Infusing Demographic-Specific Applications into a Digital Logic Adaptive Learning System

Brock J. LaMeres
Associate Professor
Electrical & Computer Engineering Dept
Montana State University - Bozeman
1) Motivation – The STEM Workforce & Pipeline

2) Personalized Learning

3) Demographic-Specific Content Can Stress Value
Motivation – The STEM Workforce

• What is STEM anyway?
 – Defined as “people who create knowledge”.
 – This doesn’t include health practitioners.

• Who are these STEM people?
 – In 2013, there were 142M jobs in the US.
 – Of these, 8M were in STEM (1 of ~18).
 • 3.8M in Computers & Math
 • 2.85M in Architecture & Engineering
 • 1.35 in Science
 – That’s 25% of the professional workforce.
 – That’s 5% of the overall workforce
Motivation – The STEM Workforce

• **STEM Fuels the US economy**
 – STEM innovations account for 50% of the growth in U.S. economy.
 – Predicted growth rate through 2018 in STEM jobs (20.6%).
 – Predicted growth rate through 2018 in non-STEM jobs (10.1%).
 – Jobs are shifting from non-STEM to STEM.
• **Are We Producing Enough STEM Grads To Meet the Demand?**
 – There are 8M STEM workers in the U.S. right now.
 – 9M+ by 2022.
Motivation – The STEM Workforce

• **The Question requires looking at the entire pipeline**
 - Data can be difficult to find.
 - Different sources define STEM professions differently. We use NSF def.

![Diagram showing K-12, U.S. STEM Higher Ed, and U.S. STEM Workforce (8M) with 287 STEM Openings.](image-url)
Motivation – The STEM Workforce

- The STEM Pipeline
 - Who enters U.S. higher education system?
Motivation – The STEM Workforce

- **The STEM Pipeline**
 - Who obtains a STEM degree?

- **Infusing Demographic-Specific Learning…**
Motivation – The STEM Workforce

• The STEM Pipeline
 – Including retirement completes the flow diagram. Looks like we are fine?

- K-12 (3M/yr)
 25% STEM
 60% entering choose STEM
 40% Don’t Enter College

- U.S. STEM Higher Ed
 287k BS
 92k MS
 25k PhD
 40% Don’t Persist to Graduation

- U.S. STEM Workforce (8M)
 287 STEM Openings
 65k – 80k H1B

- Retire
 235k ~3%

- International
 35% Don’t Enter College
 40% non-STEM
Motivation – The STEM Workforce

- The STEM Pipeline – The off roads are the concern.
 - Some STEM graduates don’t enter the field after getting a degree.

<table>
<thead>
<tr>
<th>K-12 (3M/yr)</th>
<th>U.S. STEM Higher Ed</th>
<th>U.S. STEM Workforce (8M)</th>
<th>Retire</th>
</tr>
</thead>
<tbody>
<tr>
<td>35% Don’t Enter College</td>
<td>40% Don’t Persist to Graduation</td>
<td>50% Don’t Choose a STEM Career</td>
<td>235k ~3%</td>
</tr>
<tr>
<td>25% STEM 60% entering choose STEM</td>
<td>65k – 80k H1B</td>
<td>287 STEM Openings</td>
<td></td>
</tr>
<tr>
<td>40% non-STEM</td>
<td>287k BS</td>
<td>287k MS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>92k MS</td>
<td>25k PhD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infusing Demographic-Specific Learning...
Motivation – The STEM Workforce

- The STEM Pipeline – The off roads are the concern.
 - People leave the workforce at an alarming rate.

Infusing Demographic-Specific Learning...
• The off-roads impact certain demographics more than others

 – The fastest growing fields have the most severe underrepresentation of women.
• The off-roads impact certain demographics more than others

 – The fastest growing fields have the most severe underrepresentation of women.

 – Growth in the area of computers accounted for over 90% of the job growth in STEM occupations between 2003 and 2013.

 • Yet only 26% of jobs in this area were held by women.

 • The percentage of BS degrees awarded to women in this area decreased from 23% to 18% between 2004 and 2014.
Motivation – The STEM Workforce

• The off-roads impact certain demographics more than others

 – The fastest growing fields have the most severe underrepresentation of women.

– Growth in the area of computers accounted for over 90% of the job growth in STEM occupations between 2003 and 2013.
 • Yet only 26% of jobs in this area were held by women.
 • The percentage of BS degrees awarded to women in this area decreased from 23% to 18% between 2004 and 2014.

– Women are 45% more likely than their male peers to leave the STEM industry within their first year. By age 35, 52% of women employed in STEM leave the field (Hewlett, 2008).
Why do people leave STEM? It depends on the student.

