

Flux Density and Field Strength

$$F = \frac{P_t}{4\pi R^2} \frac{Watts}{m^2}$$

$$Z_o = \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{\mu_o}{\varepsilon_o}} = 120\pi = 377\Omega$$

$$F_s = \sqrt{F \bullet Z_o} = \sqrt{\frac{P_t 120\pi}{R^2 4\pi}} = \sqrt{\frac{30P_t}{R^2}} \frac{Volts}{meter}$$
EXEMPTING

Antenna type	Patlern	Gain g	Half-powe beamwidth
Short dipole $I \ll \lambda$	g cog² ¢	1.5	90°
Long dipole $l \gg \lambda$ $l = \lambda/2$	\sim	1.5 1.64	47^ 78*
Helix	c t (Contraction of the contraction of the contract	$15\left[\frac{cl}{\lambda^2}\right]$	$52^{\circ} \left[\frac{\lambda}{c\sqrt{l}} \right]$
Square horn dimension d	$\int_{\frac{13 \text{ eff}}{\frac{13 \text{ eff}}{\frac{1}{3} \text{ eff}}}} g\left(\frac{\sin x}{x}\right)^2$ $\int_{\frac{1}{3} \text{ eff}} \frac{g\left(\frac{\sin x}{x}\right)^2}{x - \frac{\pi d}{\lambda} \sin \phi}$ $\int_{\frac{1}{3} \text{ eff}} \frac{1}{\frac{1}{3} \text{ eff}}$	$\frac{4\pi d^2}{\lambda^2}$	$\frac{0.88\lambda}{d}$ rad

From the polar Plot.

$$\frac{F(\theta, \phi)}{F_{isotropic}} = G_{t} \quad \text{the pairs over} \\ isotropic \quad isotropic \\ G(\theta, \phi) = \frac{P(\theta, \phi)}{\frac{P}{4\pi}} \\ \frac{P_{t}}{S + e^{rad} isots}.$$

Field Strength with directional Antenne:

$$F = \frac{P_{t} G_{t}}{4\pi R^{2}} \quad w/m^{2}$$
Receive Antenna

Trunemitt
 $A xt \neq F$
 $f = \frac{1}{F} \frac{1}{W/m^{2}} \qquad F_{t}$

Effective Area
of Antenna Ae

(25deg L)	Telstar 5 Dish sizes are mir rec (25deg LNB for C-J			5 (at 97.0W) minimum for 'Top Grade' reception C-Band, 0.8dB LNB for Ku- Band)		
(Full Tran Anal	C-Band (Full Transponder		Ku-Band der (3/4 FEC Multiplex, Full Transponder Analog)			
EIRP DTI (dBW) Size (dBW) (m)	I SMATV Size (m)	EIRP (dBW)	Multiplex Channels (cm)	Analog Channels (cm)		
39.0 1.9	2.5	50.0	55	84		
38.0 2.1	2.9	49.0	60	94		
t EIRP (dBW) 37.0 2.3	3.1	48.0	65	105		
Реак: 50.5 dBW 36.0 2.6	3.5	47.0	72	115		
35.0 2.8	3.8	46.0	77	125		
34.0 3.1	4.2	44.0	95	155		
33.0 3.5	4.8	42.0	115	185		
32.0 3.9	5.4	40.0	138	230		
48 31.0 4.3	6.1	38.0	175	300		
NOTE: SML television.	ATV is sat	ellite m	aster anten	na		
	C band	4	to 8 GHz			

Link Budgets:
uplink:
$$P_{ru} = P_{+} + G_{Fu} - L_{p} + G_{Ru}$$

 $# = 35dBw + 55dB - 199.1dB + 20dB = -89dBw$
 $p_{2} - 59dBm$
Note: $EIRP_{u} = 35dBw + 55dB = 90dBw$
 $= P_{+} + G_{Tu}$
Down Link: $Prd + Grd # - Lo + Grd = P_{out}$
 $P_{out} = 18dBw + 16dB - 195.6dB + 51dB = -110.6 dBw$
 $= 8.7 \times 10^{-12} watts$

A Total Link Analysis in Mapy Factors. Stage Pt Seedline 1055 Connector 1055 Antenna Guin Puth Loss Polunization Loss Atmosphonic Absorbcism Lous Rain, Clouds, Obstruction Loss Receive Antenna.	cludes Loss/Gain all			
	Total Receive Power.			
A full Link Budget will also include a noise analysis				
MONTANA STATE UNIVERSITY	Mountains 🧭 Minds			

