

 1

Spatial Avoidance of Hardware Faults using FPGA Partial
Reconfiguration of Tile-Based Soft Processors

Clint Gauer

406-994-2505
 cgauer@montana.edu

Brock J. LaMeres
406-994-5987

lameres@ece.montana.edu

David Racek
406-994-2505

david.racek@montana.edu

Electrical & Computer Engineering Department, Montana State University, Bozeman, MT 59717

Abstract—This paper presents the design of a many-core
computer architecture with fault detection and recovery
using partial reconfiguration of an FPGA. The FPGA fabric
is partitioned into tiles which contain homogenous soft
processors. At any given time, three processors are
configured in triple modulo redundancy to detect faults.
Spare processors are brought online to replace faulted tiles
in real time. A recovery procedure involving partial
reconfiguration is used to repair faulted tiles. This type of
approach has the advantage of recovering from faults in
both the circuit fabric and the configuration RAM of an
FPGA in addition to spatially avoiding permanently
damaged regions of the chip. 1 2

TABLE OF CONTENTS

1. INTRODUCTION...1
2. SYSTEM DESIGN ...3
3. TRIPLE MODULO REDUNDANCY......................................5
4. SOFT FAULT RECOVERY ..5
5. SPATIAL AVOIDANCE OF TID FAILURES.........................6
6. SEFI RECOVERY USING PR ..7
7. PARAMETRIC PERFORMANCE..10
8. CONCLUSION ..11
ACKNOWLEDGMENTS ..11
REFERENCES ..11
BIOGRAPHY ..11

1. INTRODUCTION
When cosmic particles (typically heavy ions and protons)

strike integrated circuits (IC), fault conditions called Single
Event Effects (SEE) can occur [1]. The particles ionize the
semiconductor material used in the circuit causing a variety
of fault conditions. Single Event Transients (SETs) occur
when the electron/hole recombination in the ionized
material causes a voltage spike on the output of the device.
When the magnitude of the SET is large enough to cause a
logic transition on a receiving gate, logic failures in the
circuit can exist [2-3]. A Single Event Upset (SEU) refers
to when an inadvertent logic transition is captured in a
digital storage device such as a flip-flop or SRAM cell [4].
When an SEU occurs in the logic fabric of an FPGA, it is

1
1978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper#1079, Version 3, Updated 2009:10:23
This research was carried out at Montana State University, Bozeman with
funding from NASA EPSCoR and the Montana Space Grant Consortium
(MSFC1-08-SD)

referred to as a soft fault because no permanent damage is
caused in the circuit and the fault can typically be recovered
using a reset [5]. When an SEU occurs in the configuration
RAM of an active region of an FPGA, it is referred to as a
Single Event Functional Interrupt (SEFI) because a simple
reset will not restore the initial state of the circuit [6]. This
type of failure does not cause permanent damage to the
FPGA; however, traditional reset and recovery sequences
cannot be used since the physical circuitry in the FPGA
fabric has been altered.

There has been a significant amount of work on
mitigating SEUs in digital circuits. Triple modulo
redundancy (TMR) has been widely adopted as a way to
detect and correct logical errors by using three redundant
circuits and a voter [7]. The voter circuit produces an
output dependant on the majority of outputs from the three
circuits. For more complex systems, TMR can be used in
conjunction with a recovery sequence which can reset and
reinitialize the system when a fault is detected [8]. Similar
techniques of using redundancy have been applied at the
application layer. These techniques (known as radiation
hardened by software) are based on implementing TMR by
running redundant processes and performing the voting in
the software [9]. Watchdog timers have also been deployed
broadly as a fault mitigation technique. Watchdog timers
independently observe the operation of a system and initiate
a reset when the system becomes idle for too long [8].
These types of logical solutions are easily adopted in
reprogrammable fabrics. The downside of these approaches
comes in the form of increased area, reduced performance,
and additional power consumption. Furthermore, finding
the optimal fault observation nodes is a challenge due to the
impact the observation circuitry has on the operation of the
circuit being monitored [5-6]. Another challenge is
detecting faults that occur in the checking circuitry. Despite
these challenges, logical fault detection and recovery
techniques have been deployed broadly in military and
aerospace systems, particularly when the systems contain
FPGAs.

