Military & Aerospace Programmable Logic Devices Conference (MAPLD) Session E: PLD Based System Architectures 9/3/09

Design of a Radiation Tolerant Computing System Based on a Many-Core FPGA Architecture

Presenter:

Dr. Brock J. LaMeres

Authors:

Dr. Brock J. LaMeres, Erwin Dunbar, Pat Kujawa, David Racek, Anthony Thomason, Colin Tilleman and Clint Gauer

Department of Electrical and Computer Engineering Montana State University Bozeman, MT

Acknowledgements

• This work was supported by:

Montana Space Grant Consortium

http://spacegrant.montana.edu

NASA Exploration Systems Mission Directorate "Higher Education Program"

http://education.ksc.nasa.gov/esmdspacegrant/

• Special thanks to our project mentors from NASA's *Radiation-Hardened Electronics for Space Environments* (RHESE) Project

Dr. Robert E. Ray Marshall Space Flight Center Reconfigurable Computing Task **Dr. Andrew S. Keys** Marshall Space Flight Center RHESE Project Manager **Dr. Michael A. Johnson** Goddard Space Flight Center High Performance Processor Task

Motivation

- Radiation has a detrimental effect on electronics in space environments.
- The root cause is from electron/hole pairs creation as the radiation strikes the semiconductor portion of the device and ionizes the material.

Types

- alpha particles (Terrestrial, from packaging/doping)
- *Neutrons* (Terrestrial, secondary effect from Galactic Cosmic Rays entering atmosphere)
- Heavy ions (Aerospace, direct ionization)
- *Proton* (Aerospace, secondary effect)

Motivation

- Two types of failures mechanics are induced by radiation
 - 1) Total Ionizing Dose (TID)
 - The cumulative, long term ionizing damage to the device materials
 - Caused by low energy protons & electrons

- 2) Single Event Effects (SEE)
 - Transient spikes caused by Heavy Ions and protons
 - Can be both destructive & non-destructive

Motivation (TID)

1) Total Ionizing Dose (TID)

- As the electron/holes try to recombine, they experience different mobility rates $(\mu_n > \mu_p)$
- Over time, the ionized particles can get trapped in the oxide or substrate of the device prior to recombination
- This can lead to:
- Threshold Shifting
- Leakage Current
- Timing Skew

Motivation (SEEs)

2) Single Event Effects (SEEs)

- Transient voltage/current induced in devices
- This can lead to both Non-Destructive and Destructive effects

Non-Destructive

Single Event Transient (SET) Single Event Upset (SEU) Multi-Bit Upsets (MBU)

Destructive

Single Event Latchup(SEL) Single Event Burnout (SEB) Single Event Gate Rupture (SEGR)

Behavior

A transient spike of voltage/current noise, can cause gate switching A transient captured in a storage device (FF/RAM) as a state change Multiple, simultaneous SEUs

Behavior

Transient biases the parasitic bipolar SCR in CMOS causing latchup Transient causes the device to draw high current which damages part The energy is enough to damage the gate oxide

Mitigation of TIDs

1) Current Mitigation Techniques (TID)

- Parts can be "hardened" to TID through:
 - layout techniques (sizing of Q_{crit}, enclosed layout)
 - substrate doping
 - redundant circuitry
- Parts are specified in terms of:
 - "the amount of energy that can be tolerated by ionizing particles before the part performance is out of spec"
 - units are given in krad (Si), typically 300krad+
- Shielding <u>Does</u> Help
 - low energy protons/electrons can be stopped at the expense of weight

Mitigation of SEEs

2) Current Mitigation Techniques (SEEs)

- Triple Modular Redundancy (TMR)

- Reboot/Recovery Sequences

- Shielding <u>Does NOT</u> eliminate all SEEs
 - impractical to shield against high energy particles and Heavy Ions due to necessary mass

