

iBrock J.LaMeres

DDR®0μ±μA¥®ì',è±±μ±μA¥®ì'Bô¿ô±μA¥®ì'Bô±μA¥®ì'±²ôjectives

§K±μμA¥®ì',è±±μ±μA¥®ì'Bô¿ô±μA¥®ì'Bô±μA¥®ì'±²ôjectives

In this page of the document, the text appears to be a continuation of a previous discussion on DDR®0μ±μA¥®ì'Bô¿ô±μA¥®ì'Bô±μA¥®ì'±²ôjectives and related topics. The text is in Chinese and contains technical details about memory technologies and specifications.

The page also includes a section on DDR®0μ±μA¥®ì'Bô¿ô±μA¥®ì'Bô±μA¥®ì'±²ôjectives, highlighting specific parameters and conditions for optimal performance. It seems to be a part of a technical manual or a publication focusing on Memory Technology, possibly aimed at engineers or technicians working in the field of computer hardware.

The text is dense and technical, with references to specific values and conditions that are likely important for understanding the practical applications of DDR®0μ±μA¥®ì'Bô¿ô±μA¥®ì'Bô±μA¥®ì'±²ôjectives.

Overall, the page provides a detailed look at the technical aspects of DDR®0μ±μA¥®ì'Bô¿ô±μA¥®ì'Bô±μA¥®ì'±²ôjectives and their implications for users and practitioners in the field of memory technology.
CASE 1

$$A_{W} = 1.87 \text{pF}$$

$$A_{W} = \frac{1.17 \text{pF}}{1.87} + \frac{0.7 \text{pF}}{1.87} = \frac{1.87 \text{pF}}{1.87} = 1$$

$$\text{CAP} = \frac{1.17 \text{pF}}{1.87} = 0.62 \text{pF}$$

$$\text{CAP} = \frac{1.17 \text{pF}}{1.87} = 0.62 \text{pF}$$
CASE 2

$q, \delta_{Otrace} = 0.390''$
$\delta_{Otrace} = 0.390'' \times (3 \text{ pF/inch}) = 1.17 \text{ pF}$

$\delta_{Otrace} = 80 \text{ fF}$

$\delta_{Otrace} = 1.17 \text{ pF} + 0.08 \text{ pF} = 1.25 \text{ pF}$

$\delta_{AX} = \frac{1}{2} \delta_{O}$

$\delta_{O} \cdot \text{DIMM} = 5 \text{ pF}$

$\delta_{O} = 4 \times (5 \text{ pF}) = 20 \text{ pF}$

$\delta_{AX} = 8.3 \text{ pF} + 20 \text{ pF} = 28.3 \text{ pF}$

$\delta_{AX} = 8.3 \text{ pF} + 20 \text{ pF} = 28.3 \text{ pF}$

$\delta_{AX} = 2.767'' = 2 \times \delta_{O} \cdot \text{DIMM}$

$\delta_{AX} = (2.767'') \times (3 \text{ pF/inch}) = 8.3 \text{ pF}$

$\delta_{DIMM} = 5 \text{ pF}$

$\delta_{DIMM} = (4) \times (5 \text{ pF}) = 20 \text{ pF}$

$\delta_{AX} = 8.3 \text{ pF} + 20 \text{ pF} = 28.3 \text{ pF}$