One of the biggest challenges in using FPGAs in
aerospace applications is the susceptibility of the
configuration RAM to SEUs [10-11]. Typically, FPGAs
that are used in high radiation environments have a fuse-
based configuration RAM. This avoids SEFIs, but limits
the flexibility of the design. Fuse-based FPGAs do not have
the ability to reconfigure in the field, which precludes some

 2

of the attractive options that non fuse-based FPGAs have
such as reconfigurable computing. In FPGAs that have
SRAM-based reconfiguration memory, a scrubber circuit is
typically used to detect and correct SEUs in the
configuration RAM (i.e., SEFIs). A scrubber is a circuit
which continually compares the data in the configuration
SRAM to the original configuration data that resides in an
off-chip non-volatile device [12]. When a scrubber detects
an error, it overwrites the reconfiguration SRAM with the
original values. The advantage of adopting a scrubbing
technique is that it runs independently of the main system
hardware so it does not require integration into the main
circuit. The drawback of traditional scrubbers is that they
don’t have insight into where in the configuration SRAM an
SEU might have occurred. They simply traverse through
the memory addresses checking the contents. This can lead
to a significant latency between the detection and repair of a
configuration SRAM SEU.

There are also a number of radiation effects that can cause
permanent damage to FPGAs. Total Ionizing Dose (TID)
refers to the long term damage to a device mainly due to
low energy electrons and protons [13]. TID effects result
from charge carriers getting trapped in the insulating or
more lightly doped regions of the device. When an
electron/hole pair is created by the radiation strike, the
carriers attempt to move back together to find an
electrostatic equilibrium. The electron and hole charge
carriers experience different mobility rates due to the
properties of the materials they pass through. Electron
mobility (µn) of semiconductor materials tends to be higher
than hole mobility (µn>µp). As a result, the hole charge
carriers have a higher likelihood of getting trapped within
the insulating or more lightly doped regions of the device
due to the increased time it takes for them to recombine.
This phenomenon permanently degrades the transistor and
can result in threshold shifts, increased device leakage,
timing changes, and ultimately functional failure of the
device [1].

A number of solutions have been developed to increase a
part’s resilience to long term TID exposure. Techniques
such as isolation trenches, substrate doping, and using non-
standard layout techniques are just a few examples of
approaches that have been used to make integrated circuits
radiation hardened [14]. Parts that have been radiation
hardened are specified to withstand a particular dosage
(typically >300krad). The primary drawback of these
techniques is that they require a dedicated radiation
hardened process to perform the fabrication. This leads to
increased cost of the devices. Furthermore, the fabrication
techniques used decreases the performance of the devices
compared to commercially fabricated parts. This gap in
performance leads to a number of issues including hardware
and software compatibility with emerging technology [15].
TID hardened parts do not prevent SEUs caused by high

energy particles so logical mitigation techniques are still
required.

The inherent flexibility and increased performance of
SRAM-based FPGAs has spurred great interest from the
aerospace community to evaluate their usage in flight
systems [16-17]. As these parts are considered, novel fault
detection and recovery techniques must be developed that
can mitigate radiation induced errors. Recent advances in
the development tools for FPGAs have enabled direct access
to the configuration SRAM. This has allowed techniques
such as partial reconfiguration to be used as a fault
mitigation approach [18].

In this paper, we present a tile-based, soft processor
computing system. In this approach, an FPGA is divided
into equally sized tiles which represent a quantum of
resources that can implement a Xilinx picoBlaze [19] soft
processor and can also be individually reprogrammed using
partial reconfiguration (PR). At any given time, three of the
processors are configured in TMR with the rest reserved as
spare processor tiles. In the event that the TMR voter
detects a fault, a recovery process is initiated that will
attempt to reset, reinitialize, and resynchronize the faulted
tile. This recovery process mitigates SEUs that may have
occurred in the FPGA circuit fabric. If the tile reset is not
successful, a spare processor is brought online from one of
the unused tiles to replace the faulted circuit. Once the new
TMR triplet is operational, an attempt is made to recover the
previously faulted tile using partial reconfiguration. After
PR, the recovered tile is reintroduced into the system as an
available spare. This recovery process mitigates SEUs that
may have occurred in the configuration SRAM of the FPGA
(i.e., SEFIs). If the system tries to use the recovered tile for
a second time and immediately experiences a fault, the tile
is marked as permanently TID damaged and is no longer
available for use. This allows the system to continue
operation in the presence of TID failures in localized
regions of the FPGA.

The mitigation strategy we present in this paper has the
advantage of addressing the two main logical fault types
experienced in SRAM-based FPGAs (fabric SEUs and
SEFIs). Furthermore, the ability to continue operation
despite TID damage can extend the useful life of flight
hardware. Our system was prototyped on a Xilinx Virtex-5
LX110 FPGA. This paper presents the design,
implementation, and parametric results for our system. The
paper begins with a description of the overall system
architecture. Then the operation of the individual recovery
modes are discussed (soft fault recovery, spatial avoidance
of TID damage, and SEFI recovery using PR). Then the
recovery time is discussed for each of the mitigation
techniques to evaluate the overhead associated with this
type of fault detection and recovery scheme.

 3

2. SYSTEM DESIGN
Our many-core system contains 16 homogenous tiles,

each containing a Xilinx picoBlaze soft processor. Each of
the active soft processors run identical software to control a
set of basic peripherals. For this prototype, the peripherals
consist of a PS2 keyboard, PS2 mouse, and liquid crystal
display (LCD). The computing system continually monitors
the input keyboard and mouse and writes the input values to
the LCD screen. The computer system was implemented on
a Xilinx XUPV5 evaluation board with a Virtex-5 LX110
FPGA.

The system routes the TMR observation nodes
(instruction address, instruction data, and I/O) for all 16
processors to a TMR data switchboard circuit. This circuit
handles routing the TMR observation nodes for only the
three active processors into the voter circuit. After the TMR
voter determines the majority output value, it sends the
correct information back to the three active processors
through a data signal router. The TMR voter and recovery
circuit contains the necessary logic to handle switching
which three processors are active in addition to resetting and
reinitializing any of the processors. Any processor that is
not active is held in reset to eliminate power consumption.

A graphical user interface (GUI) was developed to
monitor which of the 16 soft processors were active at any
given time. Soft faults in the FPGA fabric were injected
into the system using push buttons on the evaluation board.
SEFI faults were induced in the configuration SRAM using
the GUI. The GUI also allowed the user to switch between
an automatic partial reconfiguration of a faulted tile or a
manual procedure.

Partial reconfiguration was managed using a separate
microBlaze soft processor. This processor handled
retrieving the reconfiguration data for each of the 16 tiles
from an off-chip storage device through a Xilinx System
ACE component and programming the tile using the ICAP
port on the Virtex-5. A core was created from the Xilinx
Core Generator called HWICAP which handles the timing
interface between the microBlaze soft processor and the
physical ICAP port.

Figure 1 shows a photo of the laboratory setup. Figure 2
shows the floor plan of the many-core system. The
highlighted blocks represent a tile, which is the smallest
amount of logic that can contain a picoBlaze processor and
also be partially reconfigured (see section 6). Figure 3
shows the block diagram for our many-core system.

Fig. 1. Prototype system implemented on a Xilinx XUPV5
evaluation board.

Fig. 2. Floor plan for the V5-LX110 FPGA highlighting the
16 reconfigurable tiles each containing a picoBlaze
processor.

 4

Fig. 3. Block diagram for the many-core system.

 5

3. TRIPLE MODULO REDUNDANCY
A TMR voter and recovery circuit was implemented in

VHDL to detect and correct faults in the soft processors.
The TMR voter monitors the address and data lines between
each microprocessor and its instruction memory. All of the
observation nodes from the 16 soft processors are routed
into the TMR voter. At any given time, three of the soft
processors are active and are being voted on. The following
figure shows the TMR block diagram for three active
processors.

Fig. 4. TMR block diagram of three active processors.

