Design of a Radiation Tolerant Computing System Based on a Many-Core FPGA Architecture

Presenter: Dr. Brock J. LaMeres
Authors: Dr. Brock J. LaMeres, Erwin Dunbar, Pat Kujawa, David Racek, Anthony Thomason, Colin Tilleman and Clint Gauer

Department of Electrical and Computer Engineering
Montana State University
Bozeman, MT
Acknowledgements

• This work was supported by:

Montana Space Grant Consortium
http://spacegrant.montana.edu

NASA Exploration Systems Mission Directorate
“Higher Education Program”
http://education.ksc.nasa.gov/esmdspacegrant/

• Special thanks to our project mentors from NASA’s
 Radiation-Hardened Electronics for Space Environments (RHESE) Project

 Dr. Robert E. Ray
 Marshall Space Flight Center
 Reconfigurable Computing Task

 Dr. Andrew S. Keys
 Marshall Space Flight Center
 RHESE Project Manager

 Dr. Michael A. Johnson
 Goddard Space Flight Center
 High Performance Processor Task
Motivation

- Radiation has a detrimental effect on electronics in space environments.
- The root cause is from electron/hole pairs creation as the radiation strikes the semiconductor portion of the device and ionizes the material.

Types

- **alpha particles** (Terrestrial, from packaging/doping)
- **Neutrons** (Terrestrial, secondary effect from Galactic Cosmic Rays entering atmosphere)
- **Heavy ions** (Aerospace, direct ionization)
- **Proton** (Aerospace, secondary effect)
Motivation

- Two types of failures mechanics are induced by radiation

 1) Total Ionizing Dose (TID)
 - The cumulative, long term ionizing damage to the device materials
 - Caused by low energy protons & electrons

 2) Single Event Effects (SEE)
 - Transient spikes caused by Heavy Ions and protons
 - Can be both destructive & non-destructive
Motivation (TID)

1) Total Ionizing Dose (TID)

- As the electron/holes try to recombine, they experience different mobility rates ($\mu_n > \mu_p$)
- Over time, the ionized particles can get trapped in the oxide or substrate of the device prior to recombination
- This can lead to:
 - Threshold Shifting
 - Leakage Current
 - Timing Skew
2) Single Event Effects (SEEs)

- Transient voltage/current induced in devices
- This can lead to both Non-Destructive and Destructive effects

Non-Destructive

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Single Event Transient (SET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A transient spike of voltage/current noise, can cause gate switching</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Single Event Upset (SEU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A transient captured in a storage device (FF/RAM) as a state change</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Multi-Bit Upsets (MBU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple, simultaneous SEUs</td>
<td></td>
</tr>
</tbody>
</table>

Destructive

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Single Event Latchup (SEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient biases the parasitic bipolar SCR in CMOS causing latchup</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Single Event Burnout (SEB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient causes the device to draw high current which damages part</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Single Event Gate Rupture (SEGR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The energy is enough to damage the gate oxide</td>
<td></td>
</tr>
</tbody>
</table>
Mitigation of TIDs

1) Current Mitigation Techniques (TID)

- Parts can be “hardened” to TID through:
 - layout techniques (sizing of Q_{crit}, enclosed layout)
 - substrate doping
 - redundant circuitry

- Parts are specified in terms of:
 - “the amount of energy that can be tolerated by ionizing particles before the part performance is out of spec”
 - units are given in krad (Si), typically 300krad+

- Shielding Does Help
 - low energy protons/electrons can be stopped at the expense of weight
Mitigation of SEEs

2) Current Mitigation Techniques (SEEs)

- Triple Modular Redundancy (TMR)

- Reboot/Recovery Sequences

- Shielding **Does NOT** eliminate all SEEs
 - impractical to shield against high energy particles and Heavy Ions due to necessary mass
Drawback of Mitigation

- **Radiation Hardening = Slower Performance**
 - All TID mitigation techniques lead to slower performance

- TID mitigation **DOES NOT** prevent SEEs

FPGAs & Radiation

- **Radiation Mitigation in FPGAs**
 - RAM based FPGAs are traditionally *soft* to radiation
 - Fuse-based FPGAs provide some hardness, but give up the flexibility of real-time programmability

- **Exploiting Reconfiguration**
 - The flexibility of FPGAs enables novel techniques to radiation tolerant computing

 ex) Dynamic TMR, Spatial Avoidance of TID failures,

 - The flexibility of FPGAs is attractive to weight constrained Aerospace applications

 ex) Reduction of flight spares, internal spare circuitry
FPGAs as a Solution?

