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ABSTRACT

Computers play an important role in spaceflight and with ever more complex
mission goals and sensors, current devices are not sufficient to meet the requirements
of planned missions. These challenges are complicated by memory corruption caused
by high energy radiation inherent in the space environment. We propose the use
of commercial field programmable gate arrays using partial reconfiguration, triple
modular redundancy with spares and memory scrubbing to achieve a radiation
hard, high performance system. This strategy is leveraged on modern fabrication
process nodes largely eliminating long term effects of radiation on silicon devices and
shifting the focus strictly on memory corruption errors. This dissertation improves
the performance of Montana State University’s (MSU) existing CubeSat computing
research platform through the addition of hardware accelerator tiles, a reliability
analysis and analysis of the power consumption vs performance tradeoffs allowing for
the development of a metric for the use of accelerator functions.
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MOTIVATION AND BACKGROUND

Current and Future Space Computing Requirements

One of NASAs research areas in recent years has been the study of improving both

the radiation hardness of computers and computational efficiency [4–7]. In the most

recent decadal survey, NASA projects that by 2020 missions will require computers

capable of achieving 2000MIPS and 200MIPS/Watt to meet mission requirements.

This far exceeds the current state-of-the-art processors, which range from 10s to 100s

of MIPS and consume several watts. With the prevalence of high resolution sensors

and increased reliance on small satellites, these power efficiencies and computational

speeds will be required to meet mission goals [8].

NASA has been plagued by radiation issues on spacecraft since its earliest days

[9,10]. In more recent years, modern devices have continued to experience difficulties

from high energy radiation effects [11]. Most recently the Mars Curiosity Rover

experienced a memory corruption event requiring the spacecraft to utilize a radiation

hardened fallback routine to recover from the radiation strike [12,13]. This event and

others like it emphasize the continuing requirement to study and develop techniques

to manage these radiation effects.

Commercial devices are fully capable of reaching performance and power goals.

Radiation tolerant microprocessors, however, are more limited due to the specialized

fabrication procedures and limited demand. These factors have led to a lag in the

performance of radiation tolerant systems versus commercial-off-the-shelf (COTS)

variants by approximately a decade (Figure 1.1). As such, early 2000s era computers

(Power PC 750s and Pentium equivalents) running at several hundred MHz are

considered current high-end processors for satellite applications [14–16].
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Figure 1.1: Comparison of the performance of commercial and radiation hardened
microprocessors vs year of introduction [1]

An additional consideration when developing computer systems is cost. Towards

this goal, COTS components are desirable over radiation hardened devices. These

components benefit from the economy of scale, while utilizing cutting edge fabrication

techniques. Modern fabrication processes also have a side effect of improved immunity

to long term degradation due to radiation.

Radiation Effects on Semiconductor-Based Electronics

The need for specialized radiation hardened computers is predicated on the

abundance of ionizing radiation when outside the protection of Earth’s magnetic

fields and the atmosphere. Ionizing radiation is classified as radiation having sufficient

energy to break electrons free from their chemical bonds. As this ionizing effect can
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be achieved through numerous physical processes, radiation is categorized based on

the particles and processes involved [17–20].

Alpha particles are the nuclei of helium atoms accelerated to relativistic speeds.

These particles make up around 10% of the space radiation environment, but can be

stopped with a piece of paper making shielding trivial.

Beta particles are electrons accelerated to relativistic speeds and are only slightly

more difficult to shield, generally metal foil is sufficient and is inherently present in a

spacecraft’s structure.

Gamma radiation is an electromagnetic field effect and much more difficult to stop

with shielding. It generally lacks sufficient energy transfer to affect digital hardware,

making it of little concern to spacecraