

Flux Density and Field Strength

$$F = \frac{P_t}{4\pi R^2} \frac{Watts}{m^2}$$

$$Z_o = \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{\mu_o}{\varepsilon_o}} = 120\pi = 377\Omega$$

$$F_s = \sqrt{F \cdot Z_o} = \sqrt{\frac{P_t 120\pi}{R^2 4\pi}} = \sqrt{\frac{30P_t}{R^2}} \frac{Volts}{meter}$$

	Antenna type	Pattern	Gain g	Half-power beamwidth			
110	Short dipole / ≪ λ	R cos ² ¢	1.5	90°			
	Long dipole $l \gg \lambda$ $l = \lambda/2$		1.5 1.64	47″ 78°			
	Helix	c † (Construction) Circumference c Length	$15\left[\frac{cl}{\lambda^2}\right]$	$52^{\circ}\left[\frac{\lambda}{c\sqrt{7}}\right]$			
	Square horn dimension d	$ \begin{array}{c} $	$\frac{4\pi d^2}{\lambda^2}$	0.88A d rad			
	Figure 3.12. Common antenna characteristics.						

From the polar Blot.

$$\frac{F(\theta, \phi)}{F_{isotropic}} = G_{t} \quad the point over
isotropic \quad isotropic
$$G(\theta, \phi) = \frac{f(\theta, \phi)}{\frac{R_{i}}{4\pi}} \text{ steradians.}$$$$

Field Strength with directional Antenna:

$$F = \frac{f_{\pm} G_{\pm}}{4\pi R^{2}} \quad w/m^{2}$$
Receive Antenna

Trunemitt
Ant \vec{F} $- P_{w/m^{2}}$ $- P_{\pi}$
Effective Area
of Antenna Ae

$$f$$

$$Combining:$$

$$f_{f} = f_{L} G_{f} A_{S} \quad watta$$

$$\Rightarrow it can be shown that$$

$$G = \frac{4\Pi A_{S}}{3^{2}} \quad think of this as$$

$$the area of the antenna the area of the area of the antenna the area of th$$

given Ae + 5 we know the pain

$$Ae = Gr \stackrel{n}{HT} \qquad Fr = \frac{f_{\pm} G_{\pm} G_{r}}{4\pi A^{2}} \stackrel{n}{HT}$$

$$F_{r} = \frac{f_{\pm} G_{\pm} G_{r}}{\left(\frac{4\pi}{3}\right)^{2}}$$
free space path loss:

$$L_{p} \stackrel{d}{=} \left(\frac{4\pi R}{3}\right)^{2}$$

$$\begin{split} & \int f_{s} = \int_{t} \underbrace{G_{s}} \underbrace{G_{r}} \\ & \text{usually written in db.} \\ & \text{frdbw} = f_{s} \underbrace{abm} + G_{s} \underbrace{ds} + G_{r} \underbrace{ds} - f_{r} \underbrace{db}. \\ & f_{p} \underbrace{db} = 20 \underbrace{hog} \left(\underbrace{4\pi f}_{3} \right) \end{split} \end{split}$$

$$J$$

$$Link Budgets:$$

$$uplink: Pru = P_{t} + G_{TU} - L_{p} + G_{RU}$$

$$M_{t} = 35dBw + 55dB - 199.1dB + 20dB = -89dBw$$

$$D_{t} = 35dBw + 55dB - 199.1dB + 20dB = -89dBw$$

$$D_{t} = 35dBw + 55dB = 90dBw$$

$$D_{t} = 4 + G_{TU}$$

$$Down Link: Ptd + G_{TU} + L_{0} + G_{0}d = P_{0}dt$$

$$Down Link: Ptd + G_{TU} + L_{0} + G_{0}d = P_{0}dt$$

$$D_{t} = 18dBw + 16dB - 195.6dB + 51dB = -10.6 dBw$$

$$= 8.7 \times 10^{2} \text{ watts}$$

Tower Height							
Line of Sight Distance Between Antenna Towers	Height of Tower to Avoid Flat Earth Curvature	Tower Height Required Over Tallest Obstacle In Line-of-Sight to Provide 60% Fresnel Zone Clearance					
		2.4GHz 802.11b/g (Fresnel Zone Radius = 39 Feet)	5.8 GHz 802.11a (Fresnel Zone Radius = 25 Feet)				
8 Miles	10 feet	33	25				
10 Miles	15 feet	38	30				
12 Miles	20 feet	43	35				
14 Miles	25 feet	48	40				
16 Miles	30 feet	53	45				
18 Miles	40 feet	63	55				
20 Miles	50 feet	73	65				
22 Miles	60 feet	83	75				
24 Miles	70 feet	93	85				
26 Miles	80 feet	103	95				
28 Miles	100 feet	123	115 ₃₁				
32 Miles	125 feet	148	140				

Diama Earth Loss
$$\eta = \sqrt{(h_0 - h_m)^2 + r^2}$$
 $\eta = \sqrt{(h_0 - h_m)^2 + r^2}$ $(\eta = -\eta) = \sqrt{(\sqrt{h_0 + h_m})^2 + 1} - \sqrt{(\frac{h_0 - h_m}{r})^2 + 1}$ $(\eta = -\eta) = (\eta = -\eta)$ $(\eta = -\eta) = (\eta = -\eta)$ $(\eta = -\eta) = (\eta = -\eta)$

Plane Earth Loss

The overall amplitude of the result (electric or magnetic field strength) is then

$$A_{\text{total}} = A_{\text{direct}} + A_{\text{reflected}} = A_{\text{direct}} \left| 1 + R \exp\left(jk \frac{2h_m h_b}{r}\right) \right|$$
(5.28)

where k is the free space wavenumber.

$$\frac{P_r}{P_{\text{direct}}} = \left(\frac{A_{\text{total}}}{A_{\text{direct}}}\right)^2 = \left|1 + R \exp\left(jk\frac{2h_mh_b}{r}\right)\right|^2$$
(5.29)

where P_r is the received power.

35

<text><equation-block><equation-block><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Plane Earth Loss $\frac{P_r}{P_T} \approx \left(\frac{\lambda}{4\pi r} k \frac{2h_m h_b}{r}\right)^2 \approx \frac{h_m^2 h_b^2}{r^4}$ Expressing this in decibels: $L_{PEL} = 40 \log r - 20 \log h_m - 20 \log h_b$

37

Plane Earth Loss

Example 5.5

Calculate the maximum range of the communication system in Example 5.1, assuming $h_m = 1.5$ m, $h_b = 30$ m, f = 900 MHz and that propagation takes place over a plane earth. How does this range change if the base station antenna height is doubled?

Solution

Assuming that the range is large enough to use the simple form of the plane earth model (5.34), then

$$\log r = \frac{L_{\text{PEL}} + 20\log h_m + 20\log h_b}{40} = \frac{148.3 + 3.5 + 29.5}{40} \approx 4.53$$

Hence r = 34 km, a substantial reduction from the free space case described in Example 5.4. If the antenna height is doubled, the range may be increased by a factor of $\sqrt{2}$ for the same propagation loss. Hence r = 48 km.

