

## Lecture 3,4 EE445-Outcomes

- In this lecture you:
- be able to use the time average operator $\langle\mathrm{I}\rangle$ for finite time duration signals and periodic signals
- Be able to find the rms value of a waveform
- be able to find the power or energy of a waveform in the time domain
- Parseval's Theorem, find the power or energy of a waveform in the frequency domain
- Concept of PSD an ESD

M MONTANA
Mountains $\because$ Minds

## Physically Realizable Waveforms

- measurable in the laboratory

1. waveform has significant nonzero values over a composite time interval for a finite time duration
2. continuous function of time
3. finite peak amplitude
4. real function, no complex values

M MONTANA
STATE UNIVERSITY

Figure 2-1 Physical and mathematical waveforms
(b) Math Made Wercorom $\qquad$

M MONTANA
Mountains $\&$ Minds

$$
\begin{aligned}
& \text { Time average operator } \\
& \text { Time Average Operator (mean, of } w(t) \text { ): } \\
& \langle w(t)\rangle=W_{d c}=\bar{w} \equiv \frac{\lim }{T \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} w(t) d t \\
& M \text { Movrana }
\end{aligned}
$$

## Root Mean Square- rms

$W_{\text {meansquare }}=\left\langle w^{2}(t)\right\rangle=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} w^{2}(t) d t \quad($ Power $\mathrm{R}=1)$
RMS = "root mean square" of a signal of duration $T$ :

$$
W_{r m s}=\sqrt{\left\langle w^{2}(t)\right\rangle}=\sqrt{\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} w^{2}(t) d t}
$$

M MONTANA

Time average operator
Time Average Operator for signal of finite time duration:
$\langle w(t)\rangle=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} w(t) d t \quad\left\langle w_{n}\right\rangle=\frac{1}{N} \sum_{n=1}^{N} w_{n}$
For a Periodic Signal:

$$
\begin{aligned}
& w(t)=w\left(t+a T_{0}\right) \text { for any real } a \\
& \langle w(t)\rangle=\frac{1}{T_{o}} \int_{-\frac{T_{o}}{2}+a}^{\frac{T_{o}}{2}+a} w(t) d t \text { for any real } a
\end{aligned}
$$

M MONTANA
Mountains $\because$ Minds

## RMS

For periodic waveforms:
$\sqrt{\left\langle w^{2}(t)\right\rangle}=\sqrt{\frac{1}{T_{0}}} \int_{-\frac{T_{0}}{2}+\tau}^{\frac{T_{0}}{2}+\tau} w^{2}(t) d t=\mathrm{rms}$ value of $\mathrm{w}(\mathrm{t})$

- where $\tau$ is an arbitrary time shift.
- Choose $\tau$ to simplify the integrals!

M MONTANA



Example 2-2 Evaluation of Power
Let the circuit of Fig. 2-2 contain a $120-\mathrm{V}, 60-\mathrm{Hz}$ fluorescent lamp wired in a high-power-factor configuration. Assume that the voltage and current are both sinusoids and in phase (unity power
factor), as shown in Fig. 2-3. ${ }^{\dagger}$ The DC value of this (periodic) voltage waveform is
'Two-lamp fluorescent circuits can be realized with a high-power-factor ballast that gives an overall power
factor greater than 90\% [Fink and Beaty. 1978].


M MONTANA Mountains Minds

|  | Example 2-2 Evaluation of Power |  |
| :---: | :---: | :---: |
|  | $V_{\mathrm{dc}}=\langle v(t)\rangle=\left\langle V \cos \omega_{0} t\right\rangle$ |  |
|  | $=\frac{1}{T_{0}} \int_{T_{0} / 2}^{T_{0} / 2} V \cos \omega_{0} t d t=0$ | (2-8) |
|  | where $\omega_{0}=2 \pi / T_{0}$ and $f_{0}=1 / T_{0}=60 \mathrm{HZ}$. Similarly,$I_{\text {dc }}=0$. The instantaneous power is |  |
|  | $p(t)=\left(V \cos \omega_{0} t\right)\left(I \cos \omega_{0} t\right)=\frac{1}{2} V I\left(1+\cos 2 \omega_{0} t\right)$ | (2-9) |
|  | The average power is |  |
|  | $P=\left\langle\frac{1}{2} V I\left(1+\cos 2 \omega_{0} t\right)\right\rangle$ |  |
|  | $=\frac{V I}{2 T_{0}} \int_{T_{T} / 2}^{T_{d / 2}}\left(1+\cos 2 \omega_{0} t\right) d t$ |  |
|  | $=\frac{V I}{2}$ | (2-10) |
| M MONTANA |  |  |

