DesignConEast 2005

Track 6: Board and System-Level Design (6-WA2)

"Connector-Less Probing: Electrical and Mechanical Advantages"

Authors/Presenters: Brock LaMeres, Agilent Technologies

Brent Holcombe, Agilent Technologies

George Marshall, Precision Interconnect

Objective

- 1) Describe Differences between Connector-less and Connector-Based Probing
- 2) Aid in Selection of Logic Analyzer Probe

The Logic Analyzer

- A logic analyzer is a piece of general purpose, test equipment
- It provides debug/validation for digital systems
- It is connected to the target system using a probe

The Probe

- Provides the "electrical" connection from the target to the analyzer
- Provides the "mechanical" connection from the target to the analyzer
- Both are important factors in selecting a probe

Probe Theory

- The Probe Passively Observes the Target Signal
- A Small Amount of the Target Signal Enters the Probe
- The Logic Analyzer Amplifies this Signal to see the Original Waveform

Probe Theory

The Probe Can Be Thought of as a "Resistive Divider Network"

Probe Theory

- The Goals of the Probe are to:
 - 1) Do Not Disturb the Target Signal
 - 2) Accurately Represent the Original Signal Within the Analyzer

Probe Implementation

The physical implementation dictates probe performance

What does the user need to be concerned about?

- What does the User Need to be concerned about?
 - 1) DC Loading dictated by "Tip Resistor" value

```
• DC – 500Mb/s = 100M\Omega's (less DC Loading)
• > 500Mb/s = 20k\Omega's (more DC Loading)
```


- What does the User Need to be concerned about?
 - 2) AC Loading dictated by "Interconnect" & "Location on Bus"
 - Further from Target = More Capacitive Loading (stubs) (analyzer failures)
 - Poor Bus Location = Distorted Waveform

- What does the User Need to be concerned about?
 - 3) Meeting Analyzer Specs at the Probe Tip
 - Defined WITH PROBE CONNECTED!!!
 - Depends on Loading and Location on Bus

• Probing Methodologies

- 1) Designed-In
 - User Plans Ahead
 - Places Footprint on Target
 - Routes Signal of Interest to Footprint

ex) High-Density Connectors Pin-Header Strips

- Probing Methodologies
 - 2) After-Thought
 - Signal NOT routed to test pad

ex) Solder Down Accessories, Grabbers, Browsers

- Limitations
 - 1) Physical Interconnect Loading
 - Electrical and Mechanical Connection are the Same which increases size
 - Increased Size means more loading (L and C)

• Limitations

- 2) Designed In Connectors Block Routing
- Connector Holes are Often Obtrusive to Flow-Through Routing
- Connectors are placed off to the side and stubs are used to connect

• Limitations

Connector-Less Probing

- Probing Methodology
 - 1) Small Test Pads are Placed on the Target
 - Signals of interest are routed to the pads

Connector-Less Probing

- Probing Methodology
 - 2) A Retention Module is Hand Soldered to the PCB
 - The RM pins are the Mechanical Connection *ONLY*

Connector-Less Probing

Probing Methodology

3) Attach Compression Probe to RM

- The compression interconnect contacts the pads
- The RM aligns and retains the interconnect
- The compression interconnect is the Electrical Connection *ONLY*

1) Reduced Loading

- The physical size is smaller than a connector
- The Mechanical and Electrical Connections are Separate

Loading: 3pF < 0.7pF

Datarate: 600Mb/s >2.5Gb/s

2) Flow-Through Routing

- The Small Test Pads Allow Signals to route through the footprint

- No Stubs Needed
- Differential Spacing Preserved

3) Tip Resistor is Closer to the Target Signal

- Reduced loading due to parasitic stub

Loading: 3pF < 0.7pF

Datarate: 600Mb/s >2.5Gb/s

Connector-Based vs. Connector-Less

(Mictor vs. SoftTouch)

- SPICE Simulation of <u>Reflections</u> from Probe
- 50Ω System
- Double Terminated
- Probing in Middle of Bus

TDR SPICE Simulation

Connector-Based vs. Connector-Less

(Mictor vs. SoftTouch)

- SPICE Simulation of <u>Transmission</u> Degradation from Probe
- 50Ω System
- Double Terminated
- Probing in Middle of Bus

TDT SPICE Simulation

Connector-Based vs. Connector-Less

(Mictor vs. SoftTouch)

TDT SPICE Simulation

Impedance Mismatch from Uncoupling a Diff Pair

- SPICE Simulation of <u>Differential Separation</u>
 Caused from connector-based probe
- 100Ω System
- Double Terminated
- Probe in Middle of Bus
- PC5 uStrip Decoupled for 1"

Impedance Mismatch due to Uncoupling of Diff Pair

Connector-Based vs. Connector-Less

- 1) Ease of Assembly
- 2) Mechanical Reliability
- 3) Post-Production Probing

1) Ease of Assembly

- RM is hand-soldered
- No Machine Loading Needed

2) Mechanical Reliability

Spring-Pin Interconnect outperforms
 Standard Connectors

Planarity

3) Post Production Probing

 RM can be hand-loaded on production units

So, what do these advantages mean to you???

Connector-Less Probes save you:

- Debug capability in high volume production PCB's is FREE!
- No rework cost for damaged debug connectors
- Longer life out of Connector-Less probe adapters
- Debug PCB's in the field for much lower cost

Summary

- 1) Connector-Less is the latest Technology in Logic Analyzer Probing
- 2) Connector-Less Probing has Improved Electrical Characteristics
 - Lower Loading, Faster Analyzer Datarates, Cleaner Routing of Signals
- 3) Connector-Less Probing has Improved Mechanical Characteristics
 - No Connector on Target PCB, Easy Attachment, Reliability, Cost Savings

Questions?

