| EELE 414 – Introduction to VLSI Design | 1                   |
|----------------------------------------|---------------------|
| Module #3 – SPICE Modeling             |                     |
| Agenda     I. SPICE Modeling           |                     |
| Announcements                          |                     |
| 1. Read Chapter 4                      |                     |
|                                        |                     |
| EELE 414 - Introduction to VLSI Design | Module #3<br>Page 1 |



















| SPICE Modeling           |                                                                                                            |                      |  |
|--------------------------|------------------------------------------------------------------------------------------------------------|----------------------|--|
| SPICE Modeling (Level 1) |                                                                                                            |                      |  |
| "Parasitic Parameters"   |                                                                                                            |                      |  |
| - these are the ca       | pacitances and resistances of the material                                                                 |                      |  |
| Parameter                | Description                                                                                                |                      |  |
| CJ                       | C <sub>J0</sub> , zero-bias bulk capacitance per area                                                      |                      |  |
| CJSW                     | $C_{JOSWP}$ zero-bias sidewall capacitance per area                                                        |                      |  |
| - there parameter        | s scale with the size of the device provided by W,L,AS,                                                    | AD,PS, and PD.       |  |
|                          | more parameters in table 4.1 in the textbook, take a loo to properly predict the behavior of a transistor. | k and you'll see why |  |
|                          |                                                                                                            |                      |  |
|                          |                                                                                                            |                      |  |
|                          |                                                                                                            |                      |  |
|                          |                                                                                                            |                      |  |
|                          |                                                                                                            |                      |  |
|                          | EELE 414 – Introduction to VLSI Design                                                                     | Module #3<br>Page 11 |  |

| SPICE Modeling                                                                                                                                                        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SPICE Modeling (Level 2)                                                                                                                                              |  |  |
| - Level 2 adds the following behavior to the Level 1 model                                                                                                            |  |  |
| <ol> <li>Variation of the bulk depletion charge dependence on the channel voltage (we assumed i<br/>was constant in Level 1).</li> </ol>                              |  |  |
| 2) Variation of electron mobility $(u_n)$ with the applied E-field                                                                                                    |  |  |
| 3) Variation of effective Channel Length in Saturation model                                                                                                          |  |  |
| 4) Carrier Velocity Saturation                                                                                                                                        |  |  |
| 5) Subthreshold Conduction                                                                                                                                            |  |  |
| <ul> <li>we also have the ability to indicate which level we want to use. For example, you can have a<br/>Level 2 model, but in the instantiation you say:</li> </ul> |  |  |
| M1 D G S B NMOD (Level=1 L=1U W=10U)                                                                                                                                  |  |  |
| this will tell the simulator to ignore all the parameters associated with Level 2 or higher accuracy.                                                                 |  |  |
| - we can also put the "Level=1" as the first parameters in the model                                                                                                  |  |  |
| EELE 414 – Introduction to VLSI Design Module #                                                                                                                       |  |  |

## SPICE Modeling

## SPICE Modeling (Level 3)

- Level 3 was developed to specifically address small geometry effects.

- instead of trying to come up with an expression for each and every *bump and wiggle* on the IV curve, Level 3 instead moves toward a more empirical approach.

- curve-fitting parameters are added to the IV equations from Level 1 and Level 2.

- these parameters are dialed-in based on measurement data from a test run of transistors.