4. SOFT FAULT RECOVERY
The TMR circuit monitors the instruction memory

interface between the processor and memory. The TMR
circuit also contains a state machine for the recovery of a
faulted processor. When a fault is detected on one of the
processors, the system attempts to recover the bad processor
using a reset sequence.

Upon reset, each processor will read in its initial variable
values from the TMR/recovery system. All processors are
reset at the same time in order to ensure they are
synchronized and initialized to the beginning of the main
program loop.

The processors then enter their main program loop which
services the peripherals. At the end of the main program
loop, an Error_Flag is checked to see if a TMR failure has
been detected by the recovery circuit. If no failure has been
indicated, the computer continues to execute the main
program loop.

In the event that a failure is detected by the TMR voter,
the recovery state machine sends an interrupt to all
processors. An interrupt service routine sets the Error_Flag
indicating that a fault has been detected and processor
recovery is necessary. When the main program loop checks
the Error_Flag and sees it is asserted, it will then proceed to
write all of its register and variable information to the TMR
recovery system and then wait for a reset. In this manner,
the processors will complete their current peripheral tasks
prior to beginning the recovery sequence. The TMR voter
ignores the variable data that is read from the faulted
processor and stores the data from a good processor. The
recovery state machine then resets all processors and
reinitializes their variable data. The system operation and
recovery sequence flow charts are shown in the following
figure.

Fig. 5. Flow chart of many-core system operation.

The Xilinx ChipScope Internal Logic Analyzer was used
to observe the address and data lines between the processors
and their instruction memory. Figure 6 shows the
ChipScope view of system operation after a reset with
processors 0, 1, and 2 active as indicated in the GUI. Figure
7 shows the ChipScope view of the bus signals during a soft
fault in the FPGA fabric. The system continues to service
the peripherals despite one of the processors being out of
synch using the TMR voter circuit. Once the peripherals are
serviced, the recovery sequence is initiated on all processors
which resets, reinitializes, and resynchronizes all three
processors in the TMR triplet.

 6

Fig. 6. ChipScope measurement of the address lines on the soft processor after reset showing that processor 0, 1, and 2 are
active and in synch (right). Also shown is the corresponding GUI (left) indicating that processors 0, 1, and 2 are active
(blue) and the remaining processors are available as spares (gray).

Fig. 7. ChipScope measurement of the address lines on the soft processor showing a soft fault occurring on processor 0. The
recovery sequence detects the fault, off loads the good variable data, and then resets and reinitializes all processors.

5. SPATIAL AVOIDANCE OF TID FAILURES
When an error is detected in the system that is not due to

a soft fault in the FPGA fabric, our system attempts to
spatially avoid the fault by bringing a new tile online. For
our prototype, this type of fault is injected using the GUI or
by monitoring back-to-back faults on a processor that has
undergone the soft fault recovery sequence (described in
previous section). Spatial avoidance of is applicable for
tiles that have undergone functional failures due to TID.

The process for enabling a new tile is identical to the
process flow chart in figure 5. When the TMR voter detects
an error that cannot be recovered using the soft recovery
process, it initiates an interrupt to all processors indicating
that a fault has occurred. The interrupt service routine sets
the Error_Flag in the processors. After the processors
complete servicing the peripherals in the main program
loop, they proceed to offload their variable data to the
recovery state machine. The recovery circuit then resets all
processors. Upon reset, the recovery circuit selects a spare

tile to replace the faulted processor. As the new processor
comes out of reset, it is initialized with the same variable
data that the two remaining good processors are loaded
with. In this way, any spare processor can be brought online
and synchronized with two other processors in order to form
a TMR triplet. The system contains a log of which
processors are available as spares and which ones are
marked as damaged.

Figure 8 shows the ChipScope measurement of a system
which has undergone a fault on processor 2. After an
unsuccessful soft fault recovery (section 4), the system
brings processor 3 online to form the TMR triplet. The new
processor is reset at the same time as the two remaining
good processors and all three are loaded with the same
variable data. Figure 9 shows the ChipScope measurement
for multiple faults in the system. In this figure, processors
2, 4, 6, and 7 have been faulted. The system has activated
processors 3, 5, and 8 to form the TMR triplet. This
recovery process will continue until only 3 functioning tiles
remain.

