A Network-on-Chip for Radiation Tolerant, Multi-core FPGA Systems

Justin Hogan March 3, 2014

Presentation Overview

- Space radiation environment
- Radiation effects on electronics
- FPGAs in space
- Our research
- Advantages and Disadvantages
- Applications

Space Radiation Environment

- Ionizing radiation
 - Energetic electrons/protons
 - Heavy ions
- Radiation sources
 - Solar flares
 - Coronal mass ejection
 - Other cosmic sources
 - Magnetic field trapping

Radiation Effects on Electronics

- Cumulative
 - Total Ionizing Dose (TID)
 - Gradual degradation of transistor performance
 - Eventual device failure
- Transient
 - Single Event Effects (SEEs)
 - Single event transient (SET)
 - Single event upset (SEU)
 - Single event functional interrupt (SEFI)

Cosmic ray interaction with a CMOS device

Xilinx Application Note XAPP1073 (v1.0)

Trends in Device Scaling

- With advancements in manufacturing processes...
 - TID tends to decrease
 - Thinner gate oxides trap less charge
 - SEEs tend to increase
 - Lower threshold voltages increase susceptibility

FPGAs in Space

- SRAM FPGAs
 - Motivation for use
 - Reduced cost over radhard components
 - Increased computational efficiency
 - Main consideration is SEE mitigation

SEE Mitigation Techniques

- Triple Modular Redundancy (TMR)
 - Mitigates single upsets
 - Increased resource utilization
- Scrubbing
 - Blind
 - Readback
- Process and Design
 - Rad-hard layout techniques
 - Silicon-on-Insulator

TMR+Spares

Coarse-grain TMR

- 9-tiles each containing a Microblaze
- Partially reconfigurable regions
- 3-active tiles, 6-spare tiles
- Fault detection
 - Feedback from voter
 - Developing readback
- Fault mitigation
 - TMR
- Fault recovery
 - Swap faulted tile for a spare
 - Repair faulted tile using active partial reconfiguration

Interconnect Faults

- Tile faults corrected through swap/reconfiguration
- Routing faults aliased as tile faults
 - Tile swapped while fault persists in routing
 - Tile swap is unnecessary
- GOAL: Distinguish routing faults from tile faults to optimize the recovery response

Solution

- Encode/Decode data at source and destination
- Error correction/detection codes (EDAC)
 - Tile swapped while fault persists in routing
 - Tile swap is unnecessary
- GOAL: Distinguish routing faults from tile faults to optimize the recovery response

Simple Test System

- 32-bit counter generates output data
- Design-level fault injection simulates tile and/or routing faults
- Hamming encoder placed at the boundary of the tile

- Hamming decoder placed near the voter circuit
- Internal logic analyzer captures fault simulation, data recovery

Moving Forward

- This is an incremental step in increasing the performance of the system
- Transition from Microblazes to custom peripheral accelerator cores
- Minimize or eliminate single points of failure (e.g. voter)
- Implement a standardized interconnect allowing heterogeneous tiles

Questions