1) COGNITIVE
- Our intellectual skills.
- The first thing we think of when we talk about “learning”.

2) AFFECTIVE
- Our feelings (attitudes, motivation, willingness to participate, value of what is being learned).
- Heavily influences success of cognition.

3) PSYCHOMOTOR
- Motor skills.
- Cognition is underlying component, but practice-makes-perfect.
Personal Learning

- Why do people leave STEM? It depends on the student.

Motivation = Expectancy x Value

More than just wanting good grades & lots of money…

- Will a student “choose” a STEM degree
- Will the student put in the time necessary to achieve graduation.
- Will the person “choose” a STEM profession.
- Will the professional “choose” to stay in STEM.

(Atkinson 50’s 60’s, Eccles 80’s)
Why do people leave STEM? It depends on the student.

Motivation = Expectancy x Value

Beliefs about one’s own ability and chances for success.

(Atkinson 50’s 60’s, Eccles 80’s)
• Why do people leave STEM? It depends on the student.

Motivation = Expectancy x Value

Beliefs about the importance of the tasks.

(Atkinson 50’s 60’s, Eccles 80’s)
Why do people leave STEM? It depends on the student.

Motivation = Expectancy x Value

Beliefs about the importance of the tasks

Agentic (self)

Communal (others)

(Atkinson 50's 60's, Eccles 80's)
Why do people leave STEM? It depends on the student.

Motivation = Expectancy x Value

Beliefs about the importance of the tasks

AGENTIC (self)

COMMUNAL (others)

Simple interventions can make a big difference.
E-Learning Systems Have Big Potential

- Personalized instruction without instructor resources
- Address background deficiencies
- Challenge top students
• **They are becoming practical**
 - Course management systems support the creation.
 - Publishers are providing more sophisticated e-learning environments.
Our Contribution - Demographics

• If we have the attention of the student, why not make the material “relevant”.
 – Wording of problems and choice of examples can make material “relevant”.

• “Relevance” varies between students
 – Agentic vs. Communal value systems.
 – Values often track demographics.

• But it’s a lot of work to make material relevant to many different student groups!
 – That’s where the e-learning system has great potential.
 – The system automatically tailors the material based on the individual.
A simple example: The traditional question format

<table>
<thead>
<tr>
<th>Example 1. Calculating How Long a Battery Will Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
</tr>
<tr>
<td>• DC Power Consumption</td>
</tr>
<tr>
<td>Problem Statement</td>
</tr>
<tr>
<td>• A 9v battery is has a capacity of 500 mAh. If you are driving a circuit that consumes 20mW of power, how long will the battery last?</td>
</tr>
</tbody>
</table>
• **A simple example:** *More relevant to the millennials.*

<table>
<thead>
<tr>
<th>Example 2. Calculating How Long a Battery Will Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
</tr>
<tr>
<td>Problem Statement</td>
</tr>
</tbody>
</table>
Personal Learning

- **A simple example:** *More relevant to communal value systems.*

<table>
<thead>
<tr>
<th>Example 3. Calculating How Long a Battery Will Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
</tr>
<tr>
<td>Problem Statement</td>
</tr>
</tbody>
</table>
Current Status of our Work

- **Year 1 (now)**
 - Defined 13 broad learning objectives across two courses in digital logic.
 - Defined 60 specific learning outcomes to be measured.
 - Developed over 600 assessment tools (i.e., homework questions).
 - Implemented in course management system as auto-graded assignments.
 - Collected baseline data on student performance across 3 semesters (n=220).

- **Year 2 (next)**
 - Implement adaptive learning modules. Collect data.

- **Year 3 (final)**
 - Implement demographic-specific examples and implement in adaptive learning modules. Collect data.
Lessons Learned

• **Consent Forms**
 – Difficult to obtain demographic information.
 – We learned if coded sufficiently, we can pull data from university data base.

• **Auto-grading leads to poor students impacting results.**
 – Failing students are able to login and turn in assignments at the last minute.

• **Assessment measures need to match learning outcome category.**
 – If the learning outcome targets “synthesis”, the assessment tools can’t ask questions about “analysis”.

• **Labs are rich with assessment data, but hard to grade.**
 – Most learning in engineering occurs in the lab. But lab demonstrations are typically pass/fail.
 – Lab reports graded with rubrics give great assessment data, but scaling becomes impractical.
Questions

Thank you
References

17. ”Southern Regional Education Board’s (SREB) Electronic Campus Principles of Good Practice Checklist”, 2002.
References

Infusing Demographic-Specific Learning…
A. Plugging the leaks in the STEM pipeline, Complete College American, March 2014