Processors 1, 2, and 3
are active and in synch
after reset. Processors

3-15 are spares.

Soft fault detected
on processor 0

All processors
are reset

All processors
resume program

execution in synch

 7

Fig. 8. ChipScope measurement of the address lines on the soft processor showing spatial avoidance of faults. In this figure,
processor 2 has undergone a fault as indicated by the red in the GUI (left). The system brings processor 3 online to form the
TMR triplet and continues operation. Processors 4 through 15 are still available as spares.

Fig. 9. ChipScope measurement of the multiple processor faults. Processors 2, 4, 6,and 7 have faulted as indicated in the
GUI (red). The system spatially avoids these tiles by activating processors 3,5 and 8.

6. SEFI RECOVERY USING PR
Section 5 described how this system spatially avoids

faulted tiles that have undergone a failure that cannot be
repaired using the soft fault recovery sequence. Once the
system has brought a new tile online, a repair attempt is
made on the faulted tile using partial reconfiguration. This
type of recovery process will mitigate SEUs that have
occurred in the reconfiguration SRAM of the FPGA (i.e.,
SEFIs). The recovery sequence is performed independently
of the normal system operation. Once the tile has been
reconfigured, it is entered back into the system’s log as an
available spare.

Tile Sizing

 When designing a system to exploit partial
reconfiguration, the first step is to select a tile size that has
two features. First, the tile must be sized such that it
contains the smallest quantum of resources that will
implement the circuit to be reconfigured. In this prototype,
the smallest circuit block that was to be reprogrammed was
a picoBlaze soft processor. The second feature of the PR

tile is that it is as small as possible while still meeting the
requirements of the partial reconfiguration capability of the
FPGA.

For this project, a picoBlaze processor was found to
require 24 CLBs and 4 BRAMs. The Xilinx PR tools allow
PR tiles to be reconfigured in groups of 20 CLBs at a time.
Furthermore, the PR tool require that 4 BRAMs be
reconfigured at a single time. Due to these requirements,
the size of the smallest PR tile for this system is 40 CLBs
and 4 BRAM. The limitation of the PR tool leads to some
inefficiencies in the system due to unused resources within
the tile. For this project, each tile contains 16 CLBs and 3
BRAMs that are unused but must be included in the partial
reconfiguration due to the requirements of the PR
guidelines. For perspective, the V5-LX110 FPGA has
sufficient resources to implement over 100 picoBlaze
processors; however, due to the limitations of the PR tile
size, only a 16-core system was able to be implemented with
PR. Figure 10 shows a zoom of the floor plan for one of the
PR tiles used in this work. Highlighted in this figure are the
CLB columns (20 each) and the BRAM columns (4 each).

Processors 3, 5, and 8
are active.

Processor 2 has
undergone a fault.

Processor 3 is brought
online to replace it

 8

Fig. 10. Zoomed in view of the PR tile used in this work highlighting the constraints of partial reconfiguration.

Partial Reconfiguration Bit Streams

Each of the 16 tiles in this system contains a unique
configuration bit stream file (32k byte). These bit streams
were generated after the floor planning of the tiles and
contain the specific addresses and configuration bits for
their corresponding tile. These configuration files are stored
off-chip in a non-volatile Flash EEprom. The bit file is
retrieved from non-volatile memory using the Xilinx
SystemACE component. Each of the bit stream files
contains a header with unique information about the bit
stream file. This is then followed by information regarding
the size of the bit stream file. This is then followed by a
constant header of 54 bytes. After this, unique
configuration data is sent starting with a unique starting
address corresponding to a location in the configuration
SRAM. Table 1 shows the starting address for each of the
partial reconfiguration bit files in this design. This
information is useful when monitoring the partial
reconfiguration in real-time using ChipScope. Figure 11
shows the HEX and ASCII translation of the bit stream file
for Tile 0 in our system with the important words
highlighted.

picoBlaze Tile
Configuration SRAM

Starting Address (HEX)

0 x00018280

1 x00018780

2 x00019400

3 x00019980

4 x00010280

5 x00010800

6 x00011400

7 x00011980

8 x00008280

9 x00008800

10 x00009400

11 x00009980

12 x00000280

13 x00000800

14 x00001400

15 x00001980

TABLE I
TILE PR STARTING ADDRESSES FOR CONFIGURATION SRAM

BRAM column
within the PR tile.