## Power of a signal

instantanóus Power $p(t)=v(t) i(t)$ averagePower $\langle p(t)\rangle=\langle v(t) i(t)\rangle=\operatorname{Real}\left\{\left\{\frac{v^{2}(t)}{Z_{\text {load }}}\right\rangle\right\}$


Figure 2-2 Polarity convention used for voltage and current.
IM MONTANA



## Energy of a Signal

Energy in signal of duration $T$ :
$P=\frac{E}{T}=\frac{1}{R T} \int_{-\frac{T}{2}}^{\frac{T}{2}} v^{2}(t) d t \quad E=P T$
$E=\frac{1}{R} \int_{-\frac{T}{2}}^{\frac{T}{2}} v^{2}(t) d t=R \int_{-\frac{T}{2}}^{\frac{T}{2}} i^{2}(t) d t$
We typically calulate normalized Energy or Power, $R=1$

M MONNTANA

## Power of a signal

Average Power in signal of duration $T$ :
$P=\frac{1}{T} \int_{T}^{\frac{T}{2}} v(t) i(t) d t=\frac{1}{T} \int_{T}^{\frac{T}{2}} p(t) d t \quad \begin{aligned} & \mathrm{p}(\mathrm{t}) \text { is the instantaneous } \\ & \text { power, } \mathrm{P} \text { is the average } \\ & \text { power over time } \mathrm{T}\end{aligned}$ power over time $T$
$P=\frac{E}{T}=\frac{1}{R} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} v^{2}(t) d t \equiv \frac{v_{r m s}^{2}}{R}$
For Normalized Power: $\mathrm{R}=1$ ohm
$P=\frac{R}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} i^{2}(t) d t \equiv i_{r m s}^{2} R$
M MONTANA
Mountains $\because$ Minds

## A communication metric: Signal to Noise Ratio in dB

$(S / N)_{d B} \equiv 10 \log \left(\frac{P_{\text {signal }}}{P_{\text {noise }}}\right)=10 \log \left(\frac{\left\langle s(t)^{2}\right\rangle}{\left\langle n(t)^{2}\right\rangle}\right)$
$=20 \log \left(\frac{V_{r m s} \text { signal }}{V_{r m s} \text { noise }}\right)$

M MONTANA


## Figure 2-1 Physical and mathematical waveforms.



M MONTANA
Smansmate


## The Fourier Transform

We use the Fourier transform to determine the frequencies
of the sinusoids present in a non repetitive waveform.
The fourier series may be considered the fourier transform of a non-repetitive waveform that is repeated continuously.


Figure 2-6 Spectra of rectangular, $(\sin x) / x$, and triangular pulses.


M M MoNTANA
Tr ${ }^{\text {shsemens }}$ Sevenut Edition

ds


Figure 2-6 Spectra of rectangular, $(\sin x) / x$, and triangular pulses.


Time - bandwidth product or bandwidth- duration product:
$T_{r m s} B_{r m s} \leq \frac{1}{4 \pi}$
the Gaussian pulse, $w(t)=e^{-\pi^{2}}$ satifies the condition with the equality sign.

M-MONTANA
Smancomen

Figure 2-6 Spectra of rectangular, $(\sin x) / x$, and triangular pulses.

