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Abstract 

 

Our project involves the development of a novel web-based adaptive learning system to improve 

student mastery of digital logic concepts while considering the demographics of the individual 

student.  Adaptive learning is a pedagogical approach that dynamically alters the difficulty of 

content based on an ongoing assessment of the student’s capability.  This technique is becoming 

more popular with the advancement of web-based learning solutions and increased student 

enrollment.  Using this type of e-learning environment has the potential to address background 

deficiencies of students who lack the necessary prerequisite skills coming out of high school.  In 

order to accurately assess the effectiveness of our instructional intervention, we have begun to 

collect detailed baseline data.  The baseline data, and the data that will be collected later 

following the development of the adaptive learning system, are linked to course objectives and 

outcomes that have been developed specifically for this project.  The advantage of such a 

detailed baseline data system is that we will be able to measure effectiveness of the instructional 

intervention on very specific chunks of course content.  And, we will be able to attach 

intervention effectiveness to specific groups of students, using our demographic data (gender, 

grade point average, age, ethnicity, etc.).  This paper will benefit those engineering educators 

who are developing course objectives and outcomes and designing assessment methods to 

measure progress toward those objectives and outcomes. 

 

Introduction 
 

Engineering program enrollments have been increasing steadily for nearly a decade, and 

instructors are investigating ways to maintain or even improve the quality of the student learning 

experience in this challenging environment.  Adding to the complexity is the wide range of 

preparedness students have when beginning college.  E-learning environments offer one way to 

supplement face-to-face instruction; designed properly, e-learning can be scalable and can 

personalize instruction to address background deficiencies.  An adaptive e-learning system is an 

exciting pedagogical tool that can provide individual instruction to students by dynamically 

altering the difficulty of content based on an ongoing assessment of the students’ capability.   

 

In its simplest form, an adaptive learning system consists of a bank of online quiz questions on a 

particular subject, each with an associated difficulty level.  As students answer questions, the 

difficulty of the next question either increases or decreases based on the students’ response.  In a 

more comprehensive form, additional targeted instruction can be provided if students answer 

questions incorrectly.  Additionally, more thought-provoking material can be presented to 

students who consistently answer questions correctly, providing challenge to students when 

appropriate.  Individualized, computer-based, adaptive learning has been shown to be nearly as 

effective as a live instructor guiding the student through the material when implemented 

carefully
1,2

 .  Most course management systems (i.e., Desire2Learn, Moodle, Blackboard) 

support question banks that are dynamically assigned based on difficulty and continual student 



assessment.  Thus, the infrastructure to exploit adaptive learning systems for personalized 

instruction has greatly improved over the last decade.   

 

One of the most promising aspects of personalized adaptive learning systems is that the material 

can be put into a broader context, and thus can illustrate the application of the material, which in 

turn has been shown to improve student understanding and increase interest in the subject.  When 

students see how the material is relevant to their own lives, their motivation to study the material 

increases
3,4

.  An adaptive learning system provides the opportunity to have a broad range of 

application-based examples that can be dynamically used depending on questions posed about 

student interests.  Furthermore, the type of examples used can stress characteristics about the 

content not typically addressed by existing quiz banks.  For example, highlighting how the 

material contributes to the overall public welfare of society, or how the field that uses this 

material serves others, can change the perception that a student might have about a discipline.  

This is especially important when trying to increase diversity in a field such as engineering as it 

has been shown that women and first-generation college students tend to choose careers that are 

more other-oriented
5
, and engineering is commonly not perceived as such.  Thus, adaptive 

learning has the potential to have a much broader impact on education and professional 

development than just technical training.   