- Field Programmable Gate Arrays

- FPGAs have followed Moore’s Law and now yield comparable processing power to ASICs
Many-Core Architecture

- Radiation Tolerance Through Architecture
 - Redundant, Homogenous, Soft Processors
 - At Any Given Time, 3 are configured in *Triple Modular Redundancy* (TMR)
Many-Core Architecture

- Types of Radiation Faults Seen in FPGAs

1) Soft Faults
 - SEUs that can be recovered from using a reset

2) Medium Severity Faults
 - SEUs in reconfiguration memory, can only be recovered using reconfiguration

3) Hard Faults
 - Damage to part of the chip due to TID or Displacement Damage
Many-Core Architecture

- **Fault Recovery Procedures**

<table>
<thead>
<tr>
<th>Fault Type</th>
<th>Recovery Action</th>
</tr>
</thead>
</table>
| **Soft Faults** | - TMR Voter detects fault
 - 2 good processors complete current task
 - Good 2 processors offload variable data
 - All 3 processors are reset
 - All 3 processors re-initialized with variable data
 - All 3 processors resume operation in TMR |
| **Medium Faults** | - Same general procedure, *except*
 Bad processors is **partially reconfigured**
 to reset configuration RAM |
| **Hard Faults** | - A spare processor is brought online to complete TMR
 - Bad processor is flagged as “DO NOT USE” |
Many-Core Architecture

- **Advantages of this Approach**

 1) SEUs mitigated using traditional TMR

 2) Partial Reconfiguration technique increases *hardness* of RAM-based FPGAs

 3) Spatial avoidance of damaged regions of FPGA extend system lifetime

 4) Logical approach can be applied to RHBD FPGA fabrics (*SIRF*, etc…) for increased radiation immunity
System Prototyping

- Many-Core Computing Architecture
 - 64 picoBlaze Processors (3+61) implement on a Virtex-5 FX50
 - The computer system controls basic peripherals
 - A push button is used to mimic soft SEUs
 - A PC GUI is created to inject hard failures
 - HyperTerminal is used to mimic medium severity faults requiring partial reconfiguration
 - Xilinx ChipScope used to monitor processor operation on all 64 processors

PC Gui to induce Hard Failures

ML507 V5 Platform w 64 pBlaze uPs

ChipScope Internal Logic Analyzer
System Demonstration

- **Initial Operation**
 - Processors 0, 1, and 2 are active (blue) and operating in TMR
 - Processors 3-63 provide 61 spare *picoBlaze* processors (gray)

ChipScope shows uP 1,2,3 are running in synch with no faults

(GUI indicates uP 0, 1, and 2 are active (blue))

(showing address lines between uP and memory for all 64 processors)
System Demonstration

- **Soft Fault Recovery**
 - Processors 0, 1, and 2 are active (blue) operating in TMR
 - Processors 0 undergoes a soft fault and then recovers and resynchronizes

```
+-------------------+-------------------+-------------------+-------------------+-------------------+
| Bus/Signal        | X     | O     | 510   | 515   | 525   | 545   | 550   |
|-------------------+-------+-------+-------+-------+-------+-------+-------|
| Address 0         | C000  | 0EE   | 0EE   | 0EE   | 0EE   | 0EE   | 0EE   |
| Address 1         | C000  | 0EE   | 0EE   | 0EE   | 0EE   | 0EE   | 0EE   |
| Address 2         | 0EE   |
| Address 3         | 000   | 000   | 000   | 000   | 000   | 000   | 000   |
| Address 4         | 000   | 000   | 000   | 000   | 000   | 000   | 000   |
| Address 5         | 000   | 000   | 000   | 000   | 000   | 000   | 000   |
| Address 6         | 000   | 000   | 000   | 000   | 000   | 000   | 000   |
| Address 7         | 000   | 000   | 000   | 000   | 000   | 000   | 000   |
| Address 8         | 000   | 000   | 000   | 000   | 000   | 000   | 000   |
| Address 9         | 000   | 000   | 000   | 000   | 000   | 000   | 000   |
+-------------------+-------+-------+-------+-------+-------+-------+-------|
```

System initialized and running normally in TMR mode.

