

Transmission Lines		
- Lumped vs. Distributed		
- In a vacuum, the following expression relates frequency and wavelength:		
$c=f \cdot \lambda$		
ex) if we have a GHz sine wave in a vacuum:		
$c=f \cdot \lambda$		
$3 \times 10^{8}(\mathrm{~m} / \mathrm{s})=(1 \mathrm{GHz}) \cdot \lambda$		
$\lambda=0.3 \mathrm{~m}=12^{\prime \prime}$		
and you drive a $12^{\prime \prime}$ length of perfect interconnect (i.e., in a vacuum) a full cycle of the sine wave occurs at the source before the energy is seen at the end of the line.		
This illustrates that the voltage on the line is definitely dependant on time AND space. Or said another way, the voltage in the line is NOT the same at all parts, so its distributed effect cannot be ignored.		
	EELE 461/561 - Digital System Design	Module \#3 Page 4

Transmission Lines - Lumped vs. Distributed - A more precise description for when to use distributed modeling is: "when the time to change voltage on the signal is comparable to the time it takes to propagate down the line"
- We can use the rule of thumb that we use distributed modeling when: Length of Line $\geq \frac{1}{10} \cdot \lambda_{\text {source }}$ NOTE: some people use $N / 4$, or a quarter wavelength. We'll use $N / 10$ for this class - To put in terms of digital risetimes and prop delay, the rule of thumb is: Use Distributed When: $T_{D} \geq \frac{1}{10} \cdot t_{\text {rise }}$ Use Lumped When: $T_{D}<\frac{1}{10} \cdot t_{\text {rise }}$

Transmission Line Parameters		
- Propagation Delay		
- If our interconnect resides in a vacuum, it will travel at the speed of light:		
$c=\frac{1}{\sqrt{\varepsilon \mu}}=3 \times 10^{8}\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)$		
- This is equivalent to:		
$c=1^{\prime} / n s=1^{\prime \prime} / 83 p s$		
or		
$83 \mathrm{ps} / \mathrm{in}$		
- If it travels in a medium that is NOT a vacuum, the velocity is given by:		
	$v=\frac{c}{\sqrt{\varepsilon_{r}}} \quad \text { and } \quad T_{D}=\frac{l}{v}$	
	EELE 461/561 - Digital System Design	Module \#3 Page 6

Transmission Line Parameters	
Propagation Delay - Most microelectronic dielectrics have relative permittivity (a.k.a., D_{k} or Dielectric Constant) between 2-10 ex) what is the wave velocity if $\varepsilon_{\mathrm{r}}=4$? $\begin{aligned} & v=\frac{c}{\sqrt{\varepsilon_{r}}}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{\sqrt{4}}=1.5 \times 10^{8} \mathrm{~m} / \mathrm{s} \\ & v=0.5 \mathrm{ft} / \mathrm{ns}=6^{\prime \prime} / \mathrm{ns} \end{aligned}$ or 1"/167ps	
EELE 461/561 - Digital System Design	Module \#3 Page 7

Transmission Line Parameters
- Circuit Model - A T-line is a distributed element in which voltage and current depend on both time and space. - A property of a distributed system is that waves can travel both in a forward and reverse direction. - The voltage at any given point is the superposition of the forward and reverse traveling waves. - We can create a circuit model of a transmission line using RLCG's that will allow us to better understand the voltage and current on the T -line.
EELE 461/561 - Digital System Design $\begin{gathered}\text { Module \#3 } \\ \text { Page } 10\end{gathered}$

Transmission Line Parameters
- Circuit Model
- The R in this element represents the "conductor loss" (mainly due to skin effect, more on tis ater..)
- The G in this element represents the "dielectric loss" (due to loss in the insulator, more on this atar...)
- When we include the R and G in our model, we have a "Lossy Transmission Line"
- If we assume there is no loss, we can reduce our model to an ideal "Lossless Transmission Line" consisting of only Inductance and Capacitance.

Transmission Line Parameters

- Telegrapher's Equations
- We can now substitute into each other using ($(\mathrm{d} 2 / \mathrm{dxatt})$ to form one, 2nd order differential equation

This is known as the "Wave Equation"

- You may have seen the Wave Equation is this form: $\frac{d^{2} u}{d t^{2}}=c^{2} \cdot \frac{d^{2} u}{d t^{2}}$

EELE 461/561 - Digital System Design | Module \#3 |
| :---: |
| Page 20 |

Transmission Line Parameters

- Propagation Delay
- We can manipulate this equation to put it in a more useful form by rearranging and putting it in terms of "Prop Delay for a given length

$$
\begin{aligned}
& T_{D}=\frac{\ell}{v} \\
& T_{D}=\frac{\ell}{\frac{1}{\sqrt{L^{\prime} C^{\prime}}}} \\
& T_{D}{ }^{\prime}=\sqrt{L^{\prime} C^{\prime}}
\end{aligned}
$$

This says that the prop delay for a transmission line length with a total L and C is:

$$
T_{D}=\sqrt{L^{\prime} C^{\prime}}=\sqrt{L C}
$$

EELE 461/561 - Digital System Design

Transmission Line Parameters
$\left.\begin{array}{l}\text { Characteristic Impedance } \\ \begin{array}{l}\text { - If we differentiate the voltage solution, we can get the solution for current by plugging it back } \\ \text { into our original Telegrapher's Equation: }\end{array} \\ V(x)=V^{+} e^{-j \beta x}+V^{-} e^{+j \beta x} \\ \frac{d V}{d x}=-j \beta V^{+} e^{-j \beta x}+j \beta V^{-} e^{+j \beta x}=-j \omega L I \\ I(x)=\frac{\beta}{\omega L^{\prime}}\left(V^{+} e^{-j \beta x}-V^{-} e^{+j \beta x}\right) \\ \hline\end{array}\right]$

Transmission Line Parameters

- Characteristic Impedance

- Finally, we can plug back in our expression for the Wave Propagation Constant to get a value
for the impedance in terms of L and $\mathrm{C}:$

$\beta=\omega \sqrt{L^{\prime} C^{\prime}}$
$\frac{1}{Z_{0}}=\frac{\beta}{\omega L^{\prime}}=\frac{\omega \sqrt{L^{\prime} C^{\prime}}}{\omega L^{\prime}}=\frac{\sqrt{L^{\prime}} \sqrt{C^{\prime}}}{\sqrt{L^{\prime}} \sqrt{L^{\prime}}}=\frac{\sqrt{C^{\prime}}}{\sqrt{L^{\prime}}}=\sqrt{\frac{C^{\prime}}{L^{\prime}}}$
$Z_{0}=\sqrt{\frac{L^{\prime}}{C^{\prime}}}=\sqrt{\frac{L}{C}}$
$\underbrace{\text { EELE }} 461 / 561$ - Digital System Design

Transmission Line Parameters

- Characteristic Impedance

- If we have a Lossy Transmission Line, the Characteristic Impedance of the transmission becomes:

$$
Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}
$$

-things to notice about a Lossy T-line line:

- it is Complex! , de value depend on length the value of Z_{0} does not vary with frequency
the value of Z_{0} depends on only L and C, which depend on the T-line geometry and materials

$$
\begin{aligned}
& \text { i.e., If you put an Ohm meter across a Transmission line, you'll see } 0 \text { ohms. } \\
& \text { However, if you send in an AC signal, the signal will see } Z_{0}
\end{aligned}
$$

Transmission Line Parameters	
Basic T-Line Equations - Notice that these are related using L and C : $\begin{array}{ll} Z_{0}=\sqrt{\frac{L}{C}} & T_{D}=\sqrt{L C} \\ Z_{0}{ }^{2} \cdot C=L & \frac{T_{D}{ }^{2}}{C}=L \end{array}$	
EELE 461/561 - Digital System Design	Module \#3 Page 32

Transmission Line Parameters	
- Basic T-Line Equations - These expressions say that if we can know the Z_{0} and T_{D} of a transmission line, we can determine the total capacitance and inductance of the line:	
$\qquad C=\frac{T_{D}}{Z_{0}}$	$L=Z_{0} \cdot T_{D}$

Transmission Line Reflections

- Reflection Coefficient

- As the waves travel down the T-line, reflections may occur that cause "opposite traveling waves" - The ratio of the reflected wave to the incident wave is defined as the Reflection Coefficient.

$$
\Gamma=\frac{V^{-}}{V^{+}}
$$

- This is dependant on two things

1) The impedance that the wave is currently in (i.e., Z_{0})
2) The impedance that the wave sees directly in front of it (i.e., $Z_{\text {Load }}$ or Z_{L})

Transmission Line Reflections

- Reflection Coefficient

- Across the load impedance, we have.

$$
Z_{L}=\frac{V_{L}}{I_{L}}
$$

And we describe the voltage and current as:

$$
V(x)=V^{+}+V^{-}
$$

$$
I(x)=I^{+}+I^{-}=\left(\frac{1}{Z_{0}}\right) \cdot\left(V^{+}-V^{-}\right)
$$

Substituting into the expression for Z_{L}, we have:

$$
Z_{L}=Z_{0} \cdot \frac{\left(V^{+}+V^{-}\right)}{\left(V^{+}-V^{-}\right)}
$$

EELE 461/561 - Digital System Design | Module \#3 |
| :---: |
| Page 38 |

Transmission Line Reflections

- Reflection Coefficient

-The result is the definition of the Reflection Coefficient (Γ) in terms of Z_{0} and Z_{L}

$$
\Gamma=\frac{V^{-}}{V^{+}}=\frac{\left(Z_{L}-Z_{0}\right)}{\left(Z_{L}+Z_{0}\right)}
$$

$$
\Gamma=\frac{\left(Z_{L}-Z_{0}\right)}{\left(Z_{L}+Z_{0}\right)}
$$

$$
V^{-} \cdot\left(Z_{L}+Z_{0}\right)=V^{+} \cdot\left(Z_{L}-Z_{0}\right)
$$

$$
\frac{V^{-}}{V^{+}}=\frac{\left(Z_{L}-Z_{0}\right)}{\left(Z_{L}+Z_{0}\right)}
$$

EELE 461/561 - Digital System Design | Module \#3 |
| :---: |
| Page 39 |

EELE 461/561 - Digital System Design | Module \#3 |
| :---: |
| Page 40 |

- Terminations

- We know that reflections occur on a transmission line any time there is an impedance discontinuity.
- We describe the percentage of the incident wave that is reflected using the reflection coefficient:

$$
\Gamma=\frac{\left(Z_{L}-Z_{0}\right)}{\left(Z_{L}+Z_{0}\right)}
$$

where the amplitude of the reflected and transmitted voltage is related to Γ by:

$$
V_{r e f l}=\Gamma \cdot V_{i n c}
$$

$$
V_{\text {trans }}=(1-\Gamma) \cdot V_{i n c}
$$

Transmission Line Terminations

Transmission Line Terminations

- Technique \#1: Load Termination
-Let's see what happens if we place a termination resistor at the end of the transmission line
- We will choose a resistance that is equal to the characteristic impedance of the transmission line.
- We assume that the source impedance of the driver is 0 and the characteristic impedance of the transmission line is 50 ohms.

EELE 461/561 - Digital System Design

Transmission Line Terminations

- Technique \#1: Load Termination

1) Initially, the full voltage step develops at the beginning of the transmission line since the source impedance is 0 .
2) The wave travels down the transmission line in a constant impedance and arrives at the load one prop delay $\left(T_{D}\right)$ later
3) The wave sees the termination resistance and evaluates Γ :

$$
\Gamma=\frac{\left(Z_{L}-Z_{0}\right)}{\left(Z_{L}+Z_{0}\right)}=\frac{(50-50)}{(50+50)}=0
$$

4) Since there are no reflections, there are no more transients on the transmission line and we are done. Since we are now at DC (i.e., no transients), the driver only sees the resistance of the termination resistor as its load.

EELE 461/561 - Digital System Design | Module \#3 |
| :---: |
| Page 52 |

Transmission Line Terminations
Advantages:

1) Simple
2) If the receiver is capacitive (which it is), the termination resistor will reduce the effective
time constant of the load. (more on this later...)
3) The full driver voltage is delivered to the receiver
Disadvantages:
4) When the transients have ended, the driver now has a DC load that it is driving. This
increases DC power consumption.
5) We assumed an ideal source impedance (Rs=0), but in reality the source has output
impedance so after the transients have ended, there will be a resistive divider between
R_{S} and R_{L}. This means that the full voltage of the driver will not be seen at the receiver.

Transmission Line Terminations
- Technique \#2: Thevenin Equivalent
- A technique to provide a termination impedance to an arbitrary voltage is to use two resistors to form a Thevenin equivalent circuit. - We tie one resistor between the signal line and $\mathrm{V}_{\text {DD }}$ (R1) and the other between the signal and ground (R2). - We select the values of the resistors to give us our desired termination impedance and termination voltage.

Transmission Line Terminations
- Technique \#2: Thevenin Equivalent
Advantages:
1) A termination voltage can be created without adding an additional voltage generation circuit in your system. Disadvantages: 1) Requires an additional resistor compared to a load termination to Ground approach. 2) Since resistors only come in pre-defined values, the equivalent termination impedance we get might not be exactly matched to Z_{0} and reflections may occur.
EELE 461/561 - Digital System Design

Transmission Line Terminations
$\left.\begin{array}{l}\text { Technique \#3: Series Termination } \\ \text { - What would happen if we added a resistor at the source and left the end of the transmission } \\ \text { line open? } \\ \text { - We will choose a resistance that is equal to the characteristic impedance of the transmission line. } \\ \text { - We will assume the impedance of the transmission line is } 50 \text {. } \\ \hline\end{array}\right]$

Transmission Line Terminations

- Technique \#3: Series Termination

4) The 100% positive reflection due to the open end of the t-line is superimposed on the inciden wave. Since the incident wave is $1 / 2$ of the intended voltage, the voltage step that is seen at the receiver is actually the intended voltage swing (i.e., $1 / 2+1 / 2$).
5) The reflected energy travels backwards down the transmission line toward the source. When it arrives at the source it evaluates $\mathrm{\Gamma}$. It now sees are series resistor as Z_{L} which we choose to match the characteristic impedance of the T-line.

$$
\Gamma=\frac{\left(Z_{L}-Z_{0}\right)}{\left(Z_{L}+Z_{0}\right)}=\frac{(50-50)}{(50+50)}=0 \text { or } 0 \%
$$

Since there are no re-reflections, there are no more transients on the transmission line and we are done!

