

	Course Content	
Digital Simulators	 ModelSim, Xilinx, NC-Verilog only gives the state of the node (0,1,X,x,Z,z,) this simplifies computation which reduces run time allows 1000's of nodes to be simulated simultaneo 	e eusly
	Advantages - many nodes can be simulated - relevant for VLSI systems	
	Disadvantages - only see the state, not the analog natu	re
Analog vs. Digital Simul - We use Analog - From the analo - the digital simu	ation simulation to verify the operation of basic building blocks g results, we define specs used in the digital simulation (t, lations then incorporate the specs of the block as timing do	(inverters, NANDs _{se} , t _{tall} , t _{prop} , fanout elays
	EELE 414 – Introduction to VLSI Design	Module #

	Design Implementation Options
Custom ASIC	- "Application Specific Integrated Circuit" - each gate is designed, laid out, and optimized by hand
	Advantages - Best circuit performance - Best use of area on silicon
	Disadvantages - Long Design Cycle - Full Custom Mask = More up-front \$\$\$ - Takes skilled physical design engineers
Standard Cell	all of the gates and basic building blocks are designed each block has a spec sheet, layout, symbol, HDL instance, and simulation deck the designer combines the pre-existing blocks to form the new ASIC still considered an ASIC
	Advantages - faster development - still relatively fast in performance
	Disadvantages - not as much optimization in performance, area, power as a custom AS
	EELE 414 - Introduction to VLSI During Module #1

	Design Implementation Options	
<u>Gate Array</u> aka	transistors are already created but not connected the designer provides the interconnect design to implement the given functi Advantages	onality
"structured ASIC"	- faster development time Disadvantages - less performance	
<u>FPGA</u>	Field Programmable Gate Array an array of programmable logic blocks are designed and packaged the designed retates a programming file to implement the given functionality user downloads the file and is running in hardware without any fab Advantages fastest development	/
	Disadvantages - lowest performance	
A	EELE 414 – Introduction to VLSI Design Pa	ıle #1 ge 16

	ple of "Usi	ng your IC"	
 your companimplementati 	y is developin on option is th	g a product that will use a VLSI design. You a best between a Custom ASIC, STD Cell AS	are to choose which IC, Gate Array, or FPGA
 in this case, a of economy in 	all 4 of the im n selecting th	plementation options meet the electrical special best option	ications so it a simple matter
 the product the assuming it is 	hat this IC go is done of cou	es into will ship in 24 months regardless of the rse!)	development time of your IC
 your marketii life cycle is 5 	ng departmen years (startin	t thinks that you will sell 5,000 product per mo g after the 24 months of development)	nth and that the product
	the fellouise	:	
- you are giver	i the following		
- you are giver	NRE	Engineering	Per-Piece Cost
- you are giver	<u>NRE</u> \$500k	Engineering	Per-Piece Cost \$5.00
- you are giver Custom ASIC STD Cell ASIC	<u>NRE</u> \$500k \$300k	Engineering 4 engineers, 24 months, \$15k/engr/mo 4 engineers, 18 months, \$15k/engr/mo	<u>Per-Piece Cost</u> \$5.00 \$8.00
- you are giver Custom ASIC STD Cell ASIC Gate Array	<u>NRE</u> \$500k \$300k \$200k	Engineering 4 engineers, 24 months, \$15k/engr/mo 4 engineers, 18 months, \$15k/engr/mo 3 engineers, 12 months, \$12k/engr/mo	Per-Piece Cost \$5.00 \$8.00 \$11.00

VLSI Economy				
Economy of Selling your IC				
- if you design and sell your I	C, you need a similar analysis.			
- But now you need to consid	ler			
1) Profit Margin	 for each IC sold, how much of that is gross profit versus simply making the IC 	s the cost of		
2) Break Even Point	 you invest upfront NRE and engineering time. The gro- from the first x IC's that you sell go toward paying off th The # of IC's and the time it takes to reach that point is "Break Even" 	ss profit at investment. called		
	 If the product doesn't sell enough, you may not make e pay for the initial development. 	nough to		
3) Opportunity Cost	 if you only have 5 skilled IC designers, you want to mal are working on the most profitable product. If they are product A then they cart be working on product B. If B profitable, you are not using your resources effectively. 	ke sure they working on is more		
	EELE 414 – Introduction to VLSI Design	Module #1 Page 23		

	Digital Review			
Во	olean Expre	essions (Jsing POS	
-	Logic function Product of Su A maxterm is A maxterm et	ns can be ums (POS) the expre xpression	described using a Product of Sums techniques is the multiplication of all <i>maxterms</i> resulting in the truth table ssion for an input configuration which yields a FALSE output is the OR'ing of the input "0" signal configuration	
	<u>Truth</u> <u>a b</u> 0 0 0 1 1 0	Table out 0 1	<i>maxterm</i> $m_0 = a+b$ (input configuration c	of 0's)
	11	0	maxterm $m_3 = a'+b'$ (input configuration of	of 0's)
			POS Expression : $f(a,b) = (a+b) \cdot (a+b)$	a'+b')
-	R		EELE 414 – Introduction to VLSI Design	Module #1 Page 31

