

| Inverters |
| :--- | :--- |
| - an inverter is a basic gate that complements the input |
| - we study the invert in order to understand the Static and Dynamic performance |
| - once we do this, we can model more complex logic gates as "equivalent inverters" and use the
 same analysis. |

| Inverter Static Behavior |
| :--- | :--- |
| - DC Specifications |
| - we need to be able to guarantee operation of the gate over all possible conditions |
| - the limits on guaranteed operation are called "specifications" |
| - Specifications can give limits on the worst case situations |
| - Specifications can also give limits on typical situations |

Inverter Static Behavior		
DC Input Specifications		

Inverter Static Behavior		
- DC Power Specifications		
- the total DC power dissipated by an IC is given by:		
$P_{D C}=V_{D D} \cdot I_{D C}$		
- for a given gate, the current drawn will vary depending on the logic level		
Driving a Logic HIGH: $\quad I_{\text {DC1 }}\left(V_{\text {in }}=\right.$ low $)$		
Driving a Logic LOW: $\quad I_{D C 2}\left(V_{i n}=h i g h\right)$		
- the gate will be in each one of these states 50% of the time		
- if we assume the output voltage will swing from 0 to V_{DD}, we can estimate the average output voltage as $\mathrm{V}_{\mathrm{DD}} / 2$		
- a rough estimate of the DC power is: $\quad P_{D C}=\frac{V_{D D}}{2} \cdot\left[I_{D C}\left(V_{\text {in }}=l o w\right)+I_{D C}\left(V_{\text {in }}=h i g h\right)\right]$		
	EELE 414 - Introduction to VLSI Design	Module \#5 Page 13

Inverter Static Behavior
- Area - as designers, we can adjust the sizes of L and W. - we know that there is additional area required to fabricate the MOSFET - active regions (surrounding FOX) - channel Length (Y) - substrate contacts - but, as a practical measure, we talk about the area of a circuit as W.L - while we know this isn't the full area that the device takes, it gives us a standard way to compare the sizes of different layouts. - it is widely accepted that the area of a device is W•L
EELE 414 - Introduction to VLSI Design $\begin{gathered}\text { Module \#5 } \\ \text { Page } 14\end{gathered}$

Inverter Design

- Inverter Implementations
- now we turn our attention to the circuit level implementation of the inverter
- there are many ways to create an inverter using MOSFETs

1) inverter with resistive-load
2) inverter with enhancement n-Type MOSFET load operating in the linear region
3) inverter with enhancement n Type MOSFET load operating in the saturation region
4) inverter with depletion n-Type MOSFET load
5) CMOS inverter

- the most common type of inverter in VLSI is CMOS. This is due to the low static power consumption
- however, it is worth while to briefly look at other types of inverter implementations in case you use
a fab that doesn't have PMOS
Resistive-Load Inverter
- Resistive-Load Inverter
- this circuit consists of an enhancement-type, N -Channel MOSFET as the driver
- a load resistor is connected between V_{DD} and the Drain (Vout) of the MOSFET
- the gates that this inverter drives are assumed to be of the same configuration so there
is no DC load current looking into their gate terminals.
$-\mathrm{V}_{\mathrm{out}}=\mathrm{V}_{\mathrm{DS}}$
$-\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{gs}}$

Active-Load Inverter

Inverter with Enhancement-Type NMOS Load
-the resistive-load inverter takes a lot of chip area due to the resistor which makes it impractical for VLSI

- another way to implement the load is to use an enhancement-type NMOS transistor
- this gives a load that takes less area
- this topology can have the load either in the linear or saturation region depending on how it is biased

(a)

EELE 414 - Introduction to VLSI Design
Module \#5
Page 22

Active-Load Inverter
- Inverter with Depletion-Type NMOS Load
- the enhancement-type NMOS load has the drawback of a larger DC current when not switching.
- this power consumption make it less than ideal for VLSI
- another technique is to use a depletion-type NMOS load
- this gives a sharper VTC curve and better noise margin
- however, an additional process step is required to create the depletion-type device

CMOS Inverter

- CMOS Inverter
- the CMOS inverter uses an NMOS and a PMOS transistor in a complementary push/pull configuration
- for a Logic "1" output, the PMOS=ON and the NMOS=OFF
- for a Logic " 0 " output, the PMOS=OFF and the NMOS=ON
- this configuration has two major advantages:

1) low static power consumption : due to one MOSFET always being off
2) a sharp and symmetric VTC profile giving full swing signals $\left(1=\mathrm{V}_{\mathrm{DD}}, 0=\mathrm{V}_{\mathrm{SS}}\right)$

CMOS Inverter							
- CMOS Inverter Static Behavior Region C - Now let's move to where $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}$ $\left(\mathrm{V}_{\text {in }} \sim=2.5 \mathrm{v}, \mathrm{~V}_{\text {out }} \sim=2.5 \mathrm{v}\right)$ - This is defined as V_{th} - the NMOS transistor is ON since $V_{G S, n} \geq V_{T, n} \text { i.e., } 2.5 \geq 1$ - the NMOS transistor is in saturation since $\mathrm{V}_{\mathrm{DS}, \mathrm{n}}>\left(\mathrm{V}_{\mathrm{GS}, n}-\mathrm{V}_{\mathrm{T}, \mathrm{n}}\right) \text { i.e., } \sim 2.5>(2.5-1)$ - the PMOS transistor is ON since $\mathrm{V}_{\mathrm{GS}, \mathrm{p}} \leq \mathrm{V}_{\mathrm{T}, \mathrm{p}}$ i.e., $(2.5-5) \leq-1$ - the PMOS is in saturation since: $\mathrm{V}_{\mathrm{DS}, n}<\left(\mathrm{V}_{\mathrm{GS}, n}-\mathrm{V}_{\mathrm{T}, \mathrm{p}}\right) \text { i.e., }(2.5-5)<(2.5-5)-(-1)$							
EELE 414 - Introduction to VLSI Design							Module \#5 Page 29

CMOS Inverter	
- CMOS Inverter Static Behavior (V_{LL}) cont...	
- remembering the relationships between $\mathrm{V}_{\text {in }}$ \& $\mathrm{V}_{\text {out }}$, and V_{GS} \& V_{DS} :	
$V_{G S, n}=V_{i n}$	
$V_{D S, n}=V_{\text {out }}$	
$V_{G S, p}=-\left(V_{D D}-V_{i n}\right)=V_{i n}-V_{D D}$	
$V_{D S, p}=-\left(V_{D D}-V_{\text {out }}\right)=V_{\text {out }}-V_{D D}$	
- we can write:	
$\frac{k_{n}}{2} \cdot\left(V_{\text {in }}-V_{T 0, n}\right)^{2}=\frac{k_{p}}{2} \cdot\left[2 \cdot\left(V_{\text {in }}-V_{D D}-V_{T 0, p}\right) \cdot\left(V_{\text {out }}-V_{D D}\right)-\left(V_{\text {out }}-V_{D D}\right)^{2}\right]$	
\square	Module \#5 Page 35

CMOS Inverter	
- CMOS Inverter Static Behavior (V_{L}) cont...	
- let's rearrange to solve for V_{LL} :	
$k_{n} \cdot\left(V_{L L}-V_{T 0, n}\right)=k_{p} \cdot\left(2 \cdot V_{\text {out }}-V_{I L}+V_{T 0, p}-V_{D D}\right)$	
$k_{n} \cdot V_{I L}-k_{n} \cdot V_{T 0, n}=k_{p} \cdot 2 \cdot V_{\text {out }}-k_{p} \cdot V_{I L}+k_{p} \cdot V_{T 0, p}-k_{p} \cdot V_{D D}$	Mutipy throughy k_{6} \& F_{6}
$k_{n} \cdot V_{L L}+k_{p} \cdot V_{I L}=k_{p} \cdot 2 \cdot V_{\text {out }}+k_{p} \cdot V_{T 0, p}+k_{n} \cdot V_{T 0, n}-k_{p} \cdot V_{D D}$	Arange V_{2} Lemms on LHS
$V_{I L} \cdot\left(k_{n}+k_{p}\right)=k_{p} \cdot 2 \cdot V_{\text {out }}+k_{p} \cdot V_{T 0, p}+k_{n} \cdot V_{T 0, n}-k_{p} \cdot V_{D D}$	Pulloul V_{2} orths
$V_{u}=\frac{k_{p} \cdot 2 \cdot V_{\text {out }}+k_{p} \cdot V_{T 0, p}+k_{n} \cdot V_{T 0, n}-k_{p} \cdot V_{D D}}{k_{0}+k_{p}}$	Bing glantpito RHS
$k_{L}=\frac{k_{n}+k_{p}}{}$	
EELE 414 - Introduction to VLSI Design	Module \#5 Page 40

