

Energy Bands

Energy Bands

- the mobility of a semiconductor increases as its temperature increase

- Increasing the mobility of a semiconductor eventually turns the material into a conductor.
- this is of interest to electronics because we can control the flow of current
- we can also cause conduction using an applied voltage to provide the energy
- we are interested in how much energy it takes to alter the behavior of the material

- Energy Band Diagrams are a graphical way to describe the energy needed to change the behavior of a material.

MOSFET Operation			
MOSFET Operation			
we saw last time that if we at the oxide-semiconducto	have a MOS structure, we can use V_G to alter the charge concentration r surface:		
1) Accumulation	: $V_{\rm G} < 0$: when the majority carriers of the semiconductor are pulled toward the oxide-Si junction		
2) Depletion	: $V_{\rm G}$ > 0 (small) when the majority carriers of the Si are pushed away from the oxide-Si junction until there is a region with no mobile charge carriers		
3) Inversion	: $V_0 > 0$ (arge) : when V_0 is large enough to attract the minority carriers to the oxide-Si junction forming an inversion layer		
	minority carriers to the oxide-SI junction forming an <i>inversion layer</i>		

	MOSFET Operation
MOSFET Mate	rials
<u>Metal</u>	: Polysilicon. This is a silicon that has a heavy concentration of charge carriers. This is put on using Chemical Vapor Deposition (CVD). It is naturally conductive so it acts like a metal.
<u>Oxide</u>	: Silicon-Oxide (SiO ₂). This is an oxide that is grown by exposing the Silicon to oxygen and then adding heat. The oxide will grow upwards on the Silicon surface
Semiconductor	: Silicon is the most widely used semiconductor.
P-type Silicon	: Silicon doped with Boron
N-type Silicon	: Silicon doped with either Phosphorus or Arsenic
	La Corres W La Corres La Corres La Corres La Corres D
R	EELE 414 – Introduction to VLSI Design Page 46

	MOSFET Operation	
Enhancement vs.	Depletion MOSFETS	
Enhancement Type	:when a MOSFET has no conduction channel at V _G =0v :also called <i>enhancement-mode</i> :we apply a voltage at the gate to turn ON the channel : this is used most frequently and what we will use to lea	m VLSI
Depletion Type	: when a MOSFET does have a conducting channel at \ : also called <i>dopletion-mode</i> : we apply a voltage at the gate to turn OFF the channel : we won't use this type of transistor for now	/ _G =0v
Note: We will I All of the p-chann	earn VLSI circuits using enhancement-type, n-channel MOSFET principles apply directly to Depletion-type MOSFETs as well as el MOSFETs.	S.
	EELE 414 – Introduction to VLSI Design	Module #2 Page 48

IOSFET und	der Bias (Inversio	on)
we are very in transistor is O	terested when an in N	version channel forms because it represents when the
we define the	Gate-Source voltage	$e~(V_{GS})$ necessary to cause inversion the $\textit{Threshold Voltage}~(V_{To})$
when	$V_{GS} < V_{T0}$	there is no channel so no current can flow between the Source and Drain terminals
when	$V_{GS} \geq V_{T0}$	an inversion channel is formed so current can flow between the Source and Drain terminals
NOTE: We are We still just as in the N	e only establishing th I have not provided the MOS inversion, incre-	e <i>channel</i> for current to flow between the Drain and Source, he necessary V _{DS} voltage in order to induce the current. asing V _{DS} beyond V _{TO} does not increase the surface potential her values at the onset of inversion.

Gate to Body Capac	itance (C _{gb}) : Cut-Off
- There is a capacitor	between the Gate and Body
 The bottom plate is charge carriers and 	he conductor formed by the p-type silicon since it has majority acts as a conductor
- we can describe the	Gate-to-Body Capacitance as:
	$C_{gb_{cut-off}} = C_{ox} \cdot W \cdot L$
- remember that L = (

Oxide-Related Capacitance (Summary)			
Summary of Oxide-	Related Capacitance		
Cut-off	Linear	Saturation	
$C_{g_{s_{(cos-of)}}} = C_{ox} \cdot W \cdot L_{D}$	$C_{g_{\theta_{(low)}}} = \frac{1}{2} \cdot C_{ox} \cdot W \cdot L + C_{ox} \cdot W \cdot L_{D}$	$C_{g_{\mathcal{B}_{(aut)}}} = \frac{2}{3} \cdot C_{ox} \cdot W \cdot L + C_{ox} \cdot W \cdot L_{D}$	
$C_{gd_{(cur-of)}} = C_{ox} \cdot W \cdot L_D$	$C_{gd_{(linur)}} = \frac{1}{2} \cdot C_{ox} \cdot W \cdot L + C_{ox} \cdot W \cdot L_{D}$	$C_{gd_{(usr)}} = C_{ox} \cdot W \cdot L_D$	
$C_{gb_{(cor-of)}} = C_{ox} \cdot W \cdot L$	$C_{gb_{(lmar)}} = 0$	$C_{gb_{(set)}} = 0$	
	EELE 414 – Introduction to VLSI De	sign Module #2 Page 132	

Junction Capacitance
Junction Capacitance
- Doesn't this take a lot of time?
- Yes! And remember that we have made a lot of assumptions along the way
- For this reason, we typically rely on computer models of the capacitance
- We do the hand calculations to get a gut feel for what factors affect capacitance
- Gut Feel makes for good designers because design is about balancing trade-offs
 If you don't have Gut Feel and rely totally on simulators, you will struggle when asked to innovate and trouble-shoot.
EELE 414 - Introduction to VLSI Design Module #2 Page 147 Page 147