Lecture 1 Some Introductory Concepts

EE533-08

Isotropic Radiator

- Power is radiated equally in all directions
- $F=$ flux density in Watts $/ \mathrm{m}^{2}$
- Also use Field strength, $\mathrm{F}_{\mathrm{s}}=$ Volts/m

$$
F=\frac{P_{t}}{4 \pi R^{2}} \frac{\text { Watts }}{m^{2}}
$$

Isotropic Radiator

- Power is radiated equally in all directions
- $F=$ flux density in Watts $/ m^{2}$
- Also use Field strength, $\mathrm{F}_{\mathrm{s}}=$ Volts/m

$$
F=\frac{P_{t}}{4 \pi R^{2}} \frac{\text { Watts }}{m^{2}}
$$

Flux Density and Field Strength
$F=\frac{P_{t}}{4 \pi R^{2}} \frac{\text { Watts }}{m^{2}}$
$Z_{o}=\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}=120 \pi=377 \Omega$
$F_{s}=\sqrt{F \bullet Z_{o}}=\sqrt{\frac{P_{t} 120 \pi}{R^{2} 4 \pi}}=\sqrt{\frac{30 P_{t}}{R^{2}}} \frac{\text { Volts }}{\text { meter }}$

Real Antenna - Not Isotropic Polar Plot of Normalized F

Figure 3.11. Antenna planar gain function $g(\phi)$.

From the polar Blat.

$$
\begin{aligned}
& \frac{F(\theta, \phi)}{\text { Fisotropic }}=G_{t} \begin{array}{l}
\text { the gain over } \\
\text { isotrapic }
\end{array} \\
& G(\theta, \phi)=\frac{P(\theta, \phi)}{\frac{P_{0}}{4 \pi} \text { steradians. }}
\end{aligned}
$$

Linear Blat

for a fixed ϕ
EIRP \rightarrow Effective Oreotrapic Radiated Power

$$
\text { EIRP } \leqq P_{t} G_{+} \text {watt/ } / \mathrm{m}^{2}
$$

Field strength with directional Antenna:

$$
F=\frac{P_{t} G_{t}}{4 \pi R^{2}} w / m^{2}
$$

Receive Antenna

$P_{r}=$ Flux denaity X Receive Ant Area.

$$
P_{r}=F \cdot A_{e}
$$

For a parabolic dick

$$
A=\pi R^{2}
$$

due to epill-over $A_{e}=n_{A} A$

$$
n_{a} \Rightarrow \text { aperture Effeminacy }
$$

Combining:

$$
P_{r}=\frac{P_{t} G_{t} A_{e}}{4 \pi R^{2}} \text { watts }
$$

\Rightarrow it can be shown
that

$$
\begin{gathered}
G=\frac{4 \pi A e}{S^{2}} \text { think of this as } \\
\text { the area of the antenna } \\
\text { intersects }
\end{gathered}
$$

given $A e$ if we know the gain

$$
\begin{aligned}
& A_{e}=\frac{G_{r} \lambda^{2}}{4 \pi} \quad P_{r}=\frac{P_{t} G_{t} G_{r}}{4 \pi R^{2}} \frac{\lambda^{2}}{4 \pi} \\
& \operatorname{Pr}=\frac{P_{t} G_{t} G_{r}}{\left(\frac{4 \pi R}{\lambda}\right)^{2}}
\end{aligned}
$$

free space path lose:

$$
L_{p} \triangleq\left(\frac{4 \pi R}{\Omega}\right)^{2}
$$

usually written in $d B$.

$$
\begin{aligned}
& P_{r d B_{w}}=P_{t d B m}+G_{t d b}+G_{r d b}-L_{p} d b . \\
& L_{p} d B=20 \log \left(\frac{4 \pi R}{\Omega}\right)
\end{aligned}
$$

(to Western Hemisphere, Eastern Hemisphere, Footprints by Dish Size)
 TELSTAR 5 (w. hemi or size list)

TELSTAR 5
Ku-band Transmit EIRP (dBW)

Telstar 5 (at 97.0 W)
Dish sizes are minimum for 'Top Grade'
reception
(25deg LNB for C-Band, 0.8dB LNB for KuBand)

| C-Band
 Cull Transponder
 Analog) | (3/4 FEC Multiplex,
 Full Transponder Analog) |
| :---: | :---: | EIRP DTH SMATV EIRP Multiplex Analog $\left.\underset{(\mathrm{dBW})}{ } \mathrm{Size}^{2} \mathrm{Size}\right) \quad \underset{\text { (dBW) Channels Channels }}{ }$