|  | Fourier Transform |  |
| :--- | :--- | :--- |
|  | Theorems |  |
| TABLE 2-1 | SOME FOURIER TRANSFORM THEOREMS |  |


| Fourier Transform Pairs |  |  |
| :---: | :---: | :---: |
| Function | Time Waveform $v(t)$ | Spectrum W(f) |
| Rectangular | $\Pi\left(\frac{1}{T}\right)$ | $T[\mathrm{Sa}(\pi f T)]$ |
| Triangular | $\Lambda\left(\frac{t}{T}\right)$ | $T[\mathrm{Sa}(\pi f T)]^{2}$ |
| Unit step | $u(t) \triangleq\left\{\begin{array}{cc} +1, & t>0 \\ 0, & t<0 \end{array}\right.$ | $\frac{1}{5}(f)+\frac{1}{j 2 \pi f}$ |
| Signum | $\operatorname{sgn}(t) \geq \begin{cases}+1, & t>0 \\ -1, & t<0\end{cases}$ | $\frac{1}{j \pi f}$ |
| Constant | 1 | $\delta(f)$ |
| The rectangular function is used to mathematically truncate an infinite time waveform $w(t)$. It is the time window that $w(t)$ is analyzed over. What is the effect on the measurement of $w(t)$ as T approaches infinity? How about as T approaches 0 ? |  |  |

M MONTANA Mountains $\&$ Minds

## Fourier Transform Theorems

| Bandpass signal | $\operatorname{Re}\left\{g(t) e^{j \omega_{c} t}\right\}$ | $\frac{1}{2}\left[G\left(f-f_{c}\right)+G^{*}\left(-f-f_{c}\right)\right]$ |
| :---: | :---: | :---: |
| Differentiation | $\frac{d^{n} w(t)}{d t^{n}}$ | $(22 \pi f)^{n} W(f)$ |
| Integration | $\int_{-\infty}^{1} w(\lambda) d \lambda$ | $(22 \pi f)^{-1} W(f)+\frac{1}{2} W(0) \delta(f)$ |
| Convolution | $\begin{aligned} & w_{1}(t) * w_{2}(t)=\int_{-\infty}^{\infty} w_{\mathrm{f}}(\lambda) \\ & \cdot w_{2}(t-\lambda) d \lambda \end{aligned}$ | $W_{1}(f) W_{2}(f)$ |
| Multiplication ${ }^{\text {b }}$ | $w_{1}(t) w_{2}(t)$ | $W_{1}(f) * W_{2}(f)=\int_{-\infty}^{\infty} W_{1}(\lambda) W_{2}(f-\lambda) d \lambda$ |
| Multiplication by $t^{n}$ | $t^{n} w(t)$ | $(-j 2 \pi)^{-n} \frac{d^{n} W(f)}{d f^{n}}$ |

${ }^{3} \omega_{c}=2 \pi f_{c}$
$\mathrm{b}_{*}$ denotes convolution as dessribed in detail by Eq. (2-62)

M MONTANA

| Fourier Transform Pairs |  |  |
| :---: | :---: | :---: |
| Impulse at $t=t_{0}$ | $\delta\left(t-t_{0}\right)$ | $e^{-/ 2 \pi f t_{0}}$ |
| Sinc | $\mathrm{Sa}\left(2 \pi W_{t}\right)$ | $\frac{1}{2 W} \Pi\left(\frac{f}{2 W}\right)$ |
| Phasor | $e^{j(\omega x+\varphi)}$ | $e^{j \epsilon} \delta\left(f-f_{0}\right)$ |
| Sinusoid | $\cos \left(\omega_{c} t+\varphi\right)$ | $\frac{1}{2} e^{i \varphi} \delta\left(f-f_{c}\right)+\frac{1}{2} e^{-j \varphi} \delta\left(f+f_{c}\right)$ |
| Gaussian | $e^{\left.-\pi(t / t)^{2}\right)^{2}}$ | $t_{0} e^{-\pi\left(y t_{0}\right)^{2}}$ |
| Exponential. one-sided | $\begin{cases}e^{-t / T}, & t>0 \\ 0, & t<0\end{cases}$ | $\frac{T}{1+j 2 \pi f T}$ |
| $\underset{\text { Exponential. }}{\text { two-sided }}$ | $e^{-r / / T}$ | $\frac{2 T}{1+(2 \pi f T)^{2}}$ |
| Impulse train | $\sum_{k=-\infty}^{k=\infty} \delta(t-k T)$ | $\begin{aligned} & f_{0} \sum_{n=-\infty}^{n=\infty} \delta\left(f-n f_{0}\right), \\ & \text { where } f_{0}=1 / T \end{aligned}$ |
| compare the Phasor and the sinusoid transforms. |  |  |
| M MONTANA ${ }_{\text {STATE UNIVERSITY }}$ |  |  |