Transmission Line Terminations

- Technique \#3: Series Termination

Let's look at what happened..

- We wanted to transmit a voltage step with an arbitrary magnitude to the receiver.

By placing a resistor at the source with the same impedance as the transmission line, ONLY HALF of the voltage traveled down the T-line.

- HOWEVER, since the end of the line was open, it experienced a 100% positive reflection which when superimposed on the incident wave, produced a voltage at the receiver that was exactly what we intended
When the reflection traveled back to the source, it was terminated with the source resistor, thus ending any further transients.

Transmission Line Terminations
- Technique \#4: Double Termination
- We've seen that a load termination will reduce reflections at the end of the line.
- We've seen that a series termination will reduce reflections of waves traveling backwards
toward the source.
- If we put both a Series and a Load termination, then we would be able to eliminate the most
reflected energy.
NOTE: In these simple systems, our ideal termination resistors are eliminating all reflections. In a real system, there will be other impedances that cause reflections (more later...)

Transmission Line Terminations
Advantages:
1) Both forward and reverse traveling waves are terminated Disadvantages: 1) The voltage level that is delivered to the load is $1 / 2$ of what the driver outputs. 2) Requires two termination resistors.

Transmission Line Bounce Diagrams

Transmission Line Bounce Diagrams	
-	Bounce Diagrams
- A graphical way to keep track of reflections on a T-line.	
- We plot Time vs. Location.	
- We can calculate the Γ at each impedance discontinuity	
- - for each boundary and wave direction will be the same throughout the entire analysis.	
- The bounce diagram gives us a process to tabulate all of the information for each reflection.	
- We continue the diagram until the transients are small enough for us to ignore (<1-2\%).	

Transmission Line Bounce Diagrams

- Reflections from LC's

- Until now, we have considered reflections from ideal T-line elements.
- An ideal T-line has an impedance that is constant with frequency.
- When we have reactive elements in our system (i.e., L's and C's), the reflections have a more dynamic response because the impedance of these elements change with frequency:

$$
\left|Z_{C}\right|=\frac{1}{2 \cdot \pi \cdot f \cdot C} \quad\left|Z_{L}\right|=2 \cdot \pi \cdot f \cdot L
$$

- If we stimulated our system with sine waves, we could calculate the impedance of L's and C's directly in order to find Γ.
-If we are stimulating our system with a perfect square wave, each spectral component will see a different impedance and will result in a different Γ.

Transmission Line Reflections from Capacitors
- Reflections from Capacitors
- If we use a perfect step (i.e., t tise $=0$), then a capacitor will instantaneously look like a short circuit to the incident wave. - As the capacitor charges, its impedance will get larger until it ultimately looks like an open - If we have a finite risetime (which we always do), we can calculate the average impedance of a capacitor for a given change in voltage (i.e., tise $)$ $\qquad Z=\frac{V}{I}=\frac{V}{C \cdot \frac{d V}{d t}}=\frac{V_{10-90}}{C \cdot \frac{V_{10-90}}{t_{\text {rise }}}}=\frac{t_{\text {rise }}}{C}$ - The impedance of the capacitor must be combined with any other impedances that the incident wave sees: - The resultant reflection coefficient represents an estimate of the maximum magnitude of the reflected energy.

Transmission Line Reflections from Inductors

- Reflections from Inductors
- If we use a perfect step (i.e., $\mathrm{t}_{\text {rise }}=0$), then an inductor will instantaneously look like an open circuit to the incident wave.
- As the inductor charges, its impedance will get smaller until it ultimately looks like a short
- If we have a finite risetime (which we always do), we can calculate the average impedance of an inductor for a given change in voltage (i.e., $\mathrm{t}_{\text {rise }}$)

$$
Z=\frac{V}{I}=\frac{L \cdot \frac{d I}{d t}}{I}=\frac{L \cdot \frac{I_{10-90}}{t_{\text {rise }}}}{I_{10-90}}=\frac{L}{t_{\text {rise }}}
$$

The impedance of the inductor must be combined with any other impedances that the incident wave sees:

The resultant reflection coefficient represents an estimate of the maximum magnitude of the reflected energy
EELE 461/561 - Digital System Design