	Tower	Height		
Line of Sight Distance Between Antenna Towers	Height of Tower to Avoid Flat Earth Curvature	Tower Height Required Over Tallest Obstacle In Line-of-Sight to Provide 60% Fresnel Zone Clearance		
		2.4GHz 802.11b/g (Fresnel Zone Radius = 39 Feet)	5.8 GHz 802.11a (Fresnel Zone Radius = 25 Feet)	
8 Miles	10 feet	33	25	
10 Miles	15 feet	38	30	
12 Miles	20 feet	43	35	
14 Miles	25 feet	48	40	
16 Miles	30 feet	53	45	
18 Miles	40 feet	63	55	
20 Miles	50 feet	73	65	
22 Miles	60 feet	83	75	
24 Miles	70 feet	93	85	
26 Miles	80 feet	103	95	
28 Miles	100 feet	123	115	
32 Miles MONTANA STATE UNIVERSITY	125 feet	148	140 Mountains & Minds	

Plane Earth Loss - PEL
Plane earth loss includes ground reflections

$$\frac{P_r}{P_t} = L_{pel} \approx \left(\frac{\lambda}{4\pi r}k\frac{2h_mh_b}{r}\right) \approx \frac{h_m^2h_b^2}{r^4} \qquad k = \frac{2\pi}{\lambda}$$
Plain earth loss, dB : $L_{peldB} = 40\log r - 20\log h_m - 20\log h_b$
comparedto,
Free space loss, dB : $L_{pdB} = 20Log\left(\frac{4\pi r}{\lambda}\right) = 20Log\left(\frac{4\pi rf}{c}\right)$
 $L_{pdB} = 92.4 + 20Log(f_{GHz}) + 20Log(R_{Km})$

Plane Earth Loss: Example	
Example 5.5	
Calculate the maximum range of the communication system in Example 5.1, assuming $h_m = 1.5$ m, $h_b = 30$ m, $f = 900$ MHz and that propagation takes place over a plane earth. How does this range change if the base station antenna height is doubled?	
Solution Assuming that the range is large enough to use the simple form of the plane earth model (5.34), then	
$\log r = \frac{L_{\text{PEL}} + 20\log h_m + 20\log h_b}{40} = \frac{148.3 + 3.5 + 29.5}{40} \approx 4.53$	
Hence $r = 34$ km, a substantial reduction from the free space case described in Example 5.4. If the antenna height is doubled, the range may be increased by a factor of $\sqrt{2}$ for the same propagation loss. Hence $r = 48$ km.	
MONTANA STATE UNIVERSITY Mountains & Minds	

Q, ERF, and ERFC functions		
$Q(z) = \int \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$	(F.4)	
Hence Equations (F.1) or (F.3) can be evaluated as		
$P\left(y > \frac{x_0 - m}{\sigma}\right) = Q\left(\frac{x_0 - m}{\sigma}\right) = Q(z)$	(F.5)	
The Q -function is bounded by two analytical expressions as follows:		
$\left(1 - \frac{1}{z^2}\right) \frac{1}{z\sqrt{2\pi}} e^{-z^2/2} \le Q(z) \le \frac{1}{z\sqrt{2\pi}} e^{-z^2/2}$		
For values of z greater 3.0, both of these bounds closely approximate $Q(z)$.		
Two important properties of $Q(z)$ are		
Q(-z) = 1 - Q(z)	(F.6)	
$Q(0) = \frac{1}{2}$	(F.7)	
A graph of $Q(z)$ versus z is given in Figure F.2. A tabulation of the Q-function for various values of z is given in Table F.1.		
MONTANA STATE UNIVERSITY	Mountains 键	Minds

Q, ERF, and ERFC functions		
The error function (<i>erf</i>) is defined as $erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-x^{2}} dx$	(F.8)	
and the complementary error function (<i>erfc</i>) is defined as $erfc(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-x^{2}} dx$	(F.9)	
The <i>erfc</i> function is related to the <i>erf</i> function by erfc(z) = 1 - erf(z)	(F.10)	
The Q-function is related to the erf and erfc functions by $Q(z) = \frac{1}{2} \left[1 - erf\left(\frac{z}{\sqrt{2}}\right) \right] = \frac{1}{2} erfc\left(\frac{z}{\sqrt{2}}\right)$	(E.11)	
$erfc(z) = 2Q(\sqrt{2}z)$ $erf(z) = 1 - 2Q(\sqrt{2}z)$	(F.12) (F.13)	
MONTANA STATE UNIVERSITY	Mountains	🕝 Minds