 

 

Motivation 
 

In our work, we are developing a comprehensive, adaptive learning framework for digital logic 

content.  Our unique contribution is that once the baseline system is created, we will augment it 

with learning content that provides applications of the material relevant to specific student 

demographics.  One of the overarching goals of this work is to simultaneously increase the 

motivation of underrepresented minorities to persist in a STEM degree program.  Increasing the 

number of STEM degrees has become a national priority over the past decade.  Numerous 

reports by agencies such as the National Academy of Engineering
6
 and The National Science 

Board
7
  highlight how the U.S. is being outpaced in the production of engineering degrees 

relative to emerging countries. Part of the issue is retention. Indeed, only 60% of all students in 

the U.S. entering an engineering degree program are able to achieve graduation in 6 years
8
; at 

our university, only 52% of engineering students graduate in 6 years
9
.  Furthermore, not all 

students are equally likely to pursue or persist in engineering.  For example, in 2011, 83,000 

engineering bachelor's degrees were awarded in the U.S.; however, only 18.4% of these degrees 

were awarded to women
10

. At our institution, only 14.2% of engineering degrees are awarded to 

women
9
. Broadening the participation of all students, especially women, will have a positive 

impact on the number of engineering degrees being produced in the U.S. 

 

Project First Steps and the Focus of This Paper 

 

During 2015, our team has developed all of the baseline (i.e., traditional) content for both 

courses covered in this work, a sophomore-level course and an upper-division course, both of 

which focus on digital logic content.  The sophomore-level course is taken by electrical 

engineering, computer engineering, and computer science students; the upper-division course is 

taken by electrical engineering and computer engineering students.  The sophomore course is 



taught every semester, with around 70 students enrolling in the fall and 50 in the spring.  The 

upper-division course is taught only in the spring, and enrollment is around 50 students.   

 

The new content includes a textbook, associated lecture videos, new learning objectives and 

outcomes, and over 600 quiz questions.  During the summer and fall semesters of 2015, the 

material was used to collect a baseline of student performance across all of the learning 

outcomes being measured.  In 2016, the material delivery will be changed to an adaptive learning 

format and outcome data will be collected.  This will measure how effective the adaptive 

learning format is in improving mastery of the topics.  In 2017, demographic-specific examples 

will be integrated into the system.   

 

This paper focuses on the development of the new learning objectives and outcomes and how 

they are assessed across specific demographic groups in the lower-level course.  We give 

baseline data for a selected group of learning outcomes.  Data are only collected on students who 

sign a voluntary consent form that allows their demographic information to be pulled from 

university records and analyzed in concert with their performance on the learning modules.  All 

data are coded for anonymity. 

 

New Course Learning Objectives and Outcomes 
 

Developing new course learning objectives and outcomes was not projected to be an aspect of 

this project; however, while writing the new textbook associated with the course and developing 

the quiz questions, we discovered that the quiz questions were not always aligned with the stated 

learning outcomes.  Thus, new objectives and outcomes were developed, and they were directly 

linked to quiz questions and grouped into course “modules,” which could be assessed via the 

homework and quizzes.  Below is an example of one course module with the accompanying 

objectives, outcomes, and a sample quiz question. 

 

Learning Objective for Module 3:   Understand the basic operation of combinational logic 

circuits. 

 

Learning Outcomes for Module 3: 

 Describe the functional operation of a basic logic gate using truth tables, logic 

expressions, and logic waveforms. 

 Describe the DC and AC operation of a digital circuit. 

 Describe the meaning of a logic family and the operation of the most common 

technologies used (CMOS, TTL). 

 Determine the operation conditions of a logic circuit when driving various types of loads. 

 

An example of a Quiz question associated with Module 3 is on the next page. 

 



 
 

 

 

Data Analysis and Assessment of Student Learning 
 

For our baseline data from Fall 2015, we were interested in student performance on all learning 

outcomes and modules.  We had the following demographic data about each student enrolled in 

the sophomore-level digital logic course: 

 

 Gender 

 Ethnicity 

 Age 

 Major 

Whether the student started his/her college career at our institution or at another school 

Number of transfer credits 

Number of credits completed at our institution 

Grade Point Average from credits completed at our institution 

SAT and ACT scores (for students who started at our institution only) 

 



Out of 55 students who signed the informed consent forms, only 3 were female, and 7 were non-

Caucasian, so we could not use these groupings in tests of statistical significance.  However, we 

did compare quiz and module averages for gender and ethnicity.  For Module 3 overall, which 

included both the related homework and the module quiz, the female student average was higher 

than the male average (91 vs. 80); there was little standard deviation among the female scores.  

