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PAM- Pulse Amplitude Modulation

(continued)

EELE445-14
Lecture 17

SQNR 
with and without 

Companding

EELE445-13 
Lecture 17

(continuation of lecture 16)



2

SQNR - summary

powernoiseonquantizati
M

VPnq 2

2
max

3
=

2
max

2
max

2 433
V

P
V

PM
P
PSQNR x

n
x

nq

x ×
===

• M is the number of quantization levels
• n is the number of bits
• Vmax is ½ the A/D input range

SQNRdB

12
max

2
max

≤

≤

V
P

VP

x

x The SQNR decreases as
The input dynamic range
increases

8.46log10| 2
max

10 ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅ n

V
PSQNR x

dB

range quantizer scale full the in bits of number the is   

quantizer the of range  peak to peakthe
2

 is

n

 V

•

•
1

max



3

Summary of SQNR|dB for linear, μ−law, A-law
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Exam 1
Wednesday February 26 
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Line Codes:
Baseband Digital Signals
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PCM Signal Transmission

PCM
Signal
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PCM Waveforms

Shaped Polar NRZ

Polar NRZ

Unipolar NRZ

Digital Signaling – Signal Vectors
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Figure 3–11 Representation for a 3-bit binary digital signal.
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The φk are orthogonal basis functions, wk are weights
that correspond to the digital data.
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Figure 3–13 Binary-to-multilevel signal conversion.
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Figure 3–12 Binary signaling (computed).



8

Couch, Digital and Analog Communication Systems, Seventh Edition                                               ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0

Figure 3–14 L = 4-level signaling (computed).

Desired Properties of Line Codes
• Self-synchronization:

There is enough timing information built into the code so that 
bit synchronizers can be designed to extract the clock 
signal.  A long series of 1’s or 0’s should not cause a 
problem.

• Low probability of bit error:
Receiver can be designed that will recover the binary data 
with a low probability of bit error when the input data signal 
is corrupted by noise or ISI (intersymbol interference)

• Good Spectral Properties:
If the channel is ac coupled, the PSD of the line code signal 
should be negligible at frequencies near zero.  The signal 
bandwidth needs to be sufficiently small compared to the 
channel bandwidth, so that ISI will not be a problem.
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Desired Properties of Line Codes

•Transmission bandwidth:
As small as possible

•Error detection capability:
It should be possible to implement this feature easillyby
the addition of channel encoders and decoders, or the 
feature should be incorporated into the line code.

• Transparency:
The data protocol and line code are designed so that 
every possible sequence of data is faithfully and 
transparently received. (The sequence of bits does not 
matter.)

Couch, Digital and Analog Communication Systems, Seventh Edition                                               ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0

Figure 3–15 Binary signaling formats.

Good: simple
Bad: DC

Good: Lowest 
BER

NRZ: non-return to zero has smallest occupied bandwidth
but must constrain consecutive 0’s or 1’s
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Figure 3–15 Binary signaling formats.

Bipolar 

20

Line Codes:
Power Spectral Density (PSD)

ELE445-14
Lecture 18
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PSD of Line Codes

iikn

l

i
n

k

kfTj

s
y

PaakR

ekR
T
fF

fP s

)()(

)(
)(

)(

1

2
2

+
=

∞

−∞=

∑

∑

=

= π

Binary Signals:  Ts =Tb
Multilevel Signals: Ts = l Tb

Pi is the probability of anan+k occurring

for random data 

R(k) example for a deterministic data file
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R(k) example Polar , k=0
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Shift Right 1

See Mathcad file bpsk_psd.xmcd and linecodepsd.xmcd
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R(k) example Polar , k=1
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PSD of Line Codes
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PSD of Line Codes

PSD of Line Codes

Check the website for Matlab and 
mathcad files to plot the psd of 
line codes
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Figure 3–16 PSD for line codes (positive frequencies shown).
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Figure 3–16 PSD for line codes (positive frequencies shown).
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Figure 3–16 PSD for line codes (positive frequencies shown).

43)-(3⎥
⎦

⎤
⎢
⎣

⎡
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

∞=

−∞=

n

n bbb

bb
RZunipolar T

nf
TfT

fTTAfP )(11
2/

2/sin
16

)(
22

δ
π

π

Couch, Digital and Analog Communication Systems, Seventh Edition                                               ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0

Figure 3–16 PSD for line codes (positive frequencies shown).
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Figure 3–16 PSD for line codes (positive frequencies shown).
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Eye Diagrams
Clock Recovery

Regenerative Repeater
Spectral Efficiency

EELE445-14 
Lecture 19
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Exam in Class
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Figure 3–18 Distorted polar NRZ waveform and corresponding eye pattern.

EYE Diagrams
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EYE Diagrams

Eye diagram of a 20 Gbps data stream The time scale is set at 10  
picoseconds/division.
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Figure 3–19 Regenerative repeater for unipolar NRZ signaling.

•The ability to use a regenerative repeater is one of the major 
advantages of a digital binary system over an analog system

Couch, Digital and Analog Communication Systems, Seventh Edition                                               ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0

Figure 3–20 Square-law bit synchronizer for polar NRZ signaling.
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Figure 3–20 Square-law bit synchronizer for polar NRZ signaling.
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Figure 3–21 Early–late bit synchronizer for polar NRZ signaling.
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Figure 3–22 Binary-to-multilevel polar NRZ signal conversion.
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Figure 3–22 Binary-to-multilevel polar NRZ signal conversion.
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Spectral Efficiency 
Spectral Efficiency

Definition: The spectral efficiency of a digital signal is given by 
the number of bits per second that can be supported by each hertz of 
bandwidth.  

where R is the data rate in bits per second and B is the bandwidth in Hz

( ) Hzbitsin
B
R /sec/=η

Spectral Efficiency Limits 

• Shannon’s Law is the best we can do
•We are a long way from this
•Multiple bits/symbol get us closer (l- multilevel PCM)
• η is in (bits/sec)/Hz
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Spectral Efficiency 

lR/lMultilevel polar NRZ

1/22RManchester NRZ

1RBipolar RZ

1/22RUnipolar RZ

1RPolar NRZ

1RUnipolar NRZ

η=R/B(Hz)

Spectral EfficiencyFirst null BandwidthCode Type

Table 3-6  SPECTRAL EFFICIENCIES OF LINE CODES