Partial
reconfiguration

requires BRAMs to
be configured in

groups of 4.

CLB column within the
PR tile. Partial

reconfiguration requires
CLBs to be configured in

groups of 20.

 9

Fig. 11. Partial reconfiguration bit stream file contents for tile 0 of our system highlighting key portions of file.

A dedicated MicroBlaze soft processor is used to handle
the independent partial reconfiguration of the tiles. The
MicroBlaze communicates directly with the Xilinx
SystemACE component to retrieve the individual PR bit
streams. The SystemACE communicates with the off-chip
Flash EEprom (figure 3) and reads the corresponding bit
files out of non-volatile memory. The MicroBlaze processor
takes the information from the SystemACE and passes it into
the HWICAP core. This core is generated using the Xilinx
PR tools. Within this core are a series of FIFO blocks
which handle retiming the bit stream files so that they can
be driven into the ICAP port. The ICAP port provides
direct access to the configuration SRAM and enables partial
reconfiguration.

In order to monitor the partial reconfiguration occurring

in the background while the processors are running, the
ICAP port signals are observed with ChipScope. Figure 12
shows the system during the reconfiguration of tile 0. In
this figure, ChipScope displays the address busses of the

three active processors (3, 5 and 8). In this case, processors
0, 1, 2, 4, 6, and 7 are faulted with a SEFI. The system is
currently repairing processor 0 by reprogramming its tile.
The GUI indicates that processor 0 is being repaired and
will be available as a spare upon completion by turning it
from red to gray. ChipScope is displaying the signals that
are being driven into the ICAP port. As the ICAP data is
monitored, the unique starting address for tile 0
(x00018280) appears on the bus indicating that tile 0 is
being reprogrammed in the background as processors 3, 5,
and 8 continue to run.

Figure 13 shows the recovery of a SEFI on processor 1

through partial reconfiguration of tile 1. The GUI indicates
that processor 1 is being repaired and will be available as a
spare upon completion by turning it from red to gray.
Again, ChipScope monitors the ICAP data and observes the
unique starting address for tile 1 (x00018780) on the bus
indicating that tile 1 is being reprogrammed in the
background as processors 3, 5, and 8 continue to run.

File
Information

Bit Stream
Size

Fixed
Header

Starting
Address

Config
Data

 10

Fig. 12. Recovery from SEFI on processor 0 using partial reconfiguration. The ICAP port is monitored using ChipScope
showing the partial reconfiguration of tile 0 (address x00018280) while processors 3, 5, and 8 are active.

Fig. 13. Recovery from SEFI on processor 1 using partial reconfiguration. The ICAP port is monitored using ChipScope
showing the partial reconfiguration of tile 0 (address x00018780) while processors 3, 5, and 8 are active.

7. PARAMETRIC PERFORMANCE
Soft Fault Recovery

The amount of time it takes to perform a soft fault
recovery depends on the number of clock cycles it takes to
generate the Interrupt and Reset plus the time it takes to off-
load the variable information from a good processor and
then re-load the variable information back into the three
active processors. It takes two clocks for both the interrupt
and reset in our system. Each picoBlaze processor contains
64 bytes of RAM data that needs to be off-loaded and
reloaded during each recovery. Each read/write takes 2
clocks per bus cycle. Our system runs off of a 100MHz
system clock. The timing overhead to perform a soft fault
recovery was found to be 2.6us using the following:

Spatial Avoidance of TID

The amount of time to bring a spare processor online is
identical to the time it takes to perform a soft fault recovery
procedure (2.6us). The only difference in the procedures is
that when the variable data is loaded into the three
processors, one of the active processors was previously a
spare.

