Challenges In Debugging At 5GHz

Fall IDF 2005 Session PCIS011

Host: Robert Vezina
Intel Industry Enabling

Presenters: Brock LaMeres
Agilent Technologies

John Calvin
Sarah Boen
Tektronix, Incorporated
Gen 2 Probing Concerns and Best Practices

Brock J. LaMeres
HW Design Engineer
Agilent Technologies
Agenda

- Challenges of operating above 2.5Gb/s
- Theory of snoop probing
- Challenges of probing above 2.5Gb/s
- Probing solutions
Challenges of Operating above 2.5Gb/s

Shrinking Transmission Line Geometries

- Once negligible geometries must now be considered distributed.
- Almost everything in the system effects performance.

“Length that Structures Become Distributed”

PCI Express* Gen 1
PCI Express Gen 2

Less than 0.1” must be treated as distributed element
Challenges of Operating above 2.5Gb/s

Material Breakdown

- Dielectric loss and skin effect roll-off the signal and shrink the eye
- Advanced materials are often cost-prohibitive for large scale volumes

"Dielectric Loss of 10" of PCB Trace"

Diagram:
- Cost vs. Performance
- Low-Cost Dielectrics roll-off the signal

Third party marks and brands are the property of their respective owners
Challenges of Operating above 2.5Gb/s

Reflections and ISI

- Un-matched impedances cause noise which shrinks eye.
- Impossible to avoid features required by manufacturability.

"Capacitive Reflections in 50Ω System"

Faster Risetimes = More Reflected Energy

PCI Express Gen 1 & 2
Snoop Probing Theory

Resistive Divider Architecture
• The probe takes a small part of the signal
• The target eye is reduced, the probed eye is small to begin with
Snoop Probing Theory

Physical Interconnect Causes Loading

- The stub between the probe tip and target causes AC load.
- This stub is dictated by the physical interconnect structure.

Interconnect
- PCB Trace
- Wires
- Connectors
- Springs

Third party marks and brands are the property of their respective owners
Snoop Probing Theory

Minimum Eye Must Exist at the Probe Tip

- Probe must have enough eye at the tip to acquire data successfully
- Bus specs are only valid for the waveform at the Rx

Probe Observes Different Signal than Rx, typically with less signal integrity

Receiver Observes Signal with Best Signal Integrity

Third party marks and brands are the property of their respective owners
Challenges of Probing Above 2.5Gb/s

Probe Not Located Directly at Rx

- Probe observes different signal than the Rx.
- Eye at the probe can be smaller due to reflections, ISI, and Dk loss.
- Eye at the probe can be distorted due to pre/post emphasis.

Signal Quality degrades as you move away from Rx.
Challenges of Probing Above 2.5Gb/s

Reduced Probe Loading is Critical
• Tip network must be closer to target requiring advanced interconnect
• Interconnect reliability is a concern for electrically superior interconnect

Gen 1 Risetime (100ps), 400fF Probe Load = 10%
Gen 2 Risetime (50ps), 400fF Probe Load = 20%
Gen 2 Risetime (50ps), 125fF Probe Load = 2.5%
Probing Solutions for Above 2.5Gb/s

Gen 1 Solutions (<2.5Gb/s)

Midbus Probe
- Footprint placed on target
- Signals passively observed

Slot Interposer Probe
- Probe inserted between card and system
- Signals passively observed
Probing Solutions for Above 2.5Gb/s

Gen 2 Solutions (2.5Gb/s - 5.0Gb/s)

Midbus Probe
• Able to passively observe at 5Gb/s

Slot Interposer Probe
• signal integrity issues from connector decreases eye.
• Safest Option: use Midbus probe

*Third party marks and brands are the property of their respective owners
Summary

- Achieving 5Gb/s for Gen 2 is a complex Signal Integrity Problem
 - Reflections, Dk Loss, Skin Effect, ISI.
- Probing at 5Gb/s is also an SI Problem
 - Eye shrinkage at probe tip, reflections, ISI.
- Successful Debug Requires Consideration of the System and Probe
Tektronix
Testing Considerations for
Gen2 PCI Express*

John Calvin
Solutions Engineering, Performance Oscilloscopes
Sarah Boen
Computer Segment Marketing, Logic Analyzers

August 2005
Analog Validation and Compliance
Electrical Sub block and Test Points

- Serial Data Test Points
 - Transmitter
 - Channel Interconnect
 - Card-Card
 - Card-Cable
 - Receiver
- Reference Clock Test Point
- 5Gb/s Specified in Section 4 of Base Spec
 - Gen2 link must meet Gen1/Gen2 specs for speed switching
- Recommended Tutorial
Electrical Parameters

- **Carried Forward**
 - Eye Diagrams
 - Tbit, NTbit separation
 - Amplitude Timing Measurements

- **New in Gen2**
 - Evolution to Dual-Dirac Jitter (Tj-dd, Dj-dd)
 - De-convolution of Channel Model
 - Reference clock compliance
 - Removal of Ref Clk jitter from system jitter budgets.
 - Receiver testing
 - Tolerance testing.
Evolution of CDR and Jitter Testing

- **Rev1.0a**
 - 3500:250 Window Clock Recovery
 - Median-Max-Outlier Jitter over any 250

- **Rev1.1**
 - 1st Order PLL for Clean Clock
 - Jitter measured over 1 Million UI
 - 3500:250 still used for Dirty or SSC
 - Jitter @ 10-12 BER added to CEM Spec

- **Gen2 (Rev0.5)**
 - PLL Filter Mask
 - 1st or 2nd Order function
 - Dual-Dirac Jitter
 - TJ-DD and DJ-DD @ 10-12 BER