Processor 0 has been corrupted by an SEU. The TMR detects the failure.

Processor 0 brought back into synch with other two processors.

GUI indicates uP 0, 1, and 2 are active (blue)
• **Hard Fault Recovery**
 - Processors 1 undergoes hard fault (induced by GUI, red)
 - The system shuts down uP #1 and brings on spare processor uP #3 into TMR

 ![Waveform Diagram](image)
 - Processor 1 has hard fault so is shut down
 - Spare processor 3 is brought online, resynchronized, and reinitialized to form TMR
 - GUI indicates uP 1 is in hard fault (red). uP 0,2,3 form TMR (blue).
System Demonstration

- **Multiple Hard Faults**
 - Multiple hard faults are present
 - uPs 1, 6, and 12 form TMR
System Demonstration

- **Medium Severity Fault Recovery (PR)**
 - An initial hard failure can be *repaired* by going back to the effected processor and reconfiguring it.
 - This handles the situation where an SEU occurred in the configuration RAM
 - For this type of fault, a simple reset will not recover the processor
 - **BUT**
 - the processor hardware is still usable.

- Logistics: a MicroBlaze soft processor is used to read the PR bit streams through the SystemACE and write to the ICAP port of the Virtex-5.
Timing/Area Impact

- **Soft Fault Recovery** (reset, reload variable information)

 Timing Overhead

<table>
<thead>
<tr>
<th>Activity</th>
<th>Clocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR interrupt</td>
<td>2 clocks</td>
</tr>
<tr>
<td>Reset</td>
<td>2 clocks</td>
</tr>
<tr>
<td>Read variable data from good processors:</td>
<td>128</td>
</tr>
<tr>
<td>Write variable data to reset processor:</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>260</td>
</tr>
</tbody>
</table>

 (2 clks/inst, 64 bytes of RAM)

Total: 260 clocks = **2.6 us** (100 MHz V5 Clock)
Partial Reconfiguration Constraints

- For our V5, the smallest quantum that can be partially reconfigured is 20 CLBs
 - 1 CLB contains: 2 Slices
 - 1 Slice contains: four LUTs
 - four storage elements
 - wide-function multiplexers
 - carry logic

- If you use BRAM in your design, 4 BRAMs must be partially reconfigured together

- Care must be given to placing circuitry within the smallest partially reconfigured tile

- Bus Macros are used to provided fixed routing channels between tiles.
PR of a *picoBlaze* Core

Physical *picoBlaze* resource estimation:

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Available</th>
<th>Required</th>
<th>% Util</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUT</td>
<td>320</td>
<td>163</td>
<td>50.94%</td>
</tr>
<tr>
<td>FF</td>
<td>320</td>
<td>76</td>
<td>23.75%</td>
</tr>
<tr>
<td>SLICEL</td>
<td>60</td>
<td>35</td>
<td>58.33%</td>
</tr>
<tr>
<td>SLICEM</td>
<td>20</td>
<td>12</td>
<td>60.00%</td>
</tr>
<tr>
<td>RAMBFIFO36</td>
<td>4</td>
<td>1</td>
<td>25.00%</td>
</tr>
</tbody>
</table>

- 24 CLBs, 1 BRAM

PR region resource use:
- 2 columns of 20 CLBs
- 1 column of BRAM

Bitstream file size (LX50T):
- Partial bitstream for one PicoBlaze: 31.2 KB
- Full bitstream: 1,716 KB

Reconfiguration time:
- Roughly 200 clks/Byte (measured)
- Measured time: **66 ms** (100 MHz clk)
- Using MicroBlaze driven ICAP processor

A single PicoBlaze PR region

Smallest *picoBlaze* PR Tile = 40 CLB + 4 BRAM
Future Work

- \textit{microBlaze} Soft Processor

Shuttle Processor Board

Virtex-5

"Design of a Radiation Tolerant Computing System Based on a Many-Core FPGA Architecture"
Future Work

Questions?