SEFI Recovery

The amount of time that it takes to perform partial
reconfiguration of a tile depends on the size of the tile and
the speed at which data can be written to the ICAP port. For
our system, the time for PR was obtained empirically by
measuring the time between the start and stop of the
reconfiguration. The PR for each tile took approximately
200 clocks for each byte of configuration data. Our tiles
were 31.2k bytes in size, which corresponded to a tile PR
time of 66ms. For comparison, an entire V5-LX110 device
requires a bit stream size of 3,799k bytes to reconfigure and
takes 984ms using the SystemACE. () usMHzclkst

clksclksclksclkst

ttttt

erySoftFault

erySoftFault

InVarOutVarRSTIRQerySoftFault

6.2100
1260

12812822

covRe

covRe

__covRe

===

+++=

+++=

ICAP address x00018280
corresponds to partial

reconfiguration of Tile 0
Active processors

continue to run while PR
occurs in background

GUI indicates processor 0
has been repaired and is

available as a spare

ICAP address x00018780
corresponds to partial

reconfiguration of Tile 1
GUI indicates processor 1
has been repaired and is

available as a spare

 11

8. CONCLUSION
This paper presented the design and prototyping of a

many-core computer architecture with fault detection and
recovery. Our approach uses three fault mitigation
techniques to recovery from radiation induced failures on an
FPGA. The system partitions an FPGA into equally sized
tiles, each containing a soft processor. An SEU in the
FPGA fabric is mitigated using a reset sequence. An SEU
in the configuration SRAM (ie., a SEFI) is mitigated using
partial reconfiguration of the tile. Finally, TID damage in a
tile is mitigated using spatial avoidance of the effected
region. The soft fault recovery and spatial TID avoidance
strategies were found to take 2.6us to complete. The partial
reconfiguration of a single tile was found to take 66ms to
complete. This type of comprehensive fault mitigation
strategy addresses the three main failure mechanisms in
FPGA-based computing systems (SEU in the fabric, SEFIs,
and TID damage) and can be used to improve the reliability
of FPGA-based flight computers for military and aerospace
applications.

ACKNOWLEDGMENTS
The authors would like to thank the Montana Space Grant

Consortium and the NASA Explorations Systems Mission
Directorate Higher Education Project for support of this
work. The authors would also like to thanks Dr. Robert E.
Ray and Dr. Andrew S. Keys of the NASA Advanced
Avionics and Processor Systems (AAPS) project for their
mentoring of this research.

REFERENCES
[1] A. Holmes-Siedle, L. Adams, “Handbook of radiation Effects”, 2nd edition,

New York, Oxford University Press, 2002.
[2] C. Claeys, E. Simoen, “Radiation Effects in Advanced Semiconductor Materials

and Devices”, Berlin Heidelberg, ISBN 3-540-43393-7, Springer-Verlag, 2002.
[3] John Cochran – “A SET Resistant Majority Voting Circuit”, Military /

Aerospace Programmable Logic Devices (MAPLD) Conference, 2009.
[4] Melanie Berg, “Design for Radiation Effects”, Military / Aerospace

Programmable Logic Devices (MAPLD), Conference, Annapolis, MD, 2008.
[5] M. Stetller, "Radiation Effects and Mitigation Strategies for modern FPGAs",

10th annual workshop for LHC and Future experiments, Los Alamos National
Laboratory, USA, 2004.

[6] Melanie Berg, “Embedding Asynchronous FIFO Memory Blocks in Xilinx
Virtex Series FPGAs Targeted for Critical Space System Applications”,
Military/Aerospace PLD (MAPLD) Conference, 2009.

[7] C. Carmichael, B. Bridgford, G. Swift, M. Napier, “A Triple Module
Redundancy Scheme for SEU Mitigation of Static Latch-Based FPGAs”,
Military/Aerospace PLD (MAPLD) Conference, 2004.

[8] Ricky W. Butler, “A Primer on Architectural Level Fault Tolerance”, NASA
Scientific and Technical Information (STI) Program Office, Report No.
NASA/TM-2008-215108, Feb. 2008.

[9] Mehlitz, P.C., Penix, J.J., and Markosian, L. Z., "Radiation-Hardened Software
for Space Flight Science Applications", American Geophysical Union, Fall
Meeting 2005, abstract #IN41A-0316, 2005.

