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Abstract 

This research proposes Quantile Data Envelopment Analysis (qDEA) as a procedure that 

accounts for the sensitivity of Data Envelopment Analysis (DEA) to data or firm outliers 

when using DEA to estimate comparative efficiency or benchmarking performance 

metrics.  The qDEA methodology endogenously identifies the distance to a qDEA-α 

hyperplane while allowing up to proportion � = 1 − � of the data observations to lie 

external to the qDEA-α hyperplane.  The ability of qDEA to provide more conventional 

informative quantile-based benchmarking information is discussed.  The statistical 

properties of the qDEA estimator are examined utilizing nCm subsampling and Monte 

Carlo procedures.  Monte Carlo simulations indicate that qDEA distance estimates share 

the desirable root-n convergence and large sample normality properties of the robust 

Free Disposal Hull (FDH) based order-m and order-� estimators. 
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1. Introduction/Motivation 

Data Envelopment Analysis (DEA) has proven to be a useful procedure for constructing 

comparative performance metrics in situations where entities or DMUs are engaged in processes 

that transform sets of broadly defined inputs into sets of broadly defined outputs.  DEA is 

increasingly being utilized in benchmarking and regulatory applications (Adler, Liebert, and 

Yazhemsky (2013); Banker, Førsund, and Zhang (2017); Bogetoft and Otto (2011); Bogetoft 

(2012); Bottasso and Conti (2011); Zanella, Camanho, and Dias (2013)).  In regulatory 

applications, a firm whose "inputs" are too high or "outputs" too low relative to results obtained by 

other firms in a reference group may be given a period of time to make improvements in their 

current input-output mix or face financial penalties.  In general benchmarking applications, a given 

decision making unit (DMU) may wish to compare their input-out mix to the levels obtained by 

other DMUs and attempt to identify potential changes in their operation that might be technically 

"obtainable" or "reachable" in the short, intermediate, or long-run.  In both cases, a reference set of 

observed input-output realizations from other DMUs is used to construct a set of potential input-

output combinations that might be technically "reachable" by the given DMU. 

 

A complication with using DEA in a regulatory or benchmarking setting is the well-known 

sensitivity of DEA to data outliers.  For the purposes of this paper, we define data outliers as either 

statistical anomalies or data from "outlier" DMUs whose observed input-output levels are not 

practically "reachable" by a given DMU.  Concerns with the sensitivity of distance metrics to 

statistical outliers has led to the development of procedures to identify and delete potential outliers 

(Bogetoft and Otto (2011); Simar (2003); Wilson (1993); Wilson (1995)) as well as the 

development of more robust estimators including the Free Disposal Hull (FDH) based order-m and 

order-α  estimators (Aragon, Daouia and Thomas-Agnan (2005); Cazals, Florens, and Simar 

(2002); Daouia and Simar (2005); Daouia and Simar(2007a); Daouai and Simar (2007b); 

Wheelock and Wilson(2008)). 

 

Concerns with the practical "reachability" of points on DEA efficient frontiers has led to the use of 

clustering procedures where DMU's are compared only to sets of DMU's with similar 

characteristics (Cook, Ruiz, Sirvent, and Zhu (2017); Dai and Kuosmanen (2014)) or to procedures 

that endogenously identify directions to points that lie on the efficient DEA frontier but are 

"closer" or "closest" to a given DMU's data point. (Aparicio, Cordero, and Pastor (2017); Aparicio, 
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and Pastor (2014); Aparicio, Ruiz, and Sirvent (2007); Ramón, Ruiz, and Sirvent (2018); Ruiz and 

Sirvent (2016)).  Even when a closest frontier point generated by "efficient points" is identified, 

concerns over the "reachability" of such points has led some researchers to suggest procedures 

where sets of efficient points are iteratively deleted and the closest projected points generated with 

the remaining sets of data (Ramón, Ruiz, and Sirvent (2018)). Ramon, Ruiz, and Sivent cite 

several papers that iteratively eliminate efficient points including a paper by Barr, Durchholz, and 

Seiford (2000) where the process is termed "peeling the onion." 

 

The sensitivity of comparative performance metrics to data outliers is not unique to DEA.  Any 

comparative study will be sensitive to outliers if a given DMU's performance is contrasted to the 

performance of the highest one or two achievers within a set of realized outcomes.  Recognizing 

this potential, it is common practice in conventional benchmarking applications (Boxwell (1994); 

Risk Management Association (2019)) to contrast a given DMU's performance metrics to metrics 

constructed from a quantile of the population such as the top five, ten, 25 or even 50 percent of 

DMUs in the industry rather than to the top one or two historically performing DMUs.   

 

The use of quantile benchmarking is desirable in that it decreases the sensitivity of the 

performance comparisons to statistical outliers and also allows a given firm to compare itself to 

different "peers" in situations where the performance levels of the "top DMUs" may not be viewed 

as attainable or "reachable" due to unobserved firm-specific constraints.  Quantile-based 

comparisons provide useful information to a given DMU in that a "bench-mark" may be viewed as 

more obtainable or "reachable" if 10 percent or more of a group of DMUs have achieved or 

exceeded the "benchmark" than if only one or two "exceptional" DMUs have attained the standard.  

 

While quantile-based benchmarking is a common practice for more conventional performance 

metrics, procedures for implementing quantile-based bench marking with DEA are more difficult - 

especially when the analyst wishes to simultaneously identify sets of more than one potentially 

"outlying" firms. Order-m and order-α  quantile-based estimators have been developed under Free 

Disposal Hull (FDH) assumptions (Cazals, Florens, and Simar (2002); Daouia and Simar (2005); 

Daouia and Simar (2007); Daraio and Simar (2007); Wheelock and Wilson (2008)) but quantile 

estimators have not been commonly available with linear programming based DEA. 
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Atwood and Shaik (2018) recently introduced the linear programming quantile DEA (qDEA) 

procedure.   Quantile DEA distance metrics are obtained by computing the distance in a given 

direction from a given DMU's data point to an endogenously identified hyperplane we term the 

"qDEA-α hyperplane".  The qDEA-α hyperplane divides input-output space into the "qDEA-α " 

and "qDEA-q" half-spaces where the qDEA-α half-space (in union with the qDEA-α hyperplane) 

contains at least proportion α of the reference set's observed input-output data and the qDEA-q 

half-space contains the remaining proportion q = 1-α of the reference set's observed data.  We 

refer to points lying in the qDEA-q half-space as being "external to" the qDEA-α hyperplane and 

points lying in the qDEA-α half-space as being "internal to" the qDEA-α hyperplane.  The qDEA 

process allows the user to obtain more robust DEA distance metrics by allowing endogenously 

identified sets of reference observations to lie external to the qDEA-α hyperplane.  The 

conventional DEA process can be viewed as a special case of qDEA in which q = 0 or α = 1 and 

no observed data points are allowed to be external to the qDEA-1 hyperplane.  

 

A One-Input One-Output Example 

To motivate and illustrate the qDEA concept, we demonstrate the implementation of the qDEA 

procedure using a modification of Cooper, Seiford, and Tone's (2007, page 26) Constant-Returns-

to-Scale (CRS) single-input (employees) single-output (sales) eight DMU example. Given that the 

traditional DEA input and output orientation results can be obtained as special cases of the 

Directional DEA (DDEA) (Chambers, Chung, and Färe (1996)) model, all mathematical results 

and examples in the following discussion will utilize DDEA.  Figure 1 reproduces CST's figure 2.1 

where the input-output mix for point B has been changed to a more extremal value of (X, Y) = 

(3,4). 

 

Figure 1 plots the modified CST input/output points.  When no points are allowed to lie external to 

the qDEA hyperplane, the resulting CRS qDEA-1 hyperplane for all DMU's is the red line defined 

by the origin and point B.  If one external point is allowed (α = 7/8), the qDEA model 

endogenously chooses to allow point B to lie external to the hyperplane with the resulting qDEA-

(7/8) hyperplane for all DMU's being the black line defined by the origin and point E.  If two 

external points are allowed (α = 6/8), the qDEA model endogenously chooses to allow points B 

and E to lie external to the hyperplane with the resulting qDEA-(6/8) hyperplane for all DMU's 
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being the blue line defined by the origin and point D.  We return to this example below as we 

present procedures enabling the identification of the qDEA-α hyperplanes in figure 1. 

 

Figure 1: Cooper, Seiford, and Tones Single-Input Single Output Example with 

DDEA Directions and qDEA CRS Hyperplanes  

 

Overview of Paper 

Atwood and Shaik (2018)'s chapter did not discuss the statistical properties of the qDEA estimator 

and several other aspects and limitations of qDEA.  In this paper, we examine the qDEA 

methodology in more detail.  We present additional theory involved with the two-stage qDEA 

0 2 4 6 8 10

0
2

4
6

8
1

0

Employee

S
a

le
s

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

alpha=1
alpha=7/8

alpha=6/8

Page 5 of 40



modelling approach including an examination of the conservative solutions commonly resulting 

from qDEA's use of a stochastic inequality in identifying sets of potential qDEA-α external 

DMU's.  We present an iterative approach to eliminating the conservativeness introduced by the 

use of the stochastic inequality. We then examine the qDEA estimator's desirable statistical 

properties of apparent root-n convergence and asymptotic normality. A discussion of caveats and 

potential future research concludes the paper.  

