1.0v$$
$$V_{S} = 2.5v$$
$$V_{D} = 0.5v$$
$$V_{B} = 2.5v$$

e) Run a DC simulation using S-Edit & T-SPICE using the Generic 0.25um Level 1 model to verify your calculations in parts 3.a-3.d. The parameters for your hand calculations above were taken from the SPICE model so the simulations should match your solutions. You are to produce a <u>single</u> IV plot that indicates the solutions for all 4 of your calculations (i.e., Vds vs. Ids). Indicate clearly on your plot the current from parts a-d. Also turn in a print of your final S-edit schematic.