• Radiation Hardening = Slower Performance

- All TID mitigation techniques lead to slower performance

- TID mitigation **DOES NOT** prevent SEEs

FPGAs & Radiation

• Radiation Mitigation in FPGAs

- RAM based FPGAs are traditionally *soft* to radiation
- Fuse-based FPGAs provide some hardness, but give up the flexibility of real-time programmability

- Exploiting Reconfiguration
 - The flexibility of FPGAs enables novel techniques to radiation tolerant computing

ex) Dynamic TMR, Spatial Avoidance of TID failures,

- The flexibility of FPGAs is attractive to weight constrained Aerospace applications

ex) Reduction of flight spares, internal spare circuitry

• Field Programmable Gate Arrays

Radiation Tolerance Through Architecture

• Types of Radiation Faults Seen in FPGAs

1) Soft Faults

- SEUs that can be recovered from using a reset

2) Medium Severity Faults

- SEUs in reconfiguration memory, can only be recovered using reconfiguration

3) Hard Faults

- Damage to part of the chip due to TID or Displacement Damage

Fault Recovery Procedures

Recovery Action

Soft Faults

Fault Type

- TMR Voter detects fault
- 2 good processors complete current task
- Good 2 processors offload variable data
- All 3 processors are reset
- All 3 processors re-initialized with variable data
- All 3 processors resume operation in TMR

Medium Faults

- Same general procedure, except Bad processors is partially reconfigured to reset configuration RAM

Hard Faults

- A spare processor is brought online to complete TMR - Bad processor is flagged as "DO NOT USE"

Advantages of this Approach

- 1) SEUs mitigated using traditional TMR
- 2) Partial Reconfiguration technique increases hardness of RAM-based FPGAs
- 3) Spatial avoidance of damaged regions of FPGA extend system lifetime
- 4) Logical approach can be applied to RHBD FPGA fabrics (*SIRF*, etc...) for increased radiation immunity

System Prototyping

• Many-Core Computing Architecture

- 64 picoBlaze Processors (3+61) implement on a Virtex-5 FX50
- The computer system controls basic peripherals
- A push button is used to mimic soft SEUs
- A PC GUI is created to inject hard failures
- HyperTerminal is used to mimic medium severity faults requiring partial reconfiguration
- Xilinx ChipScope used to monitor processor operation on all 64 processors

Initial Operation

- Processors 0, 1, and 2 are active (blue) and operating in TMR
- Processors 3-63 provide 61 spare *picoBlaze* processors (gray)

(showing address lines between uP and memory for all 64 processors)

"Design of a Radiation Tolerant Computing System Based on a Many-Core FPGA Architecture" NASA THR

System Demonstration

• Soft Fault Recovery

- Processors 0, 1, and 2 are active (blue) operating in TMR
- Processors $\mathbf{0}$ undergoes a soft fault and then recovers and resynchronizes

"Design of a Radiation Tolerant Computing System Based on a Many-Core FPGA Architecture" NASA THR

System Demonstration

Hard Fault Recovery

- Processors 1 undergoes hard fault (induced by GUI, red)
- The system shuts down uP #1 and brings on spare processor uP #3 into TMR

"Design of a Radiation Tolerant Computing System Based on a Many-Core FPGA Architecture" NASA TMR

System Demonstration

• Multiple Hard Faults

- Multiple hard faults are present
- uPs 1, 6, and 12 form TMR

hard faults are present

NASA TMR

"Design of a Radiation Tolerant Computing System Based on a Many-Core FPGA Architecture"

Medium Severity Fault Recovery (PR)

- An initial hard failure can be *repaired* by going back to the effected processor and reconfiguring it.
- This handles the situation where an SEU occurred in the configuration RAM
- For this type of fault, a simple reset will not recover the processor

BUT

the processor hardware is still usable.