 

In the following, we specifically: (1) review a conventional primal and dual DDEA model that 

allows sets of one or more points to lie external to a qDEA-α hyperplane, (2) review a partial 

moment stochastic inequality and its application in augmented LP models where endogenously 

identified sets of the original LP constraints are allowed to be violated, (3) review the development 

of the qDEA model using the partial moment inequality, (4) present a set of small MS-Excel LP 

examples that implement qDEA using the modified example data from Cooper, Seiford, and Tone 

(2007) and illustrate the solution conservativeness discussed above, and (5) present the results of a 

set of simulations examining the statistical properties of the qDEA estimator. 

  

2. Accommodating Sets of "External" Points in a DDEA Model 

A primal DDEA model that accommodates potential super-efficiency for DMU-0 with V outputs, 

U inputs, n reference DMU’s, and constant returns to scale (CRS) can be mathematically described 

as:  
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where φ  is the directional distance for DMU-0, 
j

vy  and
j

ux are observed levels of output v and 

input u for DMU j, 
0

vd  and 
0

ud  are DMU-0’s output v and input u directions, 
0

vy  and 
0

ux  are 

DMU-0’s observed levels for output v and input u, and jz  is a projection weight assigned to 
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reference DMU j.  We assume that 
j

vy  and 
j

ux  are "goods" for all j, v, and u implying that the 

DDEA directions 
0

vd  and 
0

ud  are non-negative. 

 

Specifying φ as a free variable with 0 0
v

d ≥  and 
0 0ud ≥  allows movement in both the "northwest" 

and "southeast" directions indicated by the black and red arcs in figure 1.  If , 0j αφ <  i, DMU j's 

data point is "α -superefficient" indicating movement in a "red arc" direction is required to reach 

DMU j's qDEA-α hyperplane.  In general, a qDEA distance ,j αφ < 0,  ,j αφ = 0, and ,j αφ > 0 

indicates that DMU j’s data point is external to (superefficient), on (efficient), or internal to 

(inefficient) its qDEA-α  hyperplane. Figure 1 plots the feasible direction arcs for DMU's A-H.  In 

the following discussion, we report the estimated CRS ,ˆ j αφ distances for movements in horizontal 

("input"), vertical ("output"), and "one-one" directions indicated by the dashed lines in figure 1.       

 

In developing q-DEA, we utilize Charnes, Cooper, and Rhodes' (1978) dual LP approach.  The 

dual linear program of system (1) can be written as:  
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where the dual values vp  and uw  are CST output and input "prices".  We note that if the analyst 

knew the set of qDEA-α external points a-priori, ˆ
n

αφ distance estimates could be obtained by 

deleting observations from system (1) or constraints from inequalities (2a).  Alternatively, ˆ
n

αφ

estimates could be obtained by solving system (1) with set of “large” negative “Big-M” values 

placed in the corresponding primal jz objective function locations or a set of large positive “Big-

M” values placed in the corresponding right-hand-side locations in system (2-a).  As it is unlikely 

that the appropriate set of superefficient points are known a-priori, we present linear programming 

procedures that can endogenously identify sets of qDEA-α external points. 
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3.  A Partial Moment Stochastic Inequality, and Its Application in LP Models 

When Proportional Sets of the LP Constraints Are Allowed to Be Violated 

 

To endogenously identify a set of qDEA-α external points, we modify the probabilistically 

constrained linear programming problem presented by Atwood, Watts, Helmers, and Held (1988).  

AWHH’s procedures are broadly applicable in linear programs where the analyst wishes to allow a 

pre-specified proportion of endogenously identified constraints to be violated.  This is 

accomplished by utilizing the partial moment stochastic inequality presented by Atwood (1985).  

In the following section, we review Atwood's partial moment inequality and its incorporation in 

AWHH’s probabilistically constrained LP problem. 

Partial Moment Stochastic Inequalities 

Partial moments can be defined as: 

(3) ( ) ( ) ( ) ( ) ( )and for, (  an  0y) ,
t

LPM UPM

t

t t x f x dx t x f xt x d
γ γ

ρ γ γ γρ
∞

−∞

= − = − >∫ ∫ .  

where ( , )
LPM

tρ γ is a "Lower Partial Moment" (LPM), ( , )
UPM

tρ γ is an "Upper Partial Moment" 

(UPM), x is a random variable, and f(x) is a density function.  Mean-Partial Moment models are 

discussed in the finance literature (Anthonisz (2012); Bawa (1975); Bawa and Lindenberg (1977); 

Cumova and Nawrocki (2014); Nawrocki (2006); Zhu, Li, and Wang (2009)) as alternatives to 

Markowitz’s (1952) mean-variance criterion.  Fishburn (1977) discussed several properties of 

LPMs including the relationship between mean-LPM efficient solutions and differing degrees of 

stochastic dominance.  Berck and Hihn (1982) presented a stochastic inequality using semivariance 

(i.e. (2, )LPM xρ µ or (2, )UPM xρ µ ) and demonstrated that their semivariance based inequality often 

gave less conservative probability bounds than the one-sided Chebychev inequality.  Atwood 

(1985) generalized Berck and Hihn's (BH) semivariance stochastic inequality using the LPM.  The 

LPM stochastic inequality is derived via: 
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The preceding results use Fishburn's lower partial moment but can easily be modified to the use of 

upper partial moments (UPM) when computing limits on the probability of upside events. With the 

UPM and setting g > t, similar manipulations give:  

(5) P
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(
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UPM
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The PM inequalities are interesting results that (with an appropriate choice of γ  and t ) will 

usually generate less conservative upper bounds than a one-sided Chebychev inequality 

2

1
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1
k g

k
µ σ

 
− ≤ ≤  

+ 
 or the BH semi-variance inequality ( ) 2

1
Prob( 2, )LPMx k

k
µ ρ µ

 
≤ − ≤  

 
.  

Figure 2 illustrates these results by plotting stochastic inequality probability bounds on the 

probability of x falling below g = 60 with x~Normal (100, 25).  Figure 2 plots the probability 

bounds for the one-sided Chebychev inequality as well as the LPM based
( )

( )

, t

t g
γ

ρ γ

−
 probability 

limits for various combinations of γ  and t.  Figure 2 also contrasts the probability bounds to the 

actual probability pnorm (60, mean = 100, sd = 25) ~0.055. The BH semivariance probability 

bound is the right-most point on the red curve and is less conservative than the Chebychev one-

tailed limit.  For each γ , less conservative LPM-based probability bounds can be found depending 

upon the level of t but an inappropriate level for t may also generate excessively conservative 

probability bounds.  In situations where the Chebychev or the BH inequality bounds are exact, the 

LPM inequality will generate exact probability bounds for an appropriate choice of t  and γ . 

The linear partial moment inequality ( 1)γ =  can often generate less conservative bounds than 

using higher order partial moments. We limit our discussion to the set of linear partial moments as 

the linear partial moment can be computed in an LP model modeled with a finitely discrete set of 
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outcomes. Atwood (1985) and AWHH (1988) demonstrated that, with a linear PM, a given 

Figure 2: Lower Partial Moment (LPM) Probability Bounds 
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programming model.  Denoting the linear partial moments as (1, ) ( )LPM LPMt tρ ρ=  and 
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or  
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while allowing the LP model to endogenously determine the least constraining partial moment 

limit tɶ and compute the linear partial moments ( )
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AWHH utilized the linear LPM inequality results in constructing a model that maximized the 

expected income of a portfolio of assets subject to a set of technical constraints and the additional 

requirement that the probability of income falling below a target level g not exceed q.   Modifying 

their notation slightly, AWHH's portfolio optimization model with J assets, I portfolio constraints, 

and K states of nature can be written as: 

(9) 

,

1

,

1

,

1

1

.t .