## Energy and Power in a Waveform

Parseval's Theorem and Energy Spectral Density
Parseval's Theorem.

$$
\int_{-\infty}^{\infty} w_{1}(t) w_{2}^{*}(t) d t=\int_{-\infty}^{\infty} w_{1}(f) w_{2}^{*}(f) d f
$$

If $w_{1}(t)=w_{2}(t)=w(t)$, then the theorem reduces to
Rayleigh's energy theorem, which is

$$
E=\int_{-\infty}^{\infty}|w(t)|^{2} d t=\left.\int_{-\infty}^{\infty}|W(f)|\right|^{2} d f
$$

Definition. The energy spectral density (ESD) is defined for energy waveforms by

$$
\begin{equation*}
\mathcal{E}(f)=|W(f)|^{2} \tag{2-42}
\end{equation*}
$$

$$
\text { where } w(t) \leftrightarrow W(f) . \mathscr{\&}(f) \text { has units of joules per hertz }
$$

Using Eq. (2-41), we see that the total normalized energy is given by the area under the ESD function:

$$
E=\int_{-\infty}^{\infty} \mathscr{8}(f) d f
$$

M $\underset{\text { MTATE UNIVERSITY }}{\text { MONTANA }}$

## Energy and Power in a Waveform

- Energy Spectral Density, ESD

$$
E(f) \equiv|W(f)|^{2} \quad W(f) \equiv \int_{-\infty}^{\infty} w(t) \bullet e^{-j 2 \pi t} d t
$$

-Power Spectral Density, PSD, for a truncated waveform of duration T

$$
w_{T}(t)=\left\{\begin{array}{lc}
w(t), & -T / 2<t<T / 2 \\
0, & t \text { elsewhere }
\end{array}\right\}=w(t) \Pi\left(\frac{t}{T}\right)
$$

Using Eq. (2-13), we obtain the average normalized power:

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} w^{2}(t) d t=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty} w_{T}^{2}(t) d t
$$

By the use of Parseval's theorem. Eq. (2-41), the average normalized power becomes

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty}\left|W_{T}(f)\right|^{2} d f=\int_{-\infty}^{\infty}\left(\lim _{T \rightarrow \infty} \frac{\left|W_{T}(f)\right|^{2}}{T}\right) d f
$$

IVI STAYE UNIVERSITY

## Energy and Power in a Waveform

Definfrion. The power spectral density (PSD) for a deterministic power waveform is ${ }^{7}$

$$
\mathscr{P P}_{r r}(f) \neq \lim _{T \rightarrow \infty}\left(\frac{\left|W_{T}(f)\right|^{2}}{T}\right)
$$

where $w_{T}(t) \leftrightarrow W_{T}(f)$ and $\mathscr{P}_{\text {It }}(f)$ has units of watts per herrz.
Note that the PSD is always a real nonnegative function of frequency. In addition, the PSD is not senstive to the phase spectrum of $m(t)$, because that is lost due to the absolute value operation used in Eq. (-6). From Eq. (2-65), he normalized average power is

$$
\begin{equation*}
P=\left\langle w^{2}(t)\right\rangle=\int_{-\infty}^{\infty} \mathscr{P}_{u}(f) d f \tag{2-67}
\end{equation*}
$$

That is, the area under the PSD function is the normalized average power.

MTANTE UNIVERSITY

Energy and Power in a Waveform
Figure 2-4 Spectrum of a sine wave. Figure 2-9 Power spectrum of a sinusoid.


(a) Magnitude Spectrum

M MONTANA
Mountains $\because$ Minds


## Example- Power and Energy in Time.

For a periodic Signal :
$P=\frac{1}{R} \frac{1}{T_{o}} \int_{-\frac{T_{o}}{2}}^{\frac{T_{o}}{2}} v^{2}(t) d t$ $\frac{1}{T_{o}} \int_{-\frac{T_{o}}{2}}^{\frac{T_{o}}{2}} v^{2}(t) d t=\frac{1}{T_{o}} \int_{-\frac{T_{o}}{2}}^{\frac{T_{o}}{2}}\left(A \cos (2 \pi f t)^{2} d t\right.$
$P=\frac{A^{2}}{2 R}=\frac{1^{2}}{2 \bullet 50}=0.01 \mathrm{Watt}=10 \mathrm{dBm}$

$$
=\frac{A^{2}}{2 T_{o}}\left[\int_{-\frac{T_{o}}{2}}^{\frac{T_{o}}{2}} 1 d t+\int_{-\frac{T_{o}}{2}}^{\frac{T_{o}}{2}} \cos (4 \pi f t d t]\right.
$$