[10] S. Franklin, K. Jentung, B. Spence, M. McEachen, S. White, J. Samson, R.
Some, J. Zsoldos, “The Space Technology 8 Mission”, 2006 IEEE Aerospace
Conference, pp 16, March 4-11, 2006.

[11] J. Greco, G. Cieslewski, A. Jacobs, I.A. Troxel, A.D. George,
“HW/SWinterface for high-performance space computing with FPGA
coprocessors”, 2006 IEEE Aerospace Conference, pp 10, March 4-11, 2006.

[12] G. Alonzo Vera – “A Programmable Configuration Scrubber for FPGAs”,
Military / Aerospace Programmable Logic Devices (MAPLD) Conference,
2009.

[13] A. Keys, J. Adams, R. Darty, M. Patrick, M. Johnson, & J. Cressier “Radiation
Hardened Electronics for Space Environments (RHESE) Project Overview ”,
International Planetary Probes Workshop (IPPW), Atlanta, GA, June 2008.

[14] J.W. Gambles, G.K. Maki, “Rad-Tolerant Flight VLSI From Commercial

Foundries”, 39th IEEE Midwest Symposium on Circuits and Systems, vol 3, pp.
1227-1230, August 18-21, 1996.

[15] M. Johnson, “Radiation Hardened, High Performance, Power Efficient
Processing – An Objective of the NASA Exploration Systems Technology
Development Program”, 13th NASA Symposium on VLSI Design, Post Falls, ID,
June 5-6, 2007.

[16] Bernard Bancelin – “ATMEL ATF280E Rad Hard SRAM Based FPGA: SEE
test results and fault injection”, Military / Aerospace Programmable Logic
Devices (MAPLD) Conference, 2009.

[17] Andrew S. Keys, Howell, “Technology Developments in Radiation-Hardened
Electronics for Space Environments”, NASA Technical Reports Server
(NTRS), Document No. 20080032798, [Online], Available: ntrs.nasa.gov,
June. 2008.

[18] Marshall C. Patrick, “RHESE Reconfigurable Computing (RC) Task”, Military
/ Aerospace Programmable Logic Devices (MAPLD), Conference, Annapolis,
MD, 2008.

[19] “PicoBlaze™ 8-bit Embedded Microcontroller User Guide", Xilinx Document
No. UG129 (v1.1.2), [Online], Available: www.xilinx.com, June. 2008.

BIOGRAPHY
Clint Gauer (M’06) received the B.S. degree
in computer engineering from
Montana State Univ., Bozeman in 2008
and is currently an M.S. degree candidate in
electrical engineering at Montana State
Univ., Bozeman with an expected graduation
date of May 2010.
 He is currently a Research Assistant in the
Department of Electrical and Computer
Engineering at Montana State University

(MSU), Bozeman where his focus is on reconfigurable computing
architectures for mitigating system level faults due to space
radiation.

Brock J. LaMeres (M’98-SM’09) received the
B.S. degree in electrical engineering from
Montana State Univ., Bozeman in 1998, and
the M.S. degree in electrical engineering from
the Univ. of Colorado, Colorado Springs in
2001, and the Ph.D. degree in electrical
engineering from the Univ. of Colorado,
Boulder in 2005.

He is currently an Assistant Professor in
the Department of Electrical and Computer Engineering at
Montana State University (MSU), Bozeman. LaMeres teaches and
conducts research in the area of digital systems. Prior to joining
the faculty at MSU in 2006, he worked as a Hardware Design
Engineer for Agilent Technologies in Colorado Springs from 1999
to 2006. LaMeres' research is sponsored by NASA, the National
Science Foundation, the Montana Space Grant Consortium, the
National Space Grant Consortium, and the Office of Naval
Research.

David Racek (M’06) is currently an B.S.
degree candidate in computer engineering at
Montana State Univ., Bozeman with an
expected graduation date of Dec. 2009.
 He is currently a Research Assistant in the
Department of Electrical and Computer
Engineering at Montana State University
(MSU), Bozeman where his focus is on
exploiting many-core computer architectures

for increased fault immunity. Racek has held research positions at
the Jet Propulsions Laboratory and at the MSU Space Science and
Engineering Laboratory (SSEL) where he has worked on flight
computer systems for small satellites.

