Module #8 – Programmable Logic & Memory

• Topics
 A. Programmable Logic
 B. Memory Devices

• Textbook Reading Assignments
 □ 6.3, 9.1-9.6

• Practice Problems
 □ none

• Graded Components of this Module
 □ 1 homeworks, 1 discussion, 1 quiz
 (all online)
Module #8 – Programmable Logic & Memory

• What you should be able to do after this module
 - Understand the construction and operation of various programmable logic devices (PLD, PLA, PAL, FPGA)
 - Understand the terminology and functional operation of various memory storage devices (RAM, ROM, SRAM, DRAM, MROM, PROM, EPROM, EEPROM)
Programmable Logic

• Programmable Logic Devices (PLD)
 - when combinational logic gets large, it becomes impractical to implement using discrete devices
 - an alternative to an Application Specific Integrated Circuit (ASIC) is a programmable logic device
 - there are many types of programmable logic to choose from, each with advantages/disadvantages
 - PLA
 - PAL
 - CPLD
 - FPGA
 - the type of programmable device we target can influences how we minimize/synthesize our logic
Programmable Logic

• **Programmable Logic Array (PLA)**

 - a PLA is a 2-level AND-OR configuration that implements SOP expressions

 - a PLA has:

 - n inputs
 - m outputs
 - p product terms

 - inputs are initially buffered and inverted to always create X and X' literals

 - fuses (or reconfigurable switches) are used to selectively connect the literals to the AND level

 - fuses are again used to decide which product terms are connected to the OR level

 - pull-ups on the lines can produce constant outputs

 - logic configurations can also produce constant outputs
Programmable Logic

- Programmable Logic Array (PLA)

 ex) 2-input, 2-output, 2-product term PLA

 the X’s represent where the fuses can be left connected or blown
Programmable Logic

• **Programmable Array Logic (PAL)**

 - a PAL is an extension of a PLA but uses a fixed OR stage instead of a programmable one

 - since 0’s going into an OR have no effect, this is possible

 - a PAL also has some additional functionality
 - Output enables
 - Output feed back

• **Complex Programmable Logic Devices (CPLD)**

 - multiple PLA’s/PAL’s/PLD’s can be put on one chip with a matrix of programmable interconnect

 - this is called a CPLD and gives the ability to begin building a system on a chip
Programmable Logic

- **What is an FPGA**

 Field Programmable Gate Array

- **An FPGA uses Re-configurable Logic Blocks**

 - we set the config bits of this block to set its Boolean logic function

 - the configuration is a Truth Table (or Look Up Table) of functionality

<table>
<thead>
<tr>
<th>config</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>NOT(In1)</td>
</tr>
<tr>
<td>001</td>
<td>NOT(In2)</td>
</tr>
<tr>
<td>010</td>
<td>OR</td>
</tr>
<tr>
<td>011</td>
<td>NOR</td>
</tr>
<tr>
<td>100</td>
<td>AND</td>
</tr>
<tr>
<td>101</td>
<td>NAND</td>
</tr>
<tr>
<td>110</td>
<td>XOR</td>
</tr>
<tr>
<td>111</td>
<td>XNOR</td>
</tr>
</tbody>
</table>
Programmable Logic

- **LUTs = Look Up Tables**
 - we can program the LUTs to be whatever type of gate is needed by the design
 - there are a finite number of LUTs within a given FPGA (also called "resources")

- **The LUTs are configured into an ARRAY on the silicon**
 - Array of LUT's = Array of Gates = Gate Array
Programmable Logic

- Programmable Interconnect

 - there are programmable interconnect switches that connect the LUTs

![Diagram of programmable logic with LUTs connected by switches]
Programmable Logic

• Configuration

- We start with a Gate Level Schematic of our design (from synthesis)
- The FPGA LUTs are configured to implement Gates

![Diagram of Programmable Logic Configuration]