39.0	1.9	2.5	50.0	55	84
38.0	2.1	2.9	49.0	60	94
37.0	2.3	3.1	48.0	65	10

37.0	2.3	3.1	48.0	65	105
36.0	2.6	3.5	47.0	72	115

36.0	2.6	3.5	47.0	72	115

35.0	2.8	3.8	46.0	77	125
3.0	3.1	4.2	44.0	95	155

34.0	3.1	4.2	44.0	95	15
3.0	3.5	4.8	42.0	115	15

33.0	3.5	4.8	42.0	115	185
32.0	3.9	5.4	40.0	138	230

31.0	4.3	6.1	38.0	175	300

NOTE: SMATV is satellite master antenna television.

Figure 3.3-5 Satellite relay system.

Link Budgets:
uplink: $P_{r_{4}}=P_{+}+G_{f u}-L_{p}+G_{R u}$
$A_{. .}=35 d B w+55 d B-199.1 d B+20 d B=-89 d B w$
note: $E I P_{u}=3516 \mathrm{w}+55 \mathrm{db}=90 \mathrm{~dB} \mathrm{w}$ $=P_{t}+G_{T u}$

Down Link: Ped $+G_{\text {Td }}-L_{0}+G_{\text {rd }}=P_{\text {out }}$

$$
\begin{aligned}
P_{\text {out }}=18 \mathrm{dBw}+16 \mathrm{~dB}-195.6 \mathrm{~dB}+51 \mathrm{~dB} & =-110.6 \mathrm{dBw} \\
& =8.7 \times 10^{-12} \mathrm{w}_{\text {att }}
\end{aligned}
$$

Total Receive Power.
A full Link Budget will also include a noise analysis

Factors affecting Free Space Loss

Figure 3.21. Atmospheric atenuation due to absorption: (a) horizontal path at sea te

Factors affecting Free Space Loss
CARRIER PROPAGATION CHANNELS

Figure 3.17. Antenna gain versus $d^{\prime} \lambda$. The pointing error is denoted by ϕ_{e}

Factors affecting Free Space Loss

（a）

levation angle，
（b）

Figure 6．1：A great circle path between two antenna sites；contours are marked with heights in metres above mean sea level．Data is for the Seattle area using the USGS 3 and 1 arcsecond digital terrain models translated into Vertical Mapper format
－When the wave interacts with the ground or some other obstruction we no longer have free space propagation to the receiver

- When the wave interacts with the ground or some other obstruction we no longer have free space propagation to the receiver

Plane Earth Loss- Fresnel Diffraction

Figure 6.7: Path profile as Figure 6.2 but with Earth radius corrected to account for atmospheric refractive index gradient. The Fresnel ellipsoid represents $0.6 \times$ the first Fresnel zone at 900 MHz

- Non-LOS communication involves an additional loss due to Diffraction

Earth Bulge

http://www.cisco.com/univercd/cc/td/doc/product/wireless/bbfw/ptop/p2pspgo2/spgo2ch2.htm\#xtocid19

Earth Bulge

When planning for paths longer than seven miles, the curvature of the earth might become a factor in path planning and require that the antenna be located higher off the ground. The additional antenna height needed can be calculated using the following formula:

$$
H=\frac{D^{2}}{8} \quad \begin{aligned}
& \text { where } \\
& \mathrm{H}=\text { Height of earth bulge (in feet) } \\
& \mathrm{D}=\text { Distance between antennas (in miles) }
\end{aligned}
$$

Earth Bulge with Fresnel Diffraction

http://www.cisco.com/univercd/cc/td/doc/product/wireless/bbfw/ptop/p2pspg02/spg02ch2.htm\#xtocid19

Minimum Antenna Height

The minimum antenna height at each end of the link for paths longer than seven miles (for smooth terrain without obstructions) is the height of the First Fresnel Zone plus the additional height required to clear the earth bulge. The formula would be:
$H=43.3 \sqrt{\frac{D}{4 F}}+\frac{D^{2}}{8}$
where
H = Height of the antenna (in feet)
$\mathrm{D}=$ Distance between antennas (in miles)
F = Frequency in GHz

	Tower Height		
Line of Sight Distance Between Antenna Towers	Height of Tower to Avoid Flat Earth Curvature	Tower Height Required Over Tallest Obstacle In Line-of-Sight to Provide 60\% Fresnel Zone Clearance	
		2.4GHz 802.11b/g (Fresnel Zone Radius $=39$ Feet)	5.8 GHz 802.11a (Fresnel Zone
		33	25 Feet)

Plane Earth Loss

Figure 5.5: Physical situation for plane earth loss

Plane Earth Loss

$$
\begin{aligned}
& r_{1}=\sqrt{\left(h_{h}-h_{m}\right)^{2}+r^{2}} \\
& r_{2}=\sqrt{\left(h_{b}+h_{m}\right)^{2}+r^{2}} \\
& \left(r_{2}-r_{1}\right)=r\left[\sqrt{\left(\frac{h_{b}+h_{m}}{r}\right)^{2}+1}-\sqrt{\left(\frac{h_{b}-h_{m}}{r}\right)^{2}+1}\right] \\
& (1+x)^{n} \approx 1+n x \\
& \quad\left(r_{2}-r_{1}\right)=\frac{2 h_{m} h_{b}}{r}
\end{aligned}
$$

Plane Earth Loss

The overall amplitude of the result (electric or magnetic field strength) is then

$$
\begin{equation*}
A_{\text {total }}=A_{\text {direat }}+A_{\text {reflected }}=A_{\text {direct }}\left|1+R \exp \left(j k \frac{2 h_{n g} h_{b}}{r}\right)\right| \tag{5.28}
\end{equation*}
$$

where k is the free space wavenumber.

$$
\begin{equation*}
\frac{P_{r}}{P_{\text {dirnet }}}=\left(\frac{A_{\text {tolal }}}{A_{\text {direct }}}\right)^{2}=\left|1+R \exp \left(j k \frac{2 h_{m} h_{b}}{r}\right)\right|^{2} \tag{5.29}
\end{equation*}
$$

where P_{r} is the received power.

Plane Earth Loss

The direct path is itself subject to frec spacc loss, so it can be expressed in terms of the transmitted power as

$$
\begin{equation*}
P_{\text {direct }}=P_{T}\left(\frac{\lambda}{4 \pi r}\right)^{2} \tag{5.3}
\end{equation*}
$$

so the path loss can be expressed as

$$
\begin{gather*}
\frac{P_{r}}{P_{T}}=\left(\frac{\lambda}{4 \pi r}\right)^{2} 1+R \exp \left(j k \frac{2 h_{m} h_{b}}{r}\right)^{2} \tag{5.31}\\
\frac{P_{r}}{P_{T}}=2\left(\frac{\lambda}{4 \pi r}\right)^{2}\left[1-\cos \left(k \frac{2 h_{m} h_{b}}{r}\right)\right]
\end{gather*}
$$

Plane Earth Loss

$$
\frac{P_{r}}{P_{T}} \approx\left(\frac{\lambda}{4 \pi r} k \frac{2 h_{m} h_{b}}{r}\right)^{2} \approx \frac{h_{m}^{2} h_{b}^{2}}{r^{4}}
$$

Expressing this in decibels:

$$
L_{\text {PEL }}=40 \log r-20 \log h_{m}-20 \log h_{b}
$$

Plane Earth Loss

Example 5.5

Calculate the maximum range of the communication system in Example 5.1, assuming $h_{m}=1.5 \mathrm{~m}, h_{b}=30 \mathrm{~m}, f=900 \mathrm{MHz}$ and that propagation takes place over a plane earth. How does this range change if the base station antenna height is doubled?

Solution

Assuming that the range is large enough to use the simple form of the plane earth model (5.34), then

$$
\log r=\frac{L_{\mathrm{PEL}}+20 \log h_{m}+20 \log h_{b}}{40}=\frac{148.3+3.5+29.5}{40} \approx 4.53
$$

Hence $r=34 \mathrm{~km}$, a substantial reduction from the free space case described in Example 5.4. If the antenna height is doubled, the range may be increased by a factor of $\sqrt{ } 2$ for the same propagation loss. Hence $r=48 \mathrm{~km}$.

Empirical Path Loss

Table 2.1			
Empirical power drop-off values			
City	n_{1}	n_{2}	$d_{b}(m)$.
London	$1.7-2.1$	$2-7$	$200-300$
Melbourne	$1.5-2.5$	$3-5$	150
Orlando	1.3	3.5	90

Mobile Signal

Figure 5.15 A typical Rayleigh fading envelope at 900 MHz [from [Fun93] © [EEE].