M MONTANA

## Example- Power and Energy in Time.

A 1 KHz sinewave source is applied to a 50 ohm resistor. fine the power delivered to the load.


$$
\begin{aligned}
& R=50 \Omega \\
& v(t)=A \cos (2 \pi f t) \\
& A=1 \text { volt } \\
& f=1000 \mathrm{~Hz} \\
& T_{o}=10^{-3} \mathrm{sec} \\
& \hline
\end{aligned}
$$

M MONTANA
Mountains $\because$ Minds

Fourier Series from Fourier Transforms

From Fourier Transform Table:

$$
F\left(A \bullet \Pi\left[\frac{t}{\tau}\right]\right)=A \tau S a(\pi f \tau)
$$

M MONTANA

## Fourier Series from Fourier Transforms

now make a repetitive pulse with period $\mathrm{T}_{\text {。 }}$


Let $f=\frac{n}{T}$ and scale by $\frac{1}{T_{o}} \quad c_{n}=\frac{A \tau}{T_{o}} S a\left[\frac{n \pi \tau}{T_{o}}\right] \therefore$
M MONTANA
Mountains $\&$ Minds

Properties of a Repetitive Rectangular Pulse

- The null bandwidth, $B_{n}$ of the spectrum is equal to the inverse of the pulse width, $\tau$.

$$
B_{n}=\frac{1}{\tau}
$$

- The harmonic frequencies are $n / T_{0}$
- The number of harmonics, $n$, from $D C$ to the spectral null is: $n=\frac{1}{D}=\frac{T_{o}}{\tau}$
- Approximately 90 percent of the power of the signal is in the spectrum from DC to the null bandwidth frequency, only $10 \%$ of the signal power is in the spectrum frequency range from the null bandwidth frequency to infinity!


## Repetitive Rectangular Pulse

```
filename:pulsewaveform.mc,
*************************** Definitions
    \(f,R) =if(f=R,1,0)
**************************** set up waveform ***********************
    T:= 1.ms period }\quad\textrm{D}:=20%\mathrm{ duty cycle }\tau:=\textrm{D}\cdot\textrm{T}\tau=2\times1\mp@subsup{0}{}{-4}\textrm{s}\mathrm{ pulse width
    A := 2V }\quad\frac{1}{\textrm{T}}=1\times1\mp@subsup{0}{}{3}\frac{1}{\textrm{s}}\textrm{pps}\quad\frac{1}{\tau}=5\times1\mp@subsup{0}{}{3}\frac{1}{\textrm{s}}\quad\mathrm{ First null
```


M MONTANA
Repetitive Rectangular Pulse
Assit Pit Definition
Assume a rectangular pulse shape with an amplitude of 1

$$
\begin{array}{cc}
\mathrm{X}_{\tau}(\mathrm{f}):=\mathrm{A} \cdot \tau \cdot \mathrm{sinc}(\mathrm{f} \cdot \tau) & \text { Single Pulse Fourier Transform, "double sided" } \\
\mathrm{n}:=-25,-24 . .25 & \\
\mathrm{X}_{\mathrm{T}}(\mathrm{n}):=\frac{\mathrm{A} \cdot \mathrm{\tau}}{\mathrm{~T}} \cdot \operatorname{sinc}\left(\frac{\mathrm{n} \cdot \tau}{\mathrm{~T}}\right) & \text { Fourier Series for repeatative pulse "double sided" } \\
\mathrm{X}_{\mathrm{T}}(0)=0.4 \mathrm{~V} \quad \mathrm{DC} \text { value }
\end{array}
$$

M MONTANA




Rectangular Pulse Power to the first null bandwidth

$$
2 \int_{0}^{1} \sin (x)^{2} d x \cdot 100=90.282
$$

$$
P(x):=2\left(\int_{0}^{x} \operatorname{sinc}(x)^{2} d x\right) \cdot 100
$$

M MONTANA
Mountains $\because$ Minds