🌯 test - HyperTerminal	_ 🗆 🔀			TMR						
Ele Edit Yew Call Transfer Help			Ontine		Dealers					
L 🖙 🐲 🍏 🛍 🗗 😭 Dumaniasllu Dasarfinnushla DisaDlasa TND Sustan			Option	S <u>R</u> ance	om Destroy	Keset				
SysAce Initialized	<u> </u>		0	1	2	з	- (4)	5	6	7
Press 1 to reconfigure PicoBlaze 1 Press 2 to reconfigure PicoBlaze 2 Press 3 to reconfigure PicoBlaze 3			8	2	10	11	12	13	14	15
Press q or Q to quit the demo			-6	17	18	19	20	21	22	23
Performing reconfiguration for PicoBlaze 1 HeaderLength = 5F, BitstreamLength = 7A08			24	25	26	27	28	29	30	31
Press 1 to reconfigure PicoBlaze 1			32	33	34	35	36	37	38	39
Press 2 to reconfigure PicoBlaze 2 Press 3 to reconfigure PicoBlaze 3 Press g or 0 to quit the demo			40	41	42	43	44	45	-16	47
Demforming reconfiguration for DiscPlane 2			48	49	50	51	52	53	54	55
HeaderLength = 5F, BitstreamLength = 79E4			56	57	58	59	60	61	62	63
Press 1 to reconfigure PicoBlaze 1 Press 2 to reconfigure PicoBlaze 2 Press 3 to reconfigure PicoBlaze 3 Press q or Q to quit the demo		•	You ju	st destro	yed a CPU!			_		_
Performing reconfiguration for PicoBlaze 3 HeaderLength = 5F, BitstreamLength = 79E4										
Press 1 to reconfigure PicoBlaze 1 Press 2 to reconfigure PicoBlaze 2 Press 3 to reconfigure PicoBlaze 3 Press q or 0 to quit the demo Thank out for enjoying the Dumamic Reconfiguration Demo	life is Good!		Serial p Wrote	port oper byte valu	ned with sa ue 0x05.	ved setti	ngs.			
Connected Utultub Auto detect 115200 8-N-1 SCROLL CARS NUM Capture Princecho			Sent 0x08	5						_

- Logistics: a MicroBlaze soft processor is used to read the PR bit streams through the SystemACE and write to the ICAP port of the Virtex-5.

Timing/Area Impact

• Soft Fault Recovery (reset, reload variable information)

Timing Overhead

- TMR interrupt	2 clocks	
- Reset	2 clocks	
- Read variable data from good processors:	128 clocks	(2 clks/inst, 64 bytes of RAM)
- Write variable data to reset processor:	128 clocks	(2 clks/inst, 64 bytes of RAM)
Total	260 clocks = 2.6 us	(100 MHz V5 Clock)

Partial Reconfiguration Constraints

- For our V5, the smallest quantum that can be partially reconfigured is 20 CLBs
 - 1 CLB contains: 2 *Slices*
 - 1 Slice contains: four LUTs
 - four storage elements
 - wide-function multiplexers
 - carry logic
- If you use BRAM in your design, 4 BRAMs must be partially reconfigured together
- Care must be given to placing circuitry within the smallest partially reconfigured tile

• Bus Macros are used to provided fixed routing channels between tiles.

PR of a *picoBlaze* Core

Smallest picoBlaze PR Tile

Physical *picoBlaze* resource estimation:

Site Type	Available	Required	% Util		
LUT	320	163	50.94		
FF	320	76	23.75		
SLICEL	60	35	58.33		
SLICEM	20	12	60.00		
RAMBFIF036	4	1	25.00		

- 24 CLBs, 1 BRAM

PR region resource use:

- 2 columns of 20 CLBs
- 1 column of BRAM

Bitstream file size(LX50T):

- Partial bitstream for one PicoBlaze:
- Full bitstream:

Reconfiguration time:

- Roughly 200 clks/Byte (measured)
- Measured time: **66ms** (100 MHz clk)
- Using MicroBlaze driven ICAP processor

• *microBlaze* Soft Processor

Shuttle Processor Board

Virtex-5

Future Work

Questions?

