Description: This course introduces students to the fundamentals concepts of CMOS VLSI circuit design. This course will cover CMOS device characteristics and timing. CMOS fabrication will be covered including process steps, metal, active, and poly layers, and design rules. CAD tools will be introduced for use in design, simulation, and layout of integrated circuits. Design analysis techniques will be presented for the static and dynamic evaluation of CMOS circuits. Memory elements including flip-flops, SRAM, and DRAM will also be presented.

Outcomes: At the end of this course the student should be able to:

1) Design and analyze a MOSFET circuit
2) Create an integrated circuit layout from a schematic
3) Create a schematic from an integrated circuit layout
4) Describe the fabrication process of a CMOS circuit
5) Design a complex CMOS gate from a truth table
6) Verify performance of a CMOS gate using hand calculations and SPICE simulations
7) Use a CAD tool to generate the layout of a CMOS circuit
8) Understand the impact of layout on the performance of a CMOS circuit

Instructor: Andy V. Olson
631 Cobleigh Hall
Department of Electrical & Computer Engineering, MSU
406-994-5967
andyo@ece.montana.edu

Time & Location: TR, 11:00am – 12:15pm,
632 Robert Hall


Website: class website
The website will be the main source of information for the course. All handouts, homework, and announcements will be posted. It is the student’s responsibility to download and print the necessary documents needed in the course.

Office Hours: Check my website for the most recent schedule (www.coe.montana.edu/ee/andyo)
Also available through email appointment

Requisites: Pre-requisite(s): EE262, EE317

Grading: Distribution: Letter Assignment
Homework - 40% 90% - 100% = A
Exam #1 - 20% 80% - 89% = B
Exam #2 - 20% 70% - 79% = C
Exam #3 - 20% 60% - 69% = D
0% - 59% = F

Notes:
- Instructor reserves the right to apply a grading curve and to assign +/-’s to grades as appropriate.
- Homework is due at the beginning of class. Late Assignments can be turned in up to one week after the due date to receive up to 50% credit. Assignments over one week late will not receive credit.
- No make up exams will be given. Make plans to attend the scheduled exams.
General

Outline:
1) CMOS transistor characteristics
2) CMOS fabrication process
3) SPICE modeling and simulation
4) Layout
5) CMOS static behavior
6) CMOS dynamic behavior
8) CMOS combinational logic circuits
9) CMOS sequential logic circuits
10) CMOS Memory (SRAM, DRAM)

Academic Policies

This course will follow the policies outlined in the Conduct Guidelines and Grievance Procedures for Students (http://www2.montana.edu/policy/student_conduct/) and the MSU Policy and Procedures Manual (http://www2.montana.edu/policy/). Please consult these documents on policies regarding academic honesty, student and instructor rights, and general standards of conduct.