CMOS Inverter
- CMOS Inverter Static Behavior $\left(\mathbf{v}_{\mathrm{LL}}\right)$ cont...
- to make this a little simpler, let's divide the top and bottom of the RHS by k_{p} :
$\qquad$$\frac{k_{p}}{k_{p}} \cdot 2 \cdot V_{\text {out }}+\frac{k_{p}}{k_{p}} \cdot V_{T 0, p}+\frac{k_{n}}{k_{p}} \cdot V_{T 0, n}-\frac{k_{p}}{k_{p}} \cdot V_{D D}$ $\frac{k_{n}}{k_{p}}+\frac{k_{p}}{k_{p}}$ - let's define k_{R} as the ratio of: $k_{R}=\frac{k_{n}}{k_{p}}$ EELE 414 - Introduction to VLSI Design

CMOS Inverter

CMOS Inverter Static Behavior $\left(\mathrm{V}_{\mathrm{L}}\right)$ cont...

- substituting in k_{R}, we get our final expression for V_{IL} :

$$
V_{I L}=\frac{2 \cdot V_{o u t}+V_{T 0, p}-V_{D D}+k_{R} \cdot V_{T 0, n}}{1+k_{R}}
$$

NOTE:

- this still depends on $\mathrm{V}_{\text {out }}$. This means to get a numerical solution, we must solve this together with our expression relating the drain currents:

$$
\frac{k_{n}}{2} \cdot\left(V_{I L}-V_{T 0, n}\right)^{2}=\frac{k_{p}}{2} \cdot\left[2 \cdot\left(V_{I L}-V_{D D}-V_{T 0, p}\right) \cdot\left(V_{\text {out }}-V_{D D}\right)-\left(V_{\text {out }}-V_{D D}\right)^{2}\right]
$$

this gives us two expressions and two unknowns (V_{L} and $\mathrm{V}_{\text {out }}$)

CMOS Inverter
CMOS Inverter Static Behavior (V_{IH}) cont... - let's expand the product terms in the LHS: $\frac{d}{d V_{\text {in }}}\left(\frac{k_{n}}{2} \cdot\left[\underline{\left[2 \cdot\left(V_{\text {in }}-V_{T 0, n}\right) \cdot V_{\text {out }}-\left(V_{\text {out }}\right) \cdot\left(V_{\text {out }}\right)\right]}\right)=\frac{d}{d V_{\text {in }}}\left(\frac{k_{p}}{2} \cdot\left(V_{\text {in }}-V_{D D}-V_{T 0, p}\right)^{2}\right)\right.$ Product \#1 Product \#2 - the right-hand-side is straight forward to perform a partial derivative on (with respect to Vin), $R H S=k_{p} \cdot\left(V_{i n}-V_{D D}-V_{T 0, n}\right)$
EELE 414-Introduction to VLSI Design Module \#5

CMOS Inverter

CMOS Inverter Static Behavior $\left(\mathrm{V}_{1 H}\right)$ cont...

- now our complete differentiated expression is:

$$
k_{n} \cdot\left[\left(V_{\text {in }}-V_{T 0, n}\right) \cdot\left(\frac{d V_{\text {out }}}{d V_{\text {in }}}\right)+V_{\text {out }}-V_{\text {out }} \cdot\left(\frac{d V_{\text {out }}}{d V_{\text {in }}}\right)\right]=k_{p} \cdot\left(V_{\text {in }}-V_{D D}-V_{T 0, p}\right)
$$

- let's plug in the condition we're solving for $\left(\mathrm{dV}_{\text {oul }} / \mathrm{dV}_{\text {in }}=-1\right)$

$$
k_{n} \cdot\left[\left(V_{m, n}-V_{T 0, n}\right) \cdot(-1)+V_{\text {out }}-V_{\text {oun }} \cdot(-1)\right]=k_{p} \cdot \cdot \cdot\left(V_{\text {Im }}-V_{D D}-V_{T 0, p}\right)
$$

$k_{n} \cdot\left[-V_{i n}+V_{T 0, n}+V_{o u n}+V_{o u n}\right]=k_{p} \cdot\left(V_{t n}-V_{D D}-V_{T 0, p}\right)$
$k_{n} \cdot\left(-V_{i n}+V_{T 0, n}+2 \cdot V_{o u t}\right)=k_{p} \cdot\left(V_{i n}-V_{D D}-V_{T 0, p}\right)$

- then we can substitute $V_{i n}=V_{1 H}$:

$$
k_{n} \cdot\left(-V_{H H}+V_{T 0, n}+2 \cdot V_{o u t}\right)=k_{p} \cdot\left(V_{H H}-V_{D D}-V_{T 0, p}\right)
$$

CMOS Inverter	
- CMOS Inverter Static Behavior (V_{H}) cont...	
- again, let's divide the top and bottom of the RHS by k_{p} :	
$V_{I H}=\frac{\frac{k_{p}}{k_{p}} \cdot V_{D D}+\frac{k_{p}}{k_{p}} \cdot V_{T 0, p}+\frac{k_{n}}{k_{p}} \cdot V_{T 0, n}+2 \cdot \frac{k_{n}}{k_{p}} \cdot V_{\text {out }}}{\frac{k_{n}}{k_{p}}+\frac{k_{p}}{k_{p}}}$	
- remember that we defined k_{R} as:	
$k_{R}=\frac{k_{n}}{k_{p}}$	
EELE 414-Introduction to vLSI Design	Module \#5 Page 50

CMOS Inverter			
- CMOS Inverter Static Behavior ($\mathrm{V}_{\text {HH }}$) cont...			
- substituting in k_{R}, we get our final expression for V_{HH} :			
$V_{t H}=\frac{V_{D D}+V_{T 0, p}+k_{R} \cdot V_{T 0, n}+2 \cdot k_{R} \cdot V_{o u t}}{1+k_{R}}$			
$V_{\text {u }}=\frac{V_{D D}+V_{T O, p}+k_{R} \cdot\left(2 \cdot V_{\text {out }}+V_{T 0, n}\right)}{1+k_{R}}$			
NOTE: $\quad V_{H}=\frac{V^{\prime}}{}+k_{R}$			
- this expression again depends on $\mathrm{V}_{\text {out }}$. This means to get a numerical solution, we must solve this together with our expression relating the drain currents (where $\mathrm{V}_{\text {in }}=\mathrm{V}_{\\| H}$):			
$\frac{k_{n}}{2} \cdot\left[2 \cdot\left(V_{t H}-V_{T 0, n}\right) \cdot V_{o u t}-V_{\text {out }}^{2}\right]=\frac{k_{p}}{2} \cdot\left(V_{t H}-V_{D D}-V_{T 0, p}\right)^{2}$			
this gives us two expressions and two unknowns (V_{H} and $\mathrm{V}_{\text {out }}$)			
\cdots	EELE 414 - Introduction to VLSI Design	Module Page 51	

CMOS Inverter

- cmos Inverter Static Behavior
-we now have all of the critical voltages to describe the Noise Margins of the Inverter:
$V_{O L}=0$
$V_{O H}=V_{D D}$
$V_{L L}=\frac{2 \cdot V_{\text {out }}+V_{T 0, p}-V_{D D}+k_{R} \cdot V_{T 0, n}}{1+k_{R}}$
$V_{I H}=\frac{V_{D D}+V_{T 0, p}+k_{R} \cdot\left(2 \cdot V_{\text {out }}+V_{T 0, n}\right)}{1+k_{R}}$
EELE 414- Introduction to vLSI Design

CMOS Inverter Threshold	
- CMOS Inverter Static Design	
- notice that $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{T} 0, \mathrm{p}}$, and $\mathrm{V}_{\mathrm{TO,n}}$ are constants for a given system:	
-this means that the only thing that effects the switching threshold is k_{R}	
$V_{t h}=\frac{V_{T 0, n}+\sqrt{\frac{1}{k_{R}}} \cdot\left(V_{D D}+V_{T 0, p}\right)}{\left(1+\sqrt{\frac{1}{k_{R}}}\right)}$	
EELE 414 - Introduction to VLSI Design	Module \#5 Page 59