( ) 1, ,

( ) 0 1, ,

( ) 0

1
( )

( ) 0 1, ; free; 0; 0

J

x z j j

z j

J

i j j i

j

J

k j j k

j

K

k k LPM

k

LPM

j k LPM

z

s

a a z b i I

b y z t k K

c r

d t g
q

e z for j J t

Max µ µ

δ

δ ρ

ρ

δ ρ

=

=

=

=

=

≤ =

− + ≥ =

− =

− ≥

≥ = ≥ ≥

∑

∑

∑

∑

⋯

⋯

⋯

  

where ,
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j
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=

=∑  is portfolio income in state k, xµ  is the mean portfolio income, ,z jµ is asset 

j's mean income, jz  is the chosen level of asset j, ,i j
a  and ib  are portfolio constraint coefficients, 

,k j
y  is the return to asset j in state k,  t is an endogenously determined linear LPM integral limit,  

kδ is an income deviation below level t with ,
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endogenously computed linear LPM, and g is a level of income that must be exceeded with 

probability 1 qα = − .    System (9) selects a vector of optimal portfolio levels zɶ  that map to a 

vector of potential portfolio income realizations xɶ .  The model maximizes the portfolio's expected 

income 
x

µ  subject to technical portfolio constraints and the constraint 1 ( )q LPM
t t gρ− ≥ɶ ɶ  thus 

guarantying Prob( )x g q≤ ≤ɶ .   

 

The potential income levels xɶ  chosen in system (9) were found to satisfy the probability constraint 

but were often found to be excessively "conservative" in that the actual probability of portfolio 

income falling below g was frequently much lower than q.  The reason for this conservativeness 

can be explained using insights from two reviewers who correctly pointed out that the AWHH's  

(1988) model is similar to Rockafellar and Urysev (2000)'s conditional Value at Risk (cVaR) 

model.  This perception is correct in that an upside-risk version of system (9) can be shown to be 

equivalent to a cVaR
q

constrained version of Rockafellar and Urysev's (RU) modelii.  With an 

upside risk model of losses, Rockafellar and Urysev's proofs imply that the optimal tɶ  and g terms 

in the binding upside risk constraint 1 ( )q UPM
t t gρ+ =ɶ ɶ  are, respectively, the solution's q-level 

"Value at Risk" (VaR )
q

 and the associated "conditional Value at Risk" (cVaR )
q

iii  

 

The "conservativeness" of system (9)'s solutions arises from the common result that g < tɶ  or 

cVaR ( ) VaR ( )
q q

x x<ɶ ɶ .  System (9) actually guarantees that Prob( )x t q≤ ≤ɶɶ  with Prob( )x g≤ɶ

usually being less than q, i.e. "conservative". There are several possible approaches to obtaining 

less conservative solutions than those obtained from system (9).   Subsequent unpublished research 

suggested that a two-stage process where the first stage (system (9)) is used to identify constraints 

(constraints with 0
k

δ > ) to be "relaxed" in a second stage would generate less conservative 

outcomes. 

 

In the following we utilize a two-stage processiv where, in Stage 1, an augmented dual-DDEA 

system similar to system (9) is utilized to identify constraints to be relaxed (i.e. identify sets of 

potential qDEA-α  super-efficient DMUs).  Stage 2 of qDEA consists of solving conventional 

DDEA models (1) or (2) with the constraints identified in qDEA Stage-1 being relaxed.  Given that 
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constraints (2-a) is system (2) involve " ≤  restrictions", we utilize the upper partial moment 

( )
UPM

tρ  and the 1 ( )q UPM
t t gρ+ ≤  sufficiency constraint. 

 

4. The qDEA Model 

Dual DDEA system (2) is augmented to implement the first stage of the qDEA model as follows: 
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where vp  is an output "price", uw  is an input "price", t  is the endogenously determined upper 

partial moment (UPM) "integral" limit, j
δ is a deviation above t  when

11
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==

− >∑∑  and 

zero otherwise, ( )UPM UPM tρ ρ=  is the endogenously calculated linear UPM, and 0 1q< <  is the 

maximal proportion of data points that are allowed to lie outside the qDEA-α  hyperplane. Since 

we wish to allow up to proportion q of the constraints in system (2-a) to be violated, we set g = 0 

in the UPM constraint (10-d) and allow t to be negative.  System (2) is fully nested in system (10) 

as setting 1 /q n<  will guaranty that no points can lie outside the hyperplane thus obtaining the 

conventional DDEA results.   

 

Potential qDEA-α super-efficient DMU's or external points in system (10) are identified as 

constraints with positive 
j

δ values in the solution.  System (10) may sometimes be conservative in 

that fewer than proportion q of the 
j

δ  may be positive but the solutions to system (10) will have 

no more than proportion q of potentially external points.  We also demonstrate below that the 

objective function value from expression (10) does not give the final DDEA distance estimate as 
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system (10)'s "extrapolated point" (and the resulting distance metric) will consist of an 

extrapolation using information from all "external" points plus the new qDEA "support points"v.  

While system (10) generates conservative distance estimates, the set of positive j
δ values 

endogenously identifies a set of potential points allowed to lie external to the given DMU’s qDEA-

α hyperplane.  The second stage of the qDEA process re-estimates system (2) while relaxing the 

constraints associated with the potential external points identified in stage-1. 

 

5. qDEA Application and Implementation 

In this section, we develop q-DEA estimates for our modification of Cooper, Sieford, and Tone's 

(CST) eight DMU example. The input (employees) and output (sales) data, estimated qDEA-α  

distances, and "projected points" are presented in table 1.  Table 1 presents the qDEA constant 

returns to scale (CRS) results using three directional assumptions: (a) the input orientation problem 

or horizontal movement with directions ( , 0)j j j

u u v
d x d= = , (b) the output orientation problem or 

vertical movement with directions ( 0, )j j j

u v v
d d y= = , and (c) a unit  or "one-one" direction model 

with diagonal directions ( 1, 1)j j

u v
d d= =  while allowing 0, 1, or 2 points to lie external to the 

qDEA-α  hyperplane.   

 

The qDEA solution to this problem is obtained in two stages.  Figures 3 and 4 illustrate the 

implementation of qDEA for DMU H using screen shots from MS-Excel.  Figure 3 presents an 

augmented MS Solver tableau for qDEA stage-1 (system (10)) while allowing no more than two 

points to lie external to the hull.  From our experience with the conservative partial moment 

models, if we want no more than NP = 2 points to lie external to the hull, identifying the positive 

j
δ  values are less sensitive to rounding errors (for small j

δ  positive values) if q is set just below 

(NP+1)/n. For this problem with NP = 2, q was set equal to (2+1) / 8 - 0.0001 = 3/8 - 0.0001 = 

0.37499 which will guarantee that the proportion of the positive 
j

δ  will not exceed 0.37499 < 3/8. 

The value 1/q in the constraint matrix is thus 1/0.37499 ~2.6667.  The highlighted qDEA stage-1 

solution in figure 3 indicates that the model has determined to allow points B and E to potentially 

lie external to the qDEA-(6/8) hyperplane. The objective value from qDEA stage-1 is a  
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Table 1: Modified CST Example -- Input-Output Levels, CRS DDEA and  

qDEA Distances and Projected Points For One and Two External Points 

 

NO EXTERNAL POINTS  ONE EXTERNAL POINT TWO EXTERNAL POINTS

                              INPUT ORIENTATION

DISTANCE   PROJECTED VALUES DISTANCE   PROJECTED VALUES DISTANCE   PROJECTED VALUES

DMU x y

A 2 1 0.625 0.75 1.00 0.375 1.25 1.00 0.333 1.33 1.00

B 3 4 0.000 3.00 4.00 -0.667 5.00 4.00 -0.778 5.33 4.00

C 3 2 0.500 1.50 2.00 0.167 2.50 2.00 0.111 2.67 2.00

D 4 3 0.437 2.25 3.00 0.062 3.75 3.00 0.000 4.00 3.00

E 5 4 0.400 3.00 4.00 0.000 5.00 4.00 -0.067 5.33 4.00

F 5 2 0.700 1.50 2.00 0.500 2.50 2.00 0.467 2.67 2.00

G 6 3 0.625 2.25 3.00 0.375 3.75 3.00 0.333 4.00 3.00

H 8 5 0.531 3.75 5.00 0.219 6.25 5.00 0.167 6.67 5.00

                              OUTPUT ORIENTATION

DISTANCE   PROJECTED VALUES DISTANCE   PROJECTED VALUES DISTANCE   PROJECTED VALUES

DMU x y

A 2 1 1.667 2.00 2.67 0.600 2.00 1.60 0.500 2.00 1.50

B 3 4 0.000 3.00 4.00 -0.400 3.00 2.40 -0.437 3.00 2.25

C 3 2 1.000 3.00 4.00 0.200 3.00 2.40 0.125 3.00 2.25

D 4 3 0.778 4.00 5.33 0.067 4.00 3.20 0.000 4.00 3.00

E 5 4 0.667 5.00 6.67 0.000 5.00 4.00 -0.062 5.00 3.75

F 5 2 2.333 5.00 6.67 1.000 5.00 4.00 0.875 5.00 3.75

G 6 3 1.667 6.00 8.00 0.600 6.00 4.80 0.500 6.00 4.50

H 8 5 1.133 8.00 10.67 0.280 8.00 6.40 0.200 8.00 6.00

                              ONE-ONE ORIENTATION

DISTANCE   PROJECTED VALUES DISTANCE   PROJECTED VALUES DISTANCE   PROJECTED VALUES

DMU x y

A 2 1 0.714 1.29 1.71 0.333 1.67 1.33 0.286 1.71 1.29

B 3 4 0.000 3.00 4.00 -0.889 3.89 3.11 -1.000 4.00 3.00

C 3 2 0.857 2.14 2.86 0.222 2.78 2.22 0.143 2.86 2.14

D 4 3 1.000 3.00 4.00 0.111 3.89 3.11 0.000 4.00 3.00

E 5 4 1.143 3.86 5.14 0.000 5.00 4.00 -0.143 5.14 3.86

F 5 2 2.000 3.00 4.00 1.111 3.89 3.11 1.000 4.00 3.00

G 6 3 2.143 3.86 5.14 1.000 5.00 4.00 0.857 5.14 3.86

H 8 5 2.429 5.57 7.43 0.778 7.22 5.78 0.571 7.43 5.57

xɶ xɶ xɶyɶ yɶ yɶ

xɶ xɶ xɶyɶ yɶ yɶ

xɶ xɶ xɶyɶ yɶ yɶ

ˆ jφ
7,

8ˆ j
φ

6,
8ˆ j

φ

xɶ xɶyɶ yɶˆ jφ
7,

8ˆ j
φ

6,
8ˆ j

φ

xɶ xɶyɶ yɶxɶ xɶyɶ yɶˆ jφ
7,

8ˆ j
φ

6,
8ˆ j

φ
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Figure 3: qDEA Stage-1 Tableau Identifying Two Potential External Points 

 

 

  

qDEA  STAGE 1

MODIFIED CST EXAMPLE SELECTED N out = 2

DUAL PROBLEM DMU = H q  = 0.375

DMU OUTPUT INPUT T D-A D-B D-C D-D D-E D-F D-G D-H T-LPM LHS SIGN RHS DUALS

A 1 -2 -1 -1 0 0 0 0 0 0 0 0 -0.08695 <= 0 0

B 4 -3 -1 0 -1 0 0 0 0 0 0 0 0.00000 <= 0 -0.5652

C 2 -3 -1 0 0 -1 0 0 0 0 0 0 -0.04348 <= 0 0

D 3 -4 -1 0 0 0 -1 0 0 0 0 0 0.00000 <= 0 -0.5652

E 4 -5 -1 0 0 0 0 -1 0 0 0 0 0.00000 <= 0 -0.5652

F 2 -5 -1 0 0 0 0 0 -1 0 0 0 -1.00000 <= 0 0

G 3 -6 -1 0 0 0 0 0 0 -1 0 0 -0.95652 <= 0 0

H 5 -8 -1 0 0 0 0 0 0 0 -1 0 -0.86957 <= 0 0

DIRECTION 1 1 0 0 0 0 0 0 0 0 0 0 1.00000 == 1 1.21741

LPM CALC 0 0 0 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 -1 0.00000 == 0 -4.5218

QRESTRICT 0 0 1 0 0 0 0 0 0 0 0 2.6667 0.00000 <= 0 -1.6956

  

OBJ -5 8 0 0 0 0 0 0 0 0 0 0 1.217407 <--minOBJ

NOTE THIS OBJ IS NOT THE FINAL ANSWER

STAGE 2 PROVIDES THE FINAL ANSWER

                 t-lower bound -1000

  PROJECTED POINTS

P W T D-A D-B D-C D-D D-E D-F D-G D-H T-LPM

SOLUTION 0.52174 0.47826 -0.3478 0 1 0 0 0.0435 0 0 0 0.1304 6.7826 6.2174

yɶxɶ
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conservativevi ˆHφ  = 1.21741 with projected point , )( H Hyx ɶɶ = ( )ˆ ˆ1, 1− +H H

H H
x yφ φ = (6.7826, 

6.2174). The second stage of the qDEA model is a DDEA model (2) with relaxed constraints. 

Figure 4 presents the qDEA stage-2 dual tableau (system (2)) where the constraints associated with 

points B and E have been "relaxed". The resulting qDEA-(6/8) direction (1, 1) distance is 
6,

8ˆH
φ  = 

0.5714 for point H.   In figure 4, we relax the constraints associated with DMU’s B and E by 

adding "large" positive values in the corresponding right hand side locations.    

 

Figure 4: QDEA Stage II Tableau Identifying qDEA Efficiency Scores 

 

 

We conclude this section by noting that the figure 4's "left-hand-side" (LHS) values for the 

constraints associated with both DMU's B and E exceed 0, indicating that points B and E are 

indeed external to DMU H's qDEA-6/8 hyperplane.  We return to this issue below where we 

qDEA  STAGE 2

MODIFIED CST EXAMPLE SELECTED

DUAL PROBLEM DMU = H

DMU OUTPUT INPUT LHS SIGN RHS DUALS

A 1 -2 -0.2857 <= 0 0

B 4 -3 1.0000 <= 1000 0

C 2 -3 -0.1429 <= 0 0

D 3 -4 0.0000 <= 0 -1.8571

E 4 -5 0.1429 <= 1000 0

F 2 -5 -1.0000 <= 0 0

G 3 -6 -0.8571 <= 0 0

H 5 -8 -0.5714 <= 0 0

DIRECTION 1 1 1 == 1 0.5714

OBJ -5 8 0.5714 <--minOBJ

  PROJECTED POINTS

P W

SOLUTION 0.571429 0.428571 7.4286 5.5714

yɶxɶ
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discuss an example where one "iteration" of the two-stage qDEA process does not result in two 

external points due to the conservativeness of the partial moment inequalityvii.    

 

qDEA Distances for the Modified CST Example 

Table 1 presents the DDEA and qDEA distances and projected points for all eight DMU’s under 

constant returns to scale and for the input ( ), 0j j j

u u vd x d= = , output ( )0,= =j j j

u v vd d y , and 

diagonal ( )1, 1= =j j

u vd d  directions. The ˆ jφ  distance scores are the conventional directional 

distances indicating that only DMU B (with a ˆ jφ  distance of zero) is on the CRS DDEA efficient 

boundary (the red ray in figure 1). When one external point is allowed, the CRS qDEA-(7/8) 

distances indicate that point B is now "qDEA-(7/8) superefficient" (
7,

8ˆB
φ < 0) while point E 

becomes qDEA-(7/8) efficient (
7,

8ˆE
φ = 0). The CRS qDEA-(7/8) distances of all other points have 

decreased by a fairly substantial amount. The super-efficiency of point B and the substantial 

decrease of the other DMU's qDEA-(7/8) efficiency scores provide evidence that point B is 

potentially an influential outlying point. 

 

When two external points are allowed, the CRS qDEA-(6/8) scores of all DMU's decrease but by a  

smaller amount than when the first point was excluded. With two external points, DMUs B and E 

become qDEA-(6/8) superefficient (
6,

8ˆB
φ and 

6,
8ˆE

φ  < 0) while DMU D (
6,

8ˆD
φ = 0) is now on the 

qDEA-(6/8) efficient.  

 

Table 1 presents the extrapolated points for the DDEA, qDEA-(7/8), and qDEA-(6/8) models and 

for the "input", "output" and "one-one" directions.  From figure 1, we expect points (B, E),  points 

(D, G) and points (C, F) to project or map to the same points on the qDEA hyperplanes with input 

directions, points (B, C) and points (E, F) to map to the same points with output directions, and (B, 

D, F) and points (E, G) map to the same points on the DDEA, qDEA-(7/8) and qDEA-(6/8) 

hyperplanes.  The results presented in table 1 confirm these expectations. 

 

We conclude the discussion of the CST example by noting that, if estimated with variable returns 

to scale (VRS), the qDEA-α  hyperplane's external points will often be DMU and direction 

dependent.  As discussed by Atwood and Shaik (2018), with VRS qDEA-α  distances (in some 
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directions) for some qDEA-α superefficient DMU's will be dual unbounded (primal infeasible) 

due to the increased number of points that are allowed to be external to the DMU's qDEA-α   

hyperplane.  For example, in figure 1, with VRS and one external point, points H and A will be 

qDEA-(7/8) superefficient. Movement in the input (horizontal) direction from point H or the 

output (vertical) direction from point A will result in a primal infeasibility as movement in those 

directions cannot reach an endogenously identified qDEA-(7/8) hyperplane. 

 

Although not discussed by Atwood and Shaik, several authors (Chen (2005); Chen and Liang 

(2011); Cook, Liang, and Zhu (2009); Lee, Chu, and Zhu (2011); Lee, Chu, and Zhu (2012);  

Lovell and Rouse (2003); Seiford and Zhu (1999)) have proposed methods to allow estimation of 

DEA metrics for superefficient DMU's whose initial DEA solutions are primal infeasible.  Many 

of the suggested procedures involve the identification of alternative directions that allow 

movement from the given DMU's input-output observation to a point on a feasible data-generated 

hyperplaneviii.  

 

6. The "q-Conservativeness" of qDEA Stage-2 Solutions  

Another concern with qDEA is that, in practice, we often find that a single iteration of the qDEA 

two-stage process results in "q-conservative" solutions in that fewer than proportion q of the data 

points actually lie external to the qDEA-α hyperplane at the completion of qDEA stage-2.  In our 

experience, conservative stage-2 solutions are more likely if the data contains large influential 

outliers.  The reason for conservative stage-2 solutions lies in the use of the stochastic inequality 

when identifying potential external points in qDEA stage-1.  The qDEA stage-1 model allows the 

LP model to select a partial moment limit t and endogenously contort the original constraint 

polytope while constraining the weighted sums of deviations above t in such a way that no more 

than proportion q of the j j

j y p x w tδ = − +  values lie above zero.  While the solution will 

commonly have up to proportion q of positive j
δ values identifying "potential" external points in 

the original DEA problem, not all such points may actually be external when the qDEA stage-2 

problem is solved.  In response to this issue, we developed a multi-iteration procedure that 

addresses the qDEA stage-2 conservativeness and allows the researcher to identify solutions with 

proportion q of external points if such a solution is feasible.   
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An q-conservative example is easily constructed by modifying the above application's DMU B 

observation to a more extremal ( ) ( ), 2,5B Bx y = while attempting to allow two external points.  At 

the completion of the procedures demonstrated in figures 3 and 4, we find that only one point 

actually lies external to the qDEA hyperplane.  Supplemental material available from the authors 

demonstrates a multi-iteration procedure that addresses the issue and identifies two external points.  

As also discussed in the supplemental material, from our simulation experience it appears that the 

original distance estimates obtained from completing and bootstrapping one iteration of the qDEA 

process will generate consistent estimates of the ˆˆαφ  distance where ˆ ˆ1 qα = − and q̂  is the 

proportion of Stage-2's "actual external points".  While in many benchmarking exercises one 

iteration and an estimate of the corresponding q̂ may be sufficient, R code available from the 

authors allows the user to specify the number of two-stage qDEA iterations and the q̂ -tolerance 

desired.  All results in the following sections of the paper have been estimated with up to 4 

iterations of the two-stage qDEA process described in the supplemental material.    

 

We have presented the qDEA model and demonstrated its ability to obtain quantile 

distance/efficiency metrics as well as qDEA's ability to identify sets of potentially outlying data 

points. We now examine the statistical properties of the qDEA estimators.   

 

7. Statistical Properties of qDEA Estimates 

A natural question is whether the qDEA estimator possesses desirable statistical properties.  Given 

that, to date, we have not been able to derive closed form expressions for the asymptotic properties 

of the qDEA estimator, we use several assumed data generating processes (DGP) and numerical 

methods to examine these properties. Specifically we use Monte Carlo simulations and a slight 

modification of nCm subsample bootstrapping theory to examine the "large sample" properties of 

the qDEA estimator.  In the next section of the paper, we describe: (1) the procedures utilized to 

estimate large sample convergence rates and perform normality tests for the qDEA estimates and 

(2) the class of DGP used in the Monte Carlo simulations.  We then present and discuss the results 

of the large sample convergence rate estimations and normality tests.   
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Numerically Estimating Large Sample Statistical Properties 

Geyer (2013) presents a succinct review of the Politis, Romano, and Wolf's (1999, 2001) nCm 

subsampling process.  Space presents a complete discussion but the results are that confidence 

intervals for a statistic ˆ
nθ  can often be estimated by utilizing properties of the statistic: 

(11) ( ) ( )ˆ ˆ ˆm
m n m nn

S
β

θ θ θ= − −   

where ˆ
nθ is a parameter estimate obtained from a sample of size n, β is a "convergence rate", and 

ˆ
mθ is an estimate from a subsample of size m(n)≪n where ≪  denotes “much smaller than” ix.  In 

finite sample bootstrapping, B sets of m observations are repeatedly resampled from a given 

sample of size n and used to estimate ,
ˆ
m b

θ  for b = 1,…,B.  Confidence intervals for the population 

parameter θ  can then be estimated by using the quantiles of the set of B simulated statistics: 

(12) ( ) ( ), ,
ˆ ˆ ˆm

m b n m b nn
S

β
θ θ θ= − − . 

Constructing expression (12)'s ,m bS  values requires that the analyst identify appropriate levels for 

both the convergence rate β and the subsample size m.  While the convergence rates for the DEA, 

FDH, and FDH-related order-m and order-α estimators are knownx, we have not been able to 

derive β  for the qDEA estimator.   

 

Given that there is no known way to exogenously select the optimal level for the subsample size m 

(Politis et. al. (1999)), a common practice is to estimate ,
ˆ

im b
θ  over a range of M im  values and 

select the appropriate im  using data driven results (Politis et. al. (1999); Simar and Wilson (2011-

b)).   When both the DGP and β  are unknown, Politis et. al. (1999-chapter 8) and Geyer discuss 

finite-sample procedures utilizing the bootstrapped ,
ˆ
m b

θ  values to estimate the unknown 

convergence rate parameter β .  Politis et. al. suggest estimating convergence rates by examining 

the rate at which inter-quantile-ranges computed from ,
ˆ

im b
θ  change with increases in the 

subsample size im .  We initially utilized their suggested finite sample β̂  estimation procedures but 

found that, while the "finite sample" β̂  estimates performed relatively well as n increased, the 

procedures gave unstable results at smaller sample sizes such as when n = 100.  Due to the 
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unstable results at smaller sample sizes, we chose to use Monte Carlo procedures to estimate "large 

sample" convergence rates for a set of assumed data generating processes.    

 

When estimating "large sample" convergence rates we use an assumed DGP to generate 1000 

( ), ,,N mcs N mcsX Y data sets of size N = 20000 for Monte Carlo repetition mcs = 1, …,1000.  We then 

estimated ,
ˆ

im mcs

αφ distances for each sample size im  in a vector of ten subsample sizes in mlist 

ranging between 1000 and 20000.  Motivated by one of Geyer's examples, we used the following 

vector mlist of im  values to estimate large sample convergence rates:  

 mlist = round(exp(seq(log(1000),log(20000), length.out=10)),0) obtaining mlist = (1000, 1395, 

1946, 2714, 3786, 5282, 7368, 10278, 14337, 20000) xi.   We emphasize that since we are 

repeatedly simulating data from an assumed DGP and estimating only one set of ,
ˆ

im mcs

αφ  for each 

mcs repetition, we are not limited by the im n<<  requirement necessary when repeatedly 

subsampling from a given sample of size n.  For each sample size im  in mlist, ,
ˆ

im mcs

αφ  is estimated 

using the first im  observations in the data set ( ), ,,N mcs N mcsX Y .  The 1000 sets of  ,
ˆ

im mcs

αφ  estimates 

are then stored in a 1000 x 10 matrix "qeffhat". 

   
Given mlist and the qDEA parameter estimates matrix "qeffhat", the estimated convergence rate 

β̂  can be estimated using the following R script: 

 # Estimate convergence parameter betahat 
IQNR = function(x) {quantile(x,qU) - quantile(x,qL)} 
qL=seq(0.01, 0.24, 0.01) 
qU=qL + 0.75 
iqnr=as.vector(apply(qeffhat, 2, IQNR)) 
m=rep(mlist, each = length(qL)) 
betahat= -1* summary(lm(log(iqnr) ~ log(m)))$coeff[2,1] 
 

 

The above script generates a vector of 24 inter-quantile quantile range (iqnr) estimates for each 

sample size im , pools the iqnr values across sample sizes, matches the iqnr values with the 

corresponding sample size, and regresses the log of the iqnr against the log of the sample size im . 

The estimated convergence parameter β̂  is recovered as the regression slope parameter multiplied 

be a negative one.   
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We also applied a Pearson normality test of ,
ˆ

im mcs

αφ  for each sample size using the following R 

script:  

# Test for normality of qDEA estimates by sample size 
library(nortest) 
pcalc=function(x) {pearson.test(x)$p.value} 
pvalues = apply(qeffhat, 2, pcalc) 

 

The object pvalues contains a vector of Pearson p-values with low values indicating that normality 

should be rejected.  

 

Data Generating Processes (DGP)  

We examined the convergence of the qDEA estimator using Monte Carlo procedures with several 

assumed data generating processes (DGP). The results presented below used Simar and Wilson's 

(2011-b) assumed DGP with returns to scale parameters λ  = 0.80 or λ = 1.0 to generate U = 1, 3, 

and 5 input and V = 1 output data for a given 0
DMU  and also to repeatedly generate input-output 

reference sets of N = 20,000 reference DMU’s.  When λ = 0.80, we estimated the qDEA model 

with a variable returns to scale (VRS) qDEA model.  When λ = 1.0, the qDEA model was 

estimated with constant returns to scale (CRS) LP.   "Efficient" input and the output levels for 

0
DMU were set at 

0

uxɶ  = 0.5 for u = 1, …U, with 

/

0 0

1

U
U

u
u

y x

λ

=

 
= Π 
 

ɶ ɶ giving 
0yɶ  = 0.5 when λ  =1 and 

0yɶ = 0.57435 when λ  = 0.80.   "Inefficiency" is introduced for 0
DMU  via setting 

0 02 1u ux x= =ɶ  

and 
0 0y y= ɶ .  The corresponding input-orientation DDEA parameter with directions 

0 0

u ud x=   and 

0 0vd =  can be shown to be 0.5φ = . 