Third party marks and brands are the property of their respective owners
The evolution continues... for More Accurate BER Analysis

- New Sampling (ET) Sampling Scope technique

Jitter Separation

- Total Jitter (TJ)
- Random Jitter (RJ)
- Deterministic Jitter (DJ)
- Periodic Jitter (PJ)
- Data Dependent Jitter (DDJ)
- Duty-Cycle Distortion (DCD)

Noise Separation

- Total Noise (TN)
- Random Noise (RN)
- Deterministic Noise (DN)
- Periodic Noise (PN)
- Data Dependent Noise (DDN)

Third party marks and brands are the property of their respective owners
De-convolution of channel parameters

- **Channel and Cable Loss**
 - Characterize using or TDNA

- **Analysis**
 - Requires pre-filtering
 - Amplitude & Phase

1. Measurements require an oscilloscope with a bandwidth of at least 10 GHz. Measurement must deconvolve effects of compliance test board to yield an effective measurement at Tx pins. At least 10^6 samples must be acquired.
RefClk Compliance Measurements

- Reference Clock Compliance Test
 - Acquire Differential RefClk
 - Filter Using Jitter Mask Function
 - Analyze Jitter
 - Analyze other Parameters
 - Apply Spec limits
 - Report Pass/Fail Results

Differential RefClk

Jitter Mask Function

$$J_t(s) = \frac{2\lambda^2 \rho_n^2 + \rho_2^2}{s^2 + 2\lambda^2 \rho_n^2 + \rho_2^2} - \frac{2\lambda^2 \rho_n^2 + \rho_2^2}{s^2 + 2\lambda^2 \rho_n^2 + \rho_2^2}$$

Results Display

Third party marks and brands are the property of their respective owners
Analog Test Tools for Gen2 Serial

• **Real Time Oscilloscopes**
 – Spec requires >10GHz
 – >12 GHz for 5th Harmonic
 – Accurate to 30ps transition spec
 – >12GHz probing for validation and debug
 – Software for eye & jitter compliance measurements

• **Sampling Oscilloscopes**
 – 70+ Gigahertz
 – Software for S parameter extraction (TDNA)
 – Software for Jitter & Noise at BER

Third party marks and brands are the property of their respective owners
Digital Validation & Debug

Digital Validation & Debug

Analog Validation & Compliance

Transaction

Data Link

Physical

Logical Sub-block

Electrical Sub-block

Physical

Logical Sub-block

Electrical Sub-block

Rx

Tx

Rx

Tx
Gen 2 Design Considerations

- **Design for Validation**
 - Obtain a copy of the logic analyzer probe design guide requirements
 - Adhere to probe keep out volume requirements
 - Ensure electrical compliance to the PCI Express* specification

- **Follow with electrical simulations and keep out volume analysis**
Ensure Electrical Spec Compliance

- Designers must ensure electrical compliance to guarantee system visibility
- Problems encountered during digital validation may be caused by analog characteristics
- Examples
 - Data eye size
 - Jitter
 - Reference clock
PCI Express* Gen 2 Validation

• Probing
• Acquisition
• Analysis
PCI Express* Probe Points

- **Serial Data Probe Points**
 - **Mid-bus**
 - Probe chip to chip links
 - x8 and x16 footprints
 - **Slot Interposer**¹
 - Probe PCI Express slots
 - x1, x4, x8, x16
 - **Solder down**
 - Probe serial lanes that are physically together

¹ Data shows that a Gen 2 interposer may not be feasible
Probe Strategy Considerations

- **Three probing options**

<table>
<thead>
<tr>
<th></th>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
</table>
| **Mid-bus** | • Minimum load
• Minimum loss | • Requires board space
• Must be designed in |
| **Interposer** | • Does not require board space
• Does not have to be designed in | • Extra bus loading
• Adds jitter |
| **Solder Down** | • Minimum load
• Minimum loss
• Does not require board space | • Requires two solder connections per lane
• Not easily moved from one platform to another |

Data shows that a Gen 2 interposer may not be feasible

Third party marks and brands are the property of their respective owners
Acquisition

- **Capture**
 - Acquire Gen 1 and Gen 2 PCI Express data rates
 - Clock qualified filtering
 - Storage qualified filtering

- **Triggering**
 - Optimized for serial data
 - Capture related Tx and Rx events with cross triggering
 - Predefined trigger programs for triggering on event sequences, packet types, and packet combinations
Protocol Decode and Visibility

- Display decoded PCI Express packets
- View disassembled packets within a single transaction across multiple links
- Time correlate data between PCI Express* and other serial or parallel links via timestamp generator

*Third party marks and brands are the property of their respective owners
Digital Test Tools for Gen 2 PCI Express

• Logic Analyzers
 – Acquisition of 5Gb/s
 – Overhead suitable for margin testing
 – Mid-bus and interposer\(^1\) probe options
 – Protocol decode software
 – Triggering optimized for serial protocols
 – Cross bus correlation for complete system validation
 – Analog and digital correlation for validating elusive signal integrity problems

\(^1\) Data shows that a Gen 2 interposer may not be feasible

Third party marks and brands are the property of their respective owners
Summary

- Jitter measurement methods are converging on industry accepted methods of T_j and D_j determination.
- Gen-II measurements are a separate class of measurements to those found in Gen-I, however Gen-II compliance requires compliance to both Gen-I and Gen-II requirements.
- Knowledge of channel characteristics is key for obtaining effective Gen-II measurements.
- Mid-bus logic analyzer probing is recommended for Gen-II.
- Adherence to Gen-II electrical specifications is critical for successful digital validation.
Please fill out the Session Evaluation Form.

Thank You!