

Digital Signaling – Signal Vectors

$$w(t) = \sum_{k=1}^{N} w_k \varphi_k(t) \qquad 0 < t < T_o$$
Where w_k is the digital data and ϕ_k (t) is the set of basis waveforms
Example:

$$\varphi(t) = \Pi\left(\frac{t}{T_o}\right) \quad T_o = \frac{T_s}{2} \quad for \quad RZ \ codes$$

$$T_o = T_s \quad for \quad NRZ \ codes$$

$$w \in (0,1) \quad for \ Unipolar$$

$$w \in (-1,1) \quad for \ polar \ or \ bipolar$$

$$w \in (-.75, -.25, .25, .75) \quad for \ 4 \ state \ multilevel$$

R(k) example fo	or a	dete	rminis	tic d	ata	file		
Data	1	1	0	1	0			
Unipolar A= 0,1	1	1	0	1	0			
Polar A= -1,1	1	1	-1	1	-1			
Bipolar A = 0, (1,-1)	1	-1	0	1	0			
$R(k) = \frac{1}{N} \sum_{k=-N}^{N} (a_n a_{n+k})$ where N is the number of bits								
MONTANA STATE UNIVERSITY					Mot	intains 😂 Minds		

R(k) (examp	ole P	olar ,	k=0		
Data	1	1	0	1	0	
a _n	1	1	-1	1	-1	
a _{n+0}	1	1	-1	1	-1	
(a _n) ²	1	1	1	1	1	
$(1/N)\Sigma(a_n)^2$	1					
Ι	R(k) =	$=\frac{1}{N_{k}}$	$\sum_{n=-N}^{N} (a_n)$	a_{n+k})	
MONTANA STATE UNIVERSITY		K			Моц	intains 👉 Mir

I	R(k) e	xan	nple	Pol	ar,	k=1
Data	1	1	0	1	0	
a _n	1	1	-1	1	-1	
a _{n+1}	-1	1	1	-1	1_	─ Shift Right 1 →
a _n a ₊₁	-1	1	-1	-1	-1	
$(1/N)\Sigma a_{n}a_{+1}$	-0.6					
See	Mathcad	file t	psk_p	sd.xn	ncd a	nd linecodepsd.xmcd
MONTANA STATE UNIVERSITY						Mountains 😚 Minds

	PSD of Line Codes	
	Unipolar NRZ Signaling. For unipolar signaling, the possible levels for the <i>a</i> 's are + A and 0 V. Assume that these values are equally likely to occur and that the data are independent. Now, evaluate $R(k)$ as defined by Eq. (3-36b). For $k = 0$, the possible products of $a_n a_n$ are $A \times A = A^2$ and $0 \times 0 = 0$, and consequently, $I = 2$. For random data, the probability of having A^2 is $\frac{1}{2}$ and the probability of having 0 is $\frac{1}{2}$, so that $R(0) = \sum_{i=1}^{2} (a_n a_n)_i P_i = A^2 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{1}{2} A^2$	
	For $k \neq 0$, there are $l = 4$ possibilities for the product values: $A \times A, A \times 0$, and $0 \times A, 0 \times 0$. They all occur with a probability of $\frac{1}{4}$. Thus, for $k \neq 0$,	
	$R(k) = \sum_{i=1}^{4} (a_n a_{n-k}) P_i = A^2 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} = \frac{1}{4} A^2$ Hence, $R_{\text{unipolar}}(k) = \left\{ \begin{array}{cc} \frac{1}{2} & A^2, & k = 0\\ \frac{1}{4} & A^2, & k \neq 0 \end{array} \right\} $ (3-37a)	
I	MONTANA STATE UNIVERSITY Mountains & Minde	S

PSD of Line Codes
But because $[\sin (\pi fT_b)/(\pi fT_b)] = 0$ at $f = n/T_b$, for $n \neq 0$, this reduces to $\mathcal{P}_{unipolar NRZ}(f) = \frac{A^2 T_b}{4} \left(\frac{\sin \pi fT_b}{\pi fT_b}\right)^2 \left[1 + \frac{1}{T_b} \delta(f)\right]$ (3-39b) If A is selected so that the normalized average power of the unipolar NRZ signal is unity, then ⁺ $A = \sqrt{2}$. This PSD is plotted in Fig. 3-16a, where $1/T_b = R$, the bit rate of the line code. The disadvantage of unipolar NRZ is the waste of power due to the DC level and the fact that the spectrum is not approaching zero near DC. Consequently, DC coupled circuits are needed. The advantages of unipolar signaling are that it is easy to generate using TTL and CMOS circuits and requires the use of only one power supply.
Check the website for Matlab and mathcad files to plot the psd of line codes
MONTANA STATE UNIVERSITY Mountains & Minds

Spe Table 3-6 SPEC	ECTRAL EFFICIENCIES OF	CY LINE CODES
Code Type	First null Bandwidth	Spectral Efficiency
	(Hz)	η=R/B
Unipolar NRZ	R	1
Polar NRZ	R	1
Unipolar RZ	2R	1/2
Bipolar RZ	R	1
Manchester NRZ	2R	1/2
Multilevel polar NRZ	R/I	I
MONTANA STATE UNIVERSITY		Mountains 🥳 Mind