 

For each Monte Carlo simulation mcs = 1,…, 1000,  a reference DMU data set of size N = 20000 

was generated using simulated "efficient" input-output levels generated via: , ~ (0,1)
iid

j

u mcsx unifɶ and 

/

,
1

U
U

j j

mcs u mcs
u

y x

λ

=

 
= Π 
 

ɶ ɶ for DMUs  j = 1,…, N.  Input “inefficiency” for j
DMU  is introduced by 

randomly simulating ~ ( , )j

mcs
BETA a bφ  and setting j j

mcs mcs
y y= ɶ  and , , / (1 )j j j

u mcs u mcs mcs
x x φ= −ɶ  for u = 
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1, …, U xii.  For each simulation repetition mcs, the generated reference data ,

j

u mcs
x and j

mcs
y  was 

used to populate an N by U input matrix ,N mcs
X  and an N by 1 output matrix ,N mcs

Y .     

 

Estimated Convergence Rate and Normality Test Results 

We completed the above process for a number of input U numbers and quantile levels α .  Due to 

space limitations, we discuss results using the CRS and VRS BETA(1,3), BETA(2,4), and 

BETA(5,10) DGP with V = 1 output, U = 1, 3, or 5 inputs, and α  = 0.95.   Figure 5 presents panel 

plots demonstrating several results for the VRS-BETA(1,3) DGP with U = 3 inputs. The upper left 

panel presents a boxplot of the estimated qeffhat = 0.95ˆ
imφ  values by sample size. The boxplot 

demonstrates that: (1) the dispersion of the 0.95ˆ
imφ  estimates decrease with sample size, (2) the 

median values of the  0.95ˆ
imφ  estimates increase with sample size, and (3) the median values appear 

to be convergent with increases in sample size.  For all DGP examined we obtained similar results 

indicating that the ˆαφ  estimator is apparently a biased but convergent estimator as sample size 

increases.  The bias result is not troubling in that the nCm bootstrapping process can be used to 

obtain bias-corrected estimates for ˆαφ  (Politis, et. al)xiii. 

 

The upper right panel in figure 5 presents a boxplot of the log of the inter-quantile-ranges (iqnr) 

(generated in the convergence rate estimation process) plotted against the log of the sample sizes. 

An examination of the second boxplot indicates that log(iqnr) visually appears to decrease linearly 

with log(m).  For this example, when log(iqnr) is regressed against log(m), the resulting slope 

parameter is -0.505 giving convergence rate estimate β̂  = 0.505 as presented in table 2. 

 

The lower panels in figure 5 present qqnorm-qqline plots for the 1000 0.95

1000,
ˆ

mcsφ and 0.95

20000,
ˆ

mcsφ  

estimates. An examination of the plots provides strong evidence that the 0.95

,
ˆ

im mcsφ estimates are 

normally distributed.  When Pearson's normality test is applied to the residuals, the resulting  p-

values, presented in table 2, are 0.527, and 0.146, indicating that normality cannot be rejected for 

the 0.95

1000,
ˆ

mcsφ  and 0.95

20000,
ˆ

mcsφ estimates. 
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Table 2 presents the large sample β̂ convergence rate estimates and normality test p-values for the 

BETA(1,3), BETA(2,4), and BETA(5,10) data generating processes with constant and variable 

returns to scale and number of inputs U = 1, 3, and 5.  In table 2, the estimated convergence rates 

β̂ are close to 0.5 for all DGP, returns to scale, and number of input levels U examined.  The 

Pearson p-values indicate that normality of 0.95ˆ
imφ is not rejected with 7 of 180 or 3.9% of the p-

values being below 0.05. 

Figure 5: Panel Plots of Large Sample Parameter Estimates by Sample Size, 

Log(iqnr) by Log(Sample Size), and qqnorm Plots of Parameter Estimates by 

Sample Size for VRS-BETA(1,3)-U3 Data Generating Process 
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Table 2 :  Large Sample  Convergence Rate Estimates and Pearson-Normality-

Test P-Values by DGP, RTS, Number of Inputs U, and Sample Size 

 

 

We utilized the "large sample" β  estimation process with a number of other assumed DGP 

including DGP with different ranges for X and Y, various returns to scale, and multiple inputs and 

multiple outputs.  Convergence rate estimates and normality test results similar to those reported in 

Table 2 were obtained for all DGP examined to date.  As a robustness check of our convergence 

rate estimation process, we used the same procedures and DGP to estimate large sample 

convergence rates for the order-α  FDH estimator.  The order-α  estimator has a known 

asymptotic convergence rate (root-n) and parameter distribution (normal) (Simar and Wilson 

(2011-a)).  In the order-α case, our "large sample" results indicate order-α  root-n convergence 

and large sample normality for all DGP examined.   

 

We conclude this section, however, by reminding the reader that we have not been able to derive 

closed form expressions for either the root-n convergence rate or the asymptotic normality of the 

qDEA estimator.  We also emphasize that, as 1α →  or 0q → , the convergence rates for both the 

qDEA and order-α  estimators will approach the convergence rates of the underlying DEA or 

PEARSON NORMALITY TEST P-VALS BY SAMPLE SIZE

DGP RTS U  m1000 m1395 m1946 m2714 m3786 m5282 m7368 m10278 m14337 m20000

BETA13 CRS 1 0.525 0.057 0.131 0.164 0.114 0.436 0.198 0.200 0.452 0.323 0.361

BETA13 CRS 3 0.506 0.355 0.827 0.980 0.188 0.857 0.426 0.343 0.423 0.005 0.206

BETA13 CRS 5 0.522 0.781 0.729 0.420 0.108 0.111 0.486 0.364 0.894 0.674 0.262

BETA13 VRS 1 0.500 0.530 0.684 0.852 0.370 0.738 0.469 0.647 0.499 0.792 0.835

BETA13 VRS 3 0.505 0.527 0.496 0.126 0.817 0.873 0.697 0.355 0.967 0.582 0.146

BETA13 VRS 5 0.513 0.094 0.857 0.803 0.061 0.436 0.346 0.751 0.547 0.111 0.423

BETA24 CRS 1 0.491 0.869 0.131 0.798 0.003 0.978 0.376 0.564 0.657 0.089 0.019

BETA24 CRS 3 0.491 0.884 0.066 0.433 0.575 0.880 0.267 0.103 0.923 0.924 0.506

BETA24 CRS 5 0.498 0.021 0.533 0.729 0.370 0.589 0.204 0.089 0.674 0.052 0.456

BETA24 VRS 1 0.516 0.589 0.650 0.864 0.684 0.726 0.394 0.410 0.585 0.160 0.328

BETA24 VRS 3 0.502 0.558 0.732 0.976 0.994 0.833 0.099 0.190 0.080 0.551 0.097

BETA24 VRS 5 0.503 0.042 0.257 0.394 0.866 0.285 0.213 0.097 0.151 0.056 0.379

BETA510 CRS 1 0.494 0.564 0.039 0.456 0.778 0.916 0.312 0.803 0.544 0.373 0.713

BETA510 CRS 3 0.491 0.086 0.896 0.222 0.413 0.852 0.544 0.095 0.869 0.317 0.690

BETA510 CRS 5 0.508 0.719 0.397 0.254 0.169 0.063 0.674 0.795 0.065 0.738 0.806

BETA510 VRS 1 0.487 0.838 0.911 0.789 0.857 0.997 0.171 0.249 0.509 0.370 0.482

BETA510 VRS 3 0.494 0.931 0.388 0.987 0.909 0.571 0.238 0.664 0.527 0.582 0.267

BETA510 VRS 5 0.501 0.707 0.869 0.025 0.985 0.070 0.472 0.943 0.122 0.602 0.252

β̂
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and the identifying the proportion of DMUs that have been able to reach or exceed a qDEA 

performance metric.  The qDEA allows the user to directly "slice the onion" of the DEA revealed 

technology to the desired quantile depth using conventional LP-based procedures.                   

i In the following discussion, the notation φ  denotes the conventional DDEA distance for DMU-0, 
αφ  denotes 

DMU-0's directional distance to the qDEA-α hyperplane estimated while allowing up to proportion q = 1-α of the 

reference set's input-output observations to lie outside the qDEA-α  hyperplane, and 
,j αφ  denotes the qDEA-α

distance for DMU j.  The notation ˆ
nφ , ˆ

n

αφ , and 
,ˆ j

n

αφ  denotes distances estimated using a sample of size n.          

 
ii Rockafellar and Urysev (2000) presented a linear programming model that minimized the upside or loss-risk 

cVaR
q

while endogenously identifying the cVaR '
q

s associated VaR
q

level.  Their objection function is 

equivalent to minimizing 1 ( ) cVaR ( )q UPM q
t t tρ+ = with VaR

q
t = .  Rockafellar and Urysev's model can be 

modified to optimize an objective function subject to a maximal cVaR
q

by imposing the constraint 

1 ( )q UPM
t t gρ+ ≤ which is equivalent to the UPM constraint derived previously (8). 

