DesignCon 2005

Track 5: Chip and Board Interconnect Design (5-TA2)

"Connector-Less Probing: Electrical and Mechanical Advantages"

Authors/Presenters:

Brock LaMeres,Agilent TechnologiesBrent Holcombe,Agilent TechnologiesGeorge Marshall,Precision Interconnect

Objective

- 1) Describe Differences between Connector-less and Connector-Based Probing
- 2) Aid in Selection of Logic Analyzer Probe

The Logic Analyzer

- A logic analyzer is a piece of general purpose, test equipment
- It provides debug/validation for digital systems
- It is connected to the target system using a probe

The Probe

- Provides the "electrical" connection from the target to the analyzer
- Provides the "mechanical" connection from the target to the analyzer
- Both are important factors in selecting a probe

Probe Theory

- The Probe Passively Observes the Target Signal
- A Small Amount of the Target Signal Enters the Probe
- The Logic Analyzer Amplifies this Signal to see the Original Waveform

Probe Theory

• The Probe Can Be Thought of as a "Resistive Divider Network"

Probe Theory

• The Goals of the Probe are to:

1) Do Not Disturb the Target Signal

2) Accurately Represent the Original Signal Within the Analyzer

Page 7

Probe Implementation

• The physical implementation dictates probe performance

What does the user need to be concerned about? •

Page 9

- What does the User Need to be concerned about?
 - 1) DC Loading dictated by "Tip Resistor" value
 - DC 500Mb/s • > 500Mb/s
 - $s = 100M\Omega's$ = 20k $\Omega's$

(less DC Loading) (more DC Loading)

• What does the User Need to be concerned about?

2) AC Loading- dictated by "Interconnect" & "Location on Bus"

- Further from Target = More Capacitive Loading
- Poor Bus Location = Distorted Waveform

(stubs) (analyzer failures)

- What does the User Need to be concerned about?
 - 3) Meeting Analyzer Specs at the Probe Tip
 - Defined WITH PROBE CONNECTED !!!
 - Depends on Loading and Location on Bus

- Probing Methodologies
 - 1) Designed-In
 - User Plans Ahead
 - Places Footprint on Target
 - Routes Signal of Interest to Footprint

ex) High-Density Connectors Pin-Header Strips

- Probing Methodologies
 - 2) After-Thought
 - Signal NOT routed to test pad

ex) Solder Down Accessories, Grabbers, Browsers

- Limitations
 - 1) Physical Interconnect Loading
 - Electrical and Mechanical Connection are the Same which increases size
 - Increased Size means more loading (L and C)

• Limitations

2) Designed In Connectors Block Routing

- Connector Holes are Often Obtrusive to Flow-Through Routing
- Connectors are placed off to the side and stubs are used to connect

• Limitations

Connector-Less Probing

- Probing Methodology
 - **1) Small Test Pads are Placed on the Target**
 - Signals of interest are routed to the pads

Agilent Technologies

Connector-Less Probing

• Probing Methodology

2) A Retention Module is Hand Soldered to the PCB

- The RM pins are the Mechanical Connection ONLY

Connector-Less Probing

• Probing Methodology

3) Attach Compression Probe to RM

- The compression interconnect contacts the pads
- The RM aligns and retains the interconnect
- The compression interconnect is the Electrical Connection ONLY

Agilent Technologies

1) Reduced Loading

- The physical size is smaller than a connector
- The Mechanical and Electrical Connections are Separate

Agilent Technologies

Connector-less Probing: Electrical and Mechanical Advantages

2) Flow-Through Routing

- The Small Test Pads Allow Signals to route through the footprint

- No Stubs Needed
- Differential Spacing Preserved

3) Tip Resistor is Closer to the Target Signal

- Reduced loading due to parasitic stub

Agilent Technologies

Connector-less Probing: Electrical and Mechanical Advantages

Connector-Based vs. Connector-Less

(Mictor vs. SoftTouch)

- SPICE Simulation of <u>Reflections</u> from Probe
- 50 Ω System
- Double Terminated
- Probing in Middle of Bus

Connector-Based vs. Connector-Less

(Mictor vs. SoftTouch)

- SPICE Simulation of <u>Transmission</u> Degradation from Probe
- 50 Ω System
- Double Terminated
- Probing in Middle of Bus

TDT SPICE Simulation

Connector-Based vs. Connector-Less

(Mictor vs. SoftTouch)

TDT SPICE Simulation

Impedance Mismatch from Uncoupling a Diff Pair - SPICE Simulation of Differential Separation "Matched vs. 1" Mismatch' Caused from connector-based probe 1.0 - 100 Ω System p_match n match p_mismatch n mismatch - Double Terminated 0.0 - Probe in Middle of Bus - PC5 uStrip Decoupled for 1" -1.0 2.0 2.5 3.5 4.0 10⁻⁹ time

Impedance Mismatch due to Uncoupling of Diff Pair

Connector-less Probing: Electrical and Mechanical Advantages

Connector-Based vs. Connector-Less

- 1) Ease of Assembly
- 2) Mechanical Reliability
- 3) Post-Production Probing

1) Ease of Assembly

- RM is hand-soldered
- No Machine Loading Needed

3) Post Production Probing

 RM can be hand-loaded on production units

Connector-less Probing: Electrical and Mechanical Advantages

So, what do these advantages mean to you???

Connector-Less Probes save you:

- •Debug capability in high volume production PCB's is FREE!
- •No rework cost for damaged debug connectors
- •Longer life out of Connector-Less probe adapters
- •Debug PCB's in the field for much lower cost

Summary

- 1) Connector-Less is the latest Technology in Logic Analyzer Probing
- 2) Connector-Less Probing has Improved Electrical Characteristics - Lower Loading, Faster Analyzer Datarates, Cleaner Routing of Signals
- 3) Connector-Less Probing has Improved Mechanical Characteristics - No Connector on Target PCB, Easy Attachment, Reliability, Cost Savings

Questions?