The female students also out-performed the male students on the Module 3 quiz:  96 average 

score vs. 83.   

 

In regard to the comparison between the Caucasian (n=48) and non-Caucasian students (n=7), 

the former had a higher average score on the quiz for Module 3:  84 vs. 79, as well as a higher 

average score on Module 3 as a whole:  81 vs. 79.  In both comparisons, the standard deviation 

was higher for the non-Caucasian students. 

 

No differences were found for any of the seven modules when major was used as the grouping 

variable.  In addition, an analysis of the Pearson correlation of the performance on the modules 

and the age variable showed no significant results.   

 

We expected that student grade point average at our institution would be correlated with 

performance on the course outcomes.  For Module 3, that correlation was, indeed, a positive 

correlation, but it was not significant.  A Pearson correlation of ACT and SAT scores with 

Module 3 overall scores showed an insignificant positive correlation, with the SAT correlation 

showing more strength.  The correlation was stronger for Quiz 3 by itself:  Pearson correlation 

between the SAT and Quiz 3 was .357 (p = .087). 

 

The largest differences in student performance surfaced in the variable regarding whether the 

student was a non-transfer student or a transfer student.  In the Fall 2015 semester, 37 of our 

sample were non-transfer students and 18 were transfer students.  The latter group consistently 

performed better on all modules, and that difference was significant when compared via an 

Analysis of Variance on the quiz for Module 3 (p = .035).  The standard deviation for the non-

transfer group was quite a bit higher (26.60) than for the transfer group (8.64).  The average on 

the quiz for the non-transfer students was 79.28, and the average for the transfer students 93.21.  

The comparison of the two groups on the module as a whole (quiz plus homework) was not 

significant (p = .104). 

 

The plot on the following page shows the comparison of student performance on Module 3 in the 

sophomore-level course for all of our variables for all semesters for which we have student data 

(Fall 2014 through Fall 2015).  Across all semesters, 152 students signed consent forms.  These 

data include performance on Module 3 both before and after the learning outcomes revised to 

more closely align to the homework and quiz questions; therefore, we did not do any of the 

statistical analyses on these combined data from several semesters.  When we have data from 

spring 2016, we will be able to combine Summer 2015, Fall 2015, and Spring 2016 data for a 

baseline across semesters with the new learning outcomes.  The two plots on the next two pages 

(one for Module 3 and one for course performance overall) are provided as an example of how 

future data will be displayed. 

 

  



 
The plot on the following page shows the comparison of student performance across all 

semesters in the course as a whole for all of our variables. 

 



 
  



Discussion of Results 

 

One of the major goals of this project is to determine whether adaptive learning modules can 

positively affect various demographic groups.  The small numbers of female and under-

represented minority students in the course Fall 2015 hampered our ability to determine if there 

were any significant statistical differences; however, we were able to compare actual 

performance of the women students vs. the men students, and this comparison showed that the 

women students out-performed the men students on most of the assessment measures.  The three 

women students showed little variation in their scores.  This result is not surprising, in that 

women students who enter electrical engineering, computer engineering, and computer science 

disciplines tend to be high-achieving students.  If adaptive learning modules affect the male 

students in a positive way, bringing their performance up to the level of the female students, that 

would be a positive result.  Although the numbers of non-white students did not allow statistical 

comparisons, it is clear, at least in the case of Module 3, that we have an opportunity to improve 

the performance of those students with the adaptive learning modules. 

 

We expected a difference in regard to major for some of the course content, with computer 

science students performing at a higher level on some content and electrical/computer 

engineering students performing at a higher level on other course content.  The Fall 2015 student 

group did not show any differences in regard to performance of the different major groups.  This 

result will be monitored in future semesters, particularly Spring 2016 semester (before the 

adaptive learning modules are developed), as it would be relatively easy to tailor adaptive 

learning module content to match students in the various majors. 

 

The fact that transfer students outperform students who begin college at our institution is 

somewhat surprising, and we will track that result in future semesters to see if it is consistent.   If 

we knew more about the preparation of transfer students at their specific community colleges, it 

might be possible to take that preparation into account when designing adaptive learning 

modules for our non-transfer students; however, research into the experience of transfer students 

prior to their entrance into our institution is beyond the scope of our work. 

 

Conclusion 

 

Our project is in its early stages; however, the foundational work we have done so far has been 

crucial to understanding the effect of our future instructional intervention (the adaptive learning 

modules) on different groups of students in the two digital logic courses.  Developing the new 

learning objectives and outcomes for the sophomore-level course, and linking those directly to a 

bank of quiz questions, has allowed us to assess student learning in a fine-grained manner, and 

we will be able to track the performance of students on each of the learning outcomes and 

objectives as they begin to use the adaptive learning modules.  Our hope is that the instructional 

intervention will improve student performance across the board, but especially for students who 

traditionally struggle with the content or are unmotivated to learn it—or both. 

 

 

  



Acknowledgements 
 

The authors would like to thank the National Science Foundation for supporting this project.  

The preliminary work on this project was supported through the Course, Curriculum and 

Laboratory Improvement (CCLI) Program (Award # 0836961) under the Division of 

Undergraduate Education.  The current deployment and effort is being supported through the 

Improving Undergraduate STEM education (IUSE) program (Award # 1432373), also under the 

Division of Undergraduate Education. 

 

 

 

 

References  
 

[1] Munoz-Merino, P.J.; Kloos, C.D.; Munoz-Organero, M.; , "Enhancement of Student Learning Through the 

Use of a Hinting Computer e-Learning System and Comparison With Human Teachers," Education, IEEE 

Transactions on , vol.54, no.1, pp.164-167, Feb. 2011. 

[2] Guzman, E.; Conejo, R., "Self-assessment in a feasible, adaptive web-based testing system," Education, IEEE 

Transactions on , vol.48, no.4, pp. 688- 695, Nov. 2005. 

[3] Renninger, K. A., Sansone, C., & Smith, J. (2004). Love of learning. In C. Peterson & M. E. P. Seligman 

(Eds.), Values in Action (via) Classification of Strengths. New York: Oxford University Press. 

[4] Sansone, C., & Smith, J. L. (2000). Interest and self-regulation: The relation between having to and wanting 

to. In Sansone, C., and Harackiewicz, J. M. (Eds.), Intrinsic and Extrinsic Motivation: The Search for Optimal 

Motivation and performance (pp. 341–372). San Diego, CA: Academic Press. 

[5] Bakan, D. (1966). The duality of human existence: An essay on psychology and religion. Chicago: Rand 

McNally. 

[6] National Academy of Engineering. (2011). Engineering the Future, 2011 Annual Report.National Academies. 

(2010).  Rising Above the Gathering Storm, Revisited.  Report Prepared for the Presidents of NAS, NAE and IOM, 

2010. 

[7] National Science Board. (2012). Science and Engineering Indicators 2012. Arlington VA: National Science 

Foundation (NSB 12-01). 

[8] National Science Foundation, National Center for Science and Engineering Statistics (2011). Science & 

Engineering Degrees: 1966-2008. Detailed Statistical Tables NSF 11-136. Arlington, VA. Available at 

http://www.nsf.gov/statistics/nsf11316/pdf/nsf11316.pdf 

[9] Office of Planning and Analysis (OPA), Montana State University (2013). [Online].  Available: 

http://www.montana.eedu/opa. 

[10] Yoder, B.L., (2011).  Engineering by the Numbers, American Society of Engineering Education. 

 

 

http://www.nsf.gov/statistics/nsf11316/pdf/nsf11316.pdf
http://www.montana.eedu/opa