CMOS Inverter Threshold	
- cmos Inverter Static Design	
- in most processes, $\mathrm{V}_{\mathrm{T}, \mathrm{n}}=\left\|\mathrm{V}_{\mathrm{T}, 0 \mathrm{P}}\right\|$.	
- since $\mathrm{V}_{\text {To. }}$ is negative, then our Transconductance ratio looks like:	
$\left(\frac{k_{n}}{k_{p}}\right)_{\text {iteal }}=\left(\frac{0.5 \cdot V_{D D}+V_{T 0, p}}{0.5 \cdot V_{D D}-V_{T 0 . n}}\right)^{2}=1$	
EELE 414-Introduction to VLSI Design	Module \#5 Page 63

CMOS Inverter Threshold		
- cmos Inverter Static Design		
- remembering the expression for $\mathrm{k}_{\mathrm{N}} / \mathrm{k}_{p}$, we can see that $\mathrm{C}_{0 \times}$ will not have an effect:		
$k_{R}=\frac{k_{n}}{k_{p}}=\frac{\mu_{n} \cdot C_{o x} \cdot\left(\frac{W}{L}\right)_{n}}{\mu_{p} \cdot C_{o x} \cdot\left(\frac{W}{L}\right)_{p}}=\frac{\mu_{n} \cdot\left(\frac{W}{L}\right)_{n}}{\mu_{p} \cdot\left(\frac{W}{L}\right)_{p}}$		
- since for an ideal (symmetric) inverter, we have:		
$\left(\frac{k_{n}}{k_{p}}\right)_{\text {utal }}=1=\frac{\mu_{n} \cdot\left(\frac{W}{L}\right)_{n}}{\mu_{p} \cdot\left(\frac{W}{L}\right)_{p}}$		
\cdots	EELE 414 - Introduction to VLSI Design	$\begin{array}{r} \text { Module \#5 } \\ \text { Page } 64 \end{array}$

CMOS Switching Characteristics
- CMOS Switching Characteristics - we studied the DC (or Static) characteristics of the CMOS inverter - we learned how to calculate: $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{th}}, \mathrm{NM}_{\mathrm{L}}, \mathrm{NM}_{\mathrm{H}}$, - we learned that we can modify some of these parameters using the W/L ratios of the inverter - specifically, we say that the $\mathrm{V}_{\text {th }}$ is solely dependant on W / L and is usually the most important and most commonly controlled parameter - we now turn to the Switching (or AC or Dynamic) behavior of the inverter - the switching characteristics give us how fast the circuit will run - when designing, we must meet both $D C$ and $A C$ specs
EELE 414-Introduction to VLSI Design $\begin{gathered}\text { Module \#5 } \\ \text { Page 70 }\end{gathered}$

Delay Time Derivation ($\tau_{\text {PHL }}$)
"Differential Equation Method"
For the saturation region, our integral is:
$t_{1}^{\prime}-t_{0}=\int_{t=t_{0}}^{t=t_{1}} d t=-C_{\text {load }} \int_{V_{\text {out }}=V_{\text {ous }}}^{V_{\text {out }}=V_{\text {out }}-V_{\text {t.n }}}\left(\frac{1}{i_{D, n-s a t}}\right) d V_{\text {out }}$
For the linear region, our integral is:
$t_{1}-t_{1}^{\prime}=\int_{t=t_{1}}^{t=t_{0}} d t=-C_{\text {load }} \int_{V_{\text {out }}=V_{o H}-V_{T, n}}^{V_{\text {out }}=V_{\text {sws }}}\left(\frac{1}{i_{D, n-\text { lin }}}\right) d V_{\text {ou }}$

The delay is simply the sum of these two solutions:

$$
\tau_{\text {PHL }}=\left(t_{1}-t_{0}\right)+\left(t_{1}-t_{1}\right)
$$

EELE 414 - Introduction to VLSI Design | Module \#5 |
| :---: |
| Page 79 |

CMOS Switching Characteristics

- Rise \& Fall Time Definitions $\left(\tau_{\text {rise }} \& \tau_{\text {tall }}\right)$

- rise time ($\tau_{\text {rise }}$) is the time it takes to transition from $V_{10 \%}$ to $V_{90 \%}$ - fall time ($\tau_{\text {tall }}$) is the time it takes to transition from $\mathrm{V}_{90 \%}$ to $\mathrm{V}_{10 \%}$

we can use either the (1) differential equation or the (2) average current technique to solve for these -in these transitions, the transistors again operate in both the saturation and linear regions - the only difference is that the limits of the transition are $\mathrm{V}_{10 \%}$ and $\mathrm{V}_{90 \%}$

EELE 414 - Introduction to VLSI Design | Module \#5 |
| :---: |
| Page 84 |

Non-ideal Inputs

- in all of these derivations, we have assumed a perfect step input.
- if the input is not a perfect step (i.e., it has a finite delay or rise time), it will
increase the delay of the gate
- we can use an RMS estimation to account for the non-ideal input:
- we can also estimate the delay of the input if we are only given its rise/fall time by using

$$
\begin{aligned}
& \tau_{P L H}=\frac{\tau_{r i s e}}{2} \\
& \tau_{P H L}=\frac{\tau_{\text {fall }}}{2}
\end{aligned}
$$

CMOS Switching Characteristics

| CMOS Switching Characteristics |
| :--- | :--- |
| - Designing for Constraints |
| - when we begin a design, we typically start with specification |
| - we then size the transistors to achieve the desired performance |
| - we saw how the sizes of the transistor effect the DC specs, specifically $\mathrm{V}_{\text {th }}$ |
| - we also need to size the transistors so that for a given load capacitance, the gate can |
| achieve a designed delay or rise/fall time. |
| - we can use the expressions for delay and rise/fall time that we derived to calculate the |
| necessary transistor sizes. |$]$

CMOS Switching Characteristics	
Designing for Constraints - the average current method is the simplest technique to use: $\begin{aligned} & \tau_{P H L}=\frac{C_{\text {load }} \cdot \Delta V_{H L}}{\frac{1}{2} \cdot\left[i_{D-\text { sat }}\left(V_{\text {in }}=V_{O H}, V_{\text {out }}=V_{O H}\right)+i_{D-\text { in }}\left(V_{\text {in }}=V_{\text {OH }}, V_{\text {out }}=V_{\text {SOit }}\right)\right]} \\ & \tau_{P L H}=\frac{C_{\text {load }} \cdot \Delta V_{L H}}{\frac{1}{2} \cdot\left[i_{D-\text { sat }}\left(V_{\text {in }}=V_{O L}, V_{\text {out }}=V_{\text {OL }}\right)+i_{D-\text { lin }}\left(V_{\text {in }}=V_{\text {OL }}, V_{\text {out }}=V_{\text {SOF }}\right)\right]} \end{aligned}$ - in this expression, we can insert our timing spec in for $\tau_{\text {PHL }}$ or $\tau_{\text {PLH }}$ - the RHS of the expression must evaluate to be less than or equal to the timing spec	
EELE 414 - Introduction to VLSI Design	Module \#5 Page 88

CMOS Switching Characteristics					
Area vs. Delay - we've seen that larger = faster for a given inverter - however, we have made an assumption that the load capacitance is independent of transistor size - we know what a portion of the load capacitance comes from the driver oxide and driver junctions - this means that as the inverter gets larger, so does the capacitance - this leads to a point of diminishing returns with regards to reducing delay					

CMOS Switching Characteristics
- Interconnect Modeling
- modeling of the interconnect describes the equivalent circuits we use to describe the electrical
behavior of the materials.
- the type of model we use is a trade-off between accuracy and simulation time
- we typciall use 1 of the 3 following models:
1) Lumped Capacitance 2) RC network 3) Transmission Line Iypical Uses inter-module intra-module and global global and off-chip

CMOS Switching Characteristics
- Interconnect Modeling
- we choose the appropriate model based on the rise/fall time of the driver relative to the
prop delay of the interconnect
- the prop delay (tprop) is the time it takes for the wave to travel down the length of the interconnect:
- the velocity of a wave in a dielectric is given by:
- the prop delay can then be given by:
\qquadEELE 414 - Introduction to vLSI Design ε_{r}

CMOS Switching Characteristics
Dynamic Power Consumption - in theory, a CMOS gate does not consume any Static Power because the NMOS and PMOS transistors are in the cut-off regions when driving V_{OH} or V_{OL} - we know what there is leakage current in cut-off, however to the first order we neglect it. - the majority of the power is due to the charging and discharging of $\mathrm{C}_{\text {load }}$ - this is called Dynamic Power because it is AC in nature and only occurs when the gate switches - this current is described as: $i_{C}=C_{\text {load }} \frac{d V_{\text {out }}}{d t}$
-since the current consumed is proportional to the number of times that the gate switches, we need to make an assumption to the number of times per second that $\mathrm{V}_{\text {out }}$ switches - since we have a binary system, we can assume that the output will be a ' 0 ' 50% of the time and a ' 1 ' 50% of the time. - we can model the voltage on $\mathrm{V}_{\text {out }}$ as a periodic square wave
EELE 414-Introduction to vLIL Design