 

iii The t = VaRq
ɶ  and g = cVaR

q
results can easily be demonstrated for system (9).  System (9) searches over 

potential portfolios while endogenously identifying the tɶ level associated with the least conservative or minimal level 

of the probability limit 
( )LPM t

t g

ρ

−
 .  Note that ( )( ) ( ) ( )[ { | }]

t

LPM t t x f x dx F t t E x x tρ
−∞

= − = − ≤∫   and 

( ) ( )d
LPMdt

t F tρ = .  Taking the derivative of the linear LPM probability bound with respect to t and setting the result 

equal to zero gives:  

( )
( )

( )

( )

( )
2 2

( ) ( ) ( ) ( )[ { | }]( )
0 { | }LPMLPMd

dt

F t t g t F t t g F t t E x x tt
g E x x t

t g t g t g

ρρ − − − − − ≤
= = = ⇔ = ≤

− − −
ɶ  

with the second derivative of 
( )

LPM
t

t g

ρ

−
 with respect to t (evaluated at the minimal tɶ ) being strictly positive.. 

Assuming the sufficiency constraint is binding i.e. 1 ( )q LPM
t t gρ− =ɶ ɶ  implies: 

( ) ( ) ( )[ { | }] ( ) ( )
LPM

t q t g F t t E x x t q t g F t qρ = − ⇒ − ≤ = − ⇔ =ɶ ɶ ɶ ɶ ɶ ɶ ɶ .    

Thus, with AWHH's downside risk constraint 1 ( )q LPM
t t gρ− ≥ , the endogenously selected tɶ level is the

VaR ( )
q

xɶ  of the optimal portfolio's income xɶ  such that Prob(x t) = q≤ ɶɶ  and g is the associated cVaR ( )
q

xɶ  or the 

Expected{ | t}x x ≤ ɶɶ ɶ .   
iv System (9) is more broadly applicable than AWHH's or RU's  chance-constrained or cVaR constrained setting in that 

the ,k jy values need not be in monetary or rates of return units and the model need not involve "risk".  System (9) can 

be generalized to other classes of linear programming models where the researcher desires to allow up to a proportion 
of endogenously identified constraints to be violated. In this paper, we utilize similar constraints in a DDEA model 
that allows a proportion of endogenously identified input/output points to lie external to the q-DEA hyperplane. 
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v We use the terminology “support points” to denote the points that define the hyperplane onto which the given 

DMU’s input-output points are projected with 
αφ  being the distance from the initial point to the projected point on the 

hyperplane.     
 
vi The qDEA stage 1 solution is conservative in that its projected ˆ ˆ( , )x y  values are projected from the two potential 

external points B and E as well as point D in figure 1. This is apparent by examining the LP's dual values presented in 
figure 3.  Thease dual values are DMU projection weights in dual system (10)'s associated primal LP. 
 
vii As discussed below, the solution to the continuous LP in system (10) will often be conservative in that fewer than 
proportion q of the DMU's may lie external to the qDEA-α hyperplane.  We  initially experimented with an exact 

mixed binary model:  

0 0
, ,

min
p w

y p x w
δ

− +i i     . 0st Y p X w M δ− − ≤i i i ; 
0 0 1
y x

d p d w+ =i i ; 1

1

n

n j

i

qδ
=

≤∑ ; 0p ≥ ; 0w ≥ ; and 

0,1
j

δ =  where p and w are continuous choice vectors, Y and X are input and output matrices, M is a diagonal 

matrix with "large" positive values on the diagonal and δ  is a binary zero-one vector.  While the mixed binary model 

gave exact solutions when it could be solved, the current state of mixed binary model algorithms limits its applicability 
in qDEA due to the prohibitive amounts of time required to obtain solutions – especially when bootstrapping is 
desired.    
 
viii For firms with positive levels of all input and outputs, the "worst-case-reference point" procedure discussed by 
Atwood, Shaik, and Walden (2017) quickly identifies such a feasible movement direction for any DMU.  A worst case 

reference point is can be computed as ( ),wc wc

u vx y  where ( )( )0max max ,wc j

u u u
j

x x x=   and 

( )( )0min min ,wc j

v v v
j

y y y= .  A feasible direction ( )0 0,u vd d  can be computed as( )0 0,u vd d = ( )0 0,wc wc

u u v vx x y y− − .  

For qDEA-α  superefficient firms, the estimated distance ˆαφ  in expression (1) will be negative but a feasible 

projection point  ( )0 0,x yɶ ɶ  = ( )0 0 0 0ˆ ˆ,x dx y dyα αφ φ− + on DMU-0's qDEA-α hyperplane can always be found.  

For DMU's with zero levels for some inputs or outputs see the discussion by Lee, Chu, and Zhu (2012).  

 

 
ix More formally m(n) << n denotes using a rule for selecting m (as a function on n) such that ( )

n

Lim m n
→∞

= ∞  and 

( )
0

n

m n
Lim

n→∞
= .  One such rule is to set ( )m n K n=  where K is a positive scalar.  

 

x  The DEA CRS and VRS convergence rates are, respectively, 2

U V
β =

+
 and 

2

1U V
β =

+ +
 . The FDH, order-m, 

and order-α convergence rates are, respectively, 1

U V
β =

+
, 1

2β =  , and 1
2β =  (Simar, L. and P. Wilson. (2011-a)) 

    
xi Geyer used logs in creating a set of 

i
m  values to obtain more aesthetically pleasing log-log plots. We also use logs 

to decrease computation times while still spanning the subsample size range, (1000, 20000).    
 
xii With an input orientation DDEA model and DDEA distance φ , the "efficient" projected point is 

(1 ) / (1 )x x x x x xφ φ φ= − = − ⇒ = −ɶ ɶ  with 0 1φ≤ < . Simar and Wilson (2011-b) introduced input inefficiency 

by generating ~ (3)EXPτ  and setting x xe
τ= ɶ .  If 

1

(1 )
e

τ

φ
=

−
, it is a relatively easy exercise to show that 
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~ (1,3)BETAφ  when ~ (3)EXPτ .  Generating ~ ( , )j BETA a bφ   rather than using an exponential 

distribution allowed us greater flexibility in generating sets of 
jφ  values with fewer or more points near the 

"efficient" 0φ =  boundary in our sets of Monte Carlo simulations. 

   
xiii While not reported in this paper due to space limitations, we have conducted a number of nCm subsample 
confidence interval testing exercises similar to those reported by Simar and Wilson (2011-b). Confidence interval 
coverage levels similar to those reported by Simar and Wilson (2011-b) were obtained for nCm bootstrapped qDEA 
estimates. 
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Metrics: Theory and Statistical Properties. 

Appendix  

The results of the qDEA process described in the main body of the paper will frequently be 

conservative in that fewer than proportion q of the observed data points will lie exterior to the 

estimated qDEA hyperplane at the completion of the second stage of the qDEA process.  A 

detailed discussion of the reason for the conservativeness is beyond the scope of the paper but 

the problem results from the use of the stochastic inequality when endogenously contorting the 

augmented qDEA stage I problem.  This appendix presents an example that demonstrates the 

potential conservativeness of the qDEA stage 2 solution and an iterative process designed to 

obtain less conservative solutions if desired by the researcher.  

Figure A1 plots data from the main body's example but with firm B's data modified to a more 

extremal ( ) ( ), 2,5B Bx y = .  Figure A1 plots the data points and the qDEA-1, qDEA-7/8, and 

qDEA-6/8 CRS hyperplanes for the revised problem.  Note that when two points are allowed to 

lie external to the qDEA-6/8 hyperplane, the projected points should lie on the blue ray defined 

by the origin and point D with points B and E lying external to the qDEA-6/8 hyperplane. 

Figures A2 and A3 present the qDEA Stage-1 and Stage-2 tableaus for the first iteration of the 

modified problem.  These tableaus have been modified by adding a column "LHS-External" that 

indicates whether the LP solution's left-hand-side exceeds zero (i.e. the corresponding DMU is 

external to the qDEA hyperplane).  The results presented in figure A2 indicate that the qDEA 

stage 1 model has identified two potential external points i.e. points A and B.  However, when 

the associated constraints are relaxed in qDEA-stage 2, the results presented in figure A3 

indicates that only point B (with a "left-hand-side" value exceeding 0) actually lies external to 

the estimated hyperplane. We note that the resulting distance estimate is 0.7778 which is 

identical to the qDEA-7/8 distance reported for DMU H in the main body's table 1.  Although 

space prevents a complete discussion, we have run a number of simulations obtaining similar 

results i.e. when using one iteration of qDEA, the estimated distance ˆˆαφ ,with ˆ ˆ1 qα = −  and q̂  the 
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actual proportion of points external to the estimated qDEA hyperplane, appears to be a 

convergent and normally distributed estimate of the distance to the qDEA-α̂  hyperplane.     

In figures A2 and A3, we have referred to the first round of conventional qDEA process as 

Iteration-1. Figures A3 and A4 illustrate the process if the analyst wishes to complete additional 

iterations to reduce or eliminate the conservativeness of the qDEA Stage-2 results.  In figure A4 

(qDEA Stage-1 Iteration-2) we have relaxed the constraint of the qDEA stage-2 Iteration-1 

external point (point B) by adding a "big-M" to the corresponding RHS location, indicated that 

we are searching for up to 1 additional external point, and resolved the problem.  The results 

indicate that the model has identified point E as a potential additional external point.  Figure A5 

presents the qDEA Stage-2 Iteration-2 tableau where both the constraints from Stage-2 Iteration 

1's actual external points (point B) and the qDEA Stage-1 Iteration-1's potential additional 

external points (point E) have been relaxed.  The LP solution's results indicate that we have now 

identified two external points (points B and E) whose LHS values exceed zero. The resulting 

distance estimate is ,6/8ˆHφ  = 0.5714 which is identical to the qDEA-6/8 "one-one" distance for 

DMU H in table 1. 

Since we have identified two external DMU's, our iterative process stops and returns the qDEA 

Stage-2 Iteration-2 results to the user.  When estimating models containing more DMU's the 

process may require more iterations.  R code available from the authors allows the user to 

specify the maximal number of iterations to be completed as well as specifying a ˆq q−  tolerance 

level where the iterative process is stopped if ˆq q−  falls below the set tolerance.  The R code 

also returns the values for q̂  i.e. the proportion of points actually external to the qDEA 

hyperplane.  
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Figure A1: Modified Cooper, Seiford, and Tones Single-Input Single Output 

Example with DDEA Directions and qDEA CRS Hyperplanes 
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Figure A2: Modified qDEA-6/8 Stage-1 Iteration-1 Tableau Identifying Two Potential External Points 

 

 

qDEA  STAGE-1 ITERATION-1 

MODIFIED CST EXAMPLE SELECTED N out = 2

DUAL PROBLEM DMU = H q  = 0.37499

LHS

DMU OUTPUT INPUT T D-A D-B D-C D-D D-E D-F D-G D-H T-LPM LHS SIGN RHS External

A 1 -2 -1 -1 0 0 0 0 0 0 0 0 0.00000 <= 0 0

B 5 -2 -1 0 -1 0 0 0 0 0 0 0 0.00000 <= 0 0

C 2 -3 -1 0 0 -1 0 0 0 0 0 0 0.00000 <= 0 0

D 3 -4 -1 0 0 0 -1 0 0 0 0 0 -0.06667 <= 0 0

E 4 -5 -1 0 0 0 0 -1 0 0 0 0 -0.13335 <= 0 0

F 2 -5 -1 0 0 0 0 0 -1 0 0 0 -1.06667 <= 0 0

G 3 -6 -1 0 0 0 0 0 0 -1 0 0 -1.13335 <= 0 0

H 5 -8 -1 0 0 0 0 0 0 0 -1 0 -1.26670 <= 0 0

DIRECTION 1 1 0 0 0 0 0 0 0 0 0 0 1.00000 == 1  

LPM CALC 0 0 0 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 -1 0.00000 == 0  

QRESTRICT 0 0 1 0 0 0 0 0 0 0 0 2.6667 0.00000 <= 0  

  

OBJ -5 8 0 0 0 0 0 0 0 0 0 0 1.93338 <--minOBJ

NOTE THIS OBJ IS NOT THE FINAL ANSWER

STAGE 2 PROVIDES THE FINAL ANSWER

                 t-lower bound -1000

  PROJECTED POINTS

P W T D-A D-B D-C D-D D-E D-F D-G D-H T-LPM

SOLUTION 0.46666 0.53334 -0.6667 0.0667 1.9333 0 0 0 0 0 0 0.25 6.0666 6.9334

 

# POTENTIAL Stage 2  Potential qDEA   Stage-2  Phase-1 External Points

POINTS OUT HULL = 2 1 1 0 0 0 0 0 0

yɶxɶ
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Figure A3: Modified qDEA-6/8 Stage-2 Iteration-1 Tableau    

 

 

 

 

 

qDEA  STAGE-2   ITERATION-1

MODIFIED CST EXAMPLE SELECTED

DUAL PROBLEM DMU = H

LHS

DMU OUTPUT INPUT LHS SIGN RHS EXTERNAL

A 1 -2 -0.3333 <= 1000 0

B 5 -2 1.8889 <= 1000 1

C 2 -3 -0.2222 <= 0 0

D 3 -4 -0.1111 <= 0 0

E 4 -5 0.0000 <= 0 0

F 2 -5 -1.1111 <= 0 0

G 3 -6 -1.0000 <= 0 0

H 5 -8 -0.7778 <= 0 0

DIRECTION 1 1 1 == 1 TOTAL EXT

OBJ -5 8 0.7778 <--minOBJ 1

  PROJECTED POINTS

P W

SOLUTION 0.555556 0.444444 7.2222 5.7778

yɶxɶ
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Figure A4: Modified qDEA-6/8 Stage-1 Iteration-2 Tableau Identifying Additional Potential External Points 

 

 

qDEA  STAGE-1 ITERATION-2

MODIFIED CST EXAMPLE SELECTED Additional N out = 1

DUAL PROBLEM DMU = H q  = 0.24999

LHS

DMU OUTPUT INPUT T D-A D-B D-C D-D D-E D-F D-G D-H T-LPM LHS SIGN RHS External

A 1 -2 -1 -1 0 0 0 0 0 0 0 0 -0.25000 <= 0 0

B 5 -2 -1 0 -1 0 0 0 0 0 0 0 2.00000 <= 1000 1

C 2 -3 -1 0 0 -1 0 0 0 0 0 0 -0.12500 <= 0 0

D 3 -4 -1 0 0 0 -1 0 0 0 0 0 0.00000 <= 0 0

E 4 -5 -1 0 0 0 0 -1 0 0 0 0 0.00000 <= 0 0

F 2 -5 -1 0 0 0 0 0 -1 0 0 0 -1.00000 <= 0 0

G 3 -6 -1 0 0 0 0 0 0 -1 0 0 -0.87500 <= 0 0

H 5 -8 -1 0 0 0 0 0 0 0 -1 0 -0.62500 <= 0 0

DIRECTION 1 1 0 0 0 0 0 0 0 0 0 0 1.00000 == 1 0

LPM CALC 0 0 0 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 -1 0.00000 == 0 0

QRESTRICT 0 0 1 0 0 0 0 0 0 0 0 4.0002 0.00000 <= 0 0

  

OBJ -5 8 0 0 0 0 0 0 0 0 0 0 0.687504 <--minOBJ

NOTE THIS OBJ IS NOT THE FINAL ANSWER

STAGE 2 PROVIDES THE FINAL ANSWER

                 t-lower bound -1000

  PROJECTED POINTS

P W T D-A D-B D-C D-D D-E D-F D-G D-H T-LPM

SOLUTION 0.5625 0.4375 -0.0625 0 0 0 0 0.125 0 0 0 0.0156 7.3125 5.6875

ADDITIONAL POTENTIAL Stage 2 Potential Additional qDEA  Stage-2 Phase-2 External Points

# POINTS OUT HULL = 1 0 0 0 0 1 0 0 0

yɶxɶ yɶxɶ
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Figure A5: Modified qDEA Stage-2 Iteration-2 Tableau    

 

 

 

LHS

DMU OUTPUT INPUT LHS SIGN RHS External

A 1 -2 -0.2857 <= 0 0

B 5 -2 2.0000 <= 1000 1

C 2 -3 -0.1429 <= 0 0

D 3 -4 0.0000 <= 0 0

E 4 -5 0.1429 <= 1000 1

F 2 -5 -1.0000 <= 0 0

G 3 -6 -0.8571 <= 0 0

H 5 -8 -0.5714 <= 0 0

DIRECTION 1 1 1 == 1 TOTAL EXT

OBJ -5 8 0.5714 <--minOBJ 2

  PROJECTED POINTS

P W

SOLUTION 0.571429 0.428571 7.4286 5.5714

yɶxɶ yɶxɶ
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