EELE 414 – Introduction to VLSI Design
Module #5 –Inverters
• Agenda
1. Inverters
- Static Characterístics - Switching Characterístics
Announcements
1. Read Chapters 5, & 7
EELE 414 - Introduction to VLSI Design Module #5 Page 1

CMOS Inverter Threshold			
CMOS Inverter Static Design - let's relate the threshold voltage's sensitivity to k _p :	$V_{ab} = \frac{V_{T0,a} + \sqrt{\frac{1}{k_R}} \cdot \left(V_{DD} + V_{T0,p}\right)}{\left(1 + \sqrt{\frac{1}{k_R}}\right)}$	Original expression for Vth	
Sensitivity to K _R .	$V_{\rm th} \cdot \left(1 + \sqrt{\frac{1}{k_R}}\right) = V_{T0,n} + \sqrt{\frac{1}{k_R}} \cdot \left(V_{DD} + V_{T0,p}\right)$	Multiply both sides by (1+sqt(1/kR))	
	$V_{\rm sh} + V_{\rm sh} \cdot \sqrt{\frac{1}{k_R}} = V_{{\scriptscriptstyle T}0, \pi} + \sqrt{\frac{1}{k_R}} \cdot \left(V_{DD} + V_{{\scriptscriptstyle T}0, p} \right)$	Multiply Vth through	
	$V_{\rm sh} - V_{T0,\rm s} = \sqrt{\frac{1}{k_{\rm g}}} \cdot \left(V_{\rm DD} + V_{T0,\rm p} \right) - V_{\rm sh} \cdot \sqrt{\frac{1}{k_{\rm g}}}$	Rearrange terms to get kR on RHS	
	$V_{th} - V_{T0, t} = \sqrt{\frac{1}{k_R}} \cdot \left(V_{DD} + V_{T0, p} - V_{th} \right)$	Pull put (1+sqrt(1/kR))	
	$\sqrt{\frac{1}{k_R}} = \frac{V_{ib} - V_{T0,v}}{V_{DD} + V_{T0,p} - V_{ib}}$	Divide to get kR term alone	
EELE 4	4 - Introduction to VLSI Design	Module #5 Page 61	

	Super Buffer	
Super Buffer		
- we first find «.		
- this defines how m	uch larger each subsequent stage is relative to its driving stage	
- we continue to add	stages until the final C_g that can be driven is C_{load}	
	$\begin{bmatrix} \bigcirc & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & \\ c_s & & & & & & & & & & & \\ c_s & & & & & & & & & & & \\ c_s & & & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & \\ c_s & & & & & & & & & & & \\ c_s & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & \\ c_s & & & & & & & & & & & & & \\ c_s & & & & & & & $	
	EELE 414 – Introduction to VLSI Design	Module # Page 11: