

Energy of a Signal
Energy in signal of duration T :
$P = \frac{E}{T} = \frac{1}{RT} \int_{-\frac{T}{2}}^{\frac{T}{2}} v^{2}(t) dt \qquad E = PT$
$E = \frac{1}{R} \int_{-\frac{T}{2}}^{\frac{T}{2}} v^{2}(t) dt = R \int_{-\frac{T}{2}}^{\frac{T}{2}} i^{2}(t) dt$
We typically calulate normalized Energy or Power, R = 1
Mountains & Minds

TABLE 2-1 SOME FOURIER TRANSFORM THEOREMS ^a				
Operation	Function	Fourier Transform		
Linearity	$a_1w_1(t) + a_2w_2(t)$	$a_1W_1(f) + a_2W_2(f)$		
Time delay	$w(t-T_d)$	$W(f) e^{-j\omega T_d}$		
Scale change	w(at)	$\frac{1}{ a } W\left(\frac{f}{a}\right)$		
Conjugation	$w^*(t)$	$W^*(-f)$		
Duality	W(t)	w(-f)		
Real signal frequency translation [w(t) is real]	$w(t)\cos(w_ct+\theta)$	$\frac{1}{2} \left[e^{j^{*}} W(f - f_{c}) + e^{-j^{*}} W(f + f_{c}) \right]$		
Complex signal frequency translation	$w(t) \ e^{j \omega_{c} t}$	$W(f-f_c)$		

Function	Time Waveform w(t)	Spectrum W(f)
Rectangular	$\Pi\left(\frac{r}{T}\right)$	$T[Sa(\pi fT)]$
Triangular	$\Lambda\left(\frac{t}{T}\right)$	$T[Sa(\pi fT)]^2$
Unit step	$u(t) \stackrel{*}{=} \begin{cases} +1, t > 0\\ 0, t < 0 \end{cases}$	$\frac{1}{2}\delta(f) + \frac{1}{i2\pi f}$
Signum	$\operatorname{sgn}(t) \triangleq \begin{cases} +1, & t > 0\\ -1, & t < 0 \end{cases}$	$\frac{1}{j\pi f}$
Constant	1	$\delta(f)$
an infinite t is analyzed o	gular function is used to m me waveform w(t). It is th ver. What is the effect on oaches infinity? How abou	the time window that w(t) the measurement of w(t)

EELE445 Montana State University