> Dynamic Power Consumption

- current will be drawn from V_{DD} and sunk into V_{SS} during a transition

$$
\text { EELE 414 - Introduction to VLSI Design } \begin{gathered}
\text { Module \#5 } \\
\text { Page } 103
\end{gathered}
$$

CMOS Switching Characteristics

CMOS Switching Characteristics	
- Dynamic Power Consumption	
- we can now re-write our average power expression as:	
$P_{\text {arg }}=\frac{1}{T}\left[\int_{0}^{T / 2} V_{\text {out }} \cdot\left(-C_{\text {boad }} \frac{d V_{\text {out }}}{d t}\right) d t+\int_{T / 2}^{T}\left(V_{D D}-V_{\text {out }}\right) \cdot\left(C_{\text {boad }} \frac{d V_{\text {out }}}{d t}\right) d t\right]$	
$P_{\text {avg }}=\frac{1}{T}\left[\left.\left(-C_{\text {boad }} \frac{V_{\text {out }}^{2}}{2}\right)\right\|_{0} ^{T / 2}+\left.\left(V_{D D} \cdot V_{\text {out }} \cdot C_{\text {load }}-C_{\text {boad }} \frac{V_{\text {out }}^{2}}{2}\right)\right\|_{T / 2} ^{T}\right]$	
$P_{\text {arg }}=\frac{1}{T} \cdot C_{\text {load }} \cdot V_{D D}^{2}$	
$P_{\text {arg }}=f \cdot C_{\text {load }} \cdot V_{D D}^{2}$	
EELE 414 - Introduction to VLSI Design	Module \#5 Page 105

$\left.\begin{array}{l}\text { CMOS Switching Characteristics } \\ \text { - Dynamic Power Consumption } \\ \text { - a more qualitative view of this power consumption is as follows: } \\ \text { Capacitance is defined as: } \\ \text { Each cycle, the average current in the capacitor is: } \\ I_{\text {AVG }}=\frac{Q}{T}=\frac{C \cdot V}{T} \\ P_{\text {Power is } 1 \cdot V \text {, which gives: }}^{T}=V_{\text {AVG }} \cdot I_{\text {AVG }}=V \cdot \frac{C \cdot V}{T}=\frac{1}{T} \cdot C_{\text {load }} \cdot V_{\text {out }}^{2}=f \cdot C_{\text {load }} \cdot V_{\text {out }}^{2}\end{array}\right]$

| CMOS Switching Characteristics |
| :--- | :--- |
| -Power Delay Product (PDP)
 - another quality measure of a design is the PDP
 - this is a measure of the energy required to switch logic levels in a given period.
 - qualitatively, Power x Time is:
 $P_{\text {avg }}=\frac{1}{\text { time }} \cdot C_{\text {load }} \cdot V_{D D}^{2}$
 $P_{\text {avg }} \cdot \tau=C_{\text {load }} \cdot V_{D D}^{2}$ |

CMOS Switching Characteristics
-Power Delay Product (PDP) - as the delay goes down, the power goes up. - the power going up is due to the increase in intrinsic junction capacitance of the driver. - the delay reaches an ~asymptotic limit as the size is increased. - the power increases as the size is increased. - looking at the PDP can give an estimate of when you are optimally sized to deliver energy in the most effective manner.

Super Buffer

Super Buffer
- Super Buffer - off-chip capacitances are typically an order of magnitude larger than on-chip capacitances. - VLSI gates that are used in logic circuitry are sized to drive other gates of comparable size. - if these smaller gates are connected to a much larger load capacitance, they are not sized optimally. - a gate can typically not drive a capacitance that has a much larger capacitance than its own junction capacitance. - a super buffer is a circuit that consists of a series of gates, each with a increasingly larger size and drive strength. - we define the relative size of each subsequence gate using the optimal sizing factor (α) - we start with a typical logic gate and then design a subsequent stage that is larger by a factor of α - we continue to add stages until the final capacitance that is to be driven $\left(\mathrm{C}_{\text {load }}\right)$ is a factor of α larger than the last state of the super buffer. - we define the number of stages in the super buffer as \mathbf{N}