LUT LUT LUT LUT
A B C OUT

LUT LUT LUT LUT

LUT LUT LUT LUT
Programmable Logic

• Configuration

- The interconnect switches are then programmed to implement the net connections

![Diagram of Programmable Logic](image-url)
Programmable Logic

- **Configuration**
 - The LUT and Interconnect configuration is volative (i.e., it goes away when power is removed)
 - Since the programming is done by the user after fabrication, we call it "Field Programmable"

- We now understand where **Field Programmable Gate Array**
Programmable Logic

- **Adding More Functionality**
 - FPGA manufacturer's quickly learned that Flip-Flops would be useful
 - They put a DFF next to a 4-Input LUT to form a "Configurable Logic Block" (CLB)
Programmable Logic

• **Adding Even More Functionality**

 - To improve performance, common logic functions were "hard coded" on the silicon
 - Block RAM
 - Adders / Multipliers
 - Global Clock Buffers
 - Even microprocessors!
Programmable Logic

• What else can we program?
 - Which Pins to use on the package
 - What logic levels
 - CMOS_33, CMOS25
 - SSTL, SSTL2, etc…
Memory Devices

- Memory Classes

 - memory refers to a device which stores information

 - we’ve seen that Flip-Flops and Latches are a type of memory

 - Flip-Flops and Latches tend to take up a lot of area so they aren’t used for high density applications

 - instead, there are a variety of other circuits that can hold digital information

 - memory is classified into two categories

 “Volatile” - when the power is removed, the information is lost

 “Non-volatile - the information is held when the power is removed
Memory Devices

- **Random Access Memory (RAM)**
 - RAM means that any location in memory can be accessed
 - this is different from “Sequential Access” like a tape or hard drive
 - there are two basic types of RAM
 1) SRAM = Static RAM
 2) DRAM = Dynamic RAM
Memory Devices

- SRAM

 - SRAM consists of two inverters that are configured in an infinite feedback loop
 - this configuration will hold the data as long as power is applied
 - two MOSFETS are connected on both sides of the inverters to provide access for Reading and Writing
 - this type of RAM is very fast (used for On-Chip Cache in microprocessors)
 - the drawback is that it takes 6 MOSFETS to store one bit of information
Memory Devices

- **DRAM**
 - DRAM provides information storage using a capacitor
 - to access the capacitor, one MOSFET is used
 - DRAM is able to store the information in less area than SRAM
 - the drawback is that over time the capacitor loses its charge
 - to address this, a “Refresh Cycle” is used
 - to refresh the capacitor, the circuit reads the value periodically and then writes that same value back to the cell
 - this recharges the capacitor fully to its original level
 - this Refresh Cycle adds complexity to the access circuitry, however the overall size of the DRAM cell is smaller than an SRAM cell
Memory Devices

- **Types of Non-Volatile Memory**

 MROM
 - Mask Read Only Memory
 - during fabrication, 1’s and 0’s are hard coded to VDD and GND
 - “Mask” refers to the photolithography step during fabrication

 PROM
 - Programmable Read Only Memory
 - Programmed using High-Voltage to blow fuses on-chip to create 1’s and 0’s
 - Cannot be un-done, this is a one-time program

 EPROM
 - Erasable Programmable Read Only Memory
 - Programmed using high-voltage to inject electrons into a “Floating Gate” of a special type of MOSFET. The abundance of electrons will turn on the MOS creating a 1 or 0
 - Erased using Ultra-Violet light in order to put the floating gate back to its original state

 EEPROM
 - Electrically Erasable Programmable Read Only Memory
 - Programmed and Un-Programmed using high-voltage
 - This allows in-system reconfiguration
Module Overview

• Topics
 - Programmable Logic
 - PLA
 - PAL
 - CPLD
 - FPGA
 - Memory
 - volatile / non-volatile
 - SRAM, DRAM
 - MROM, PROM, EPROM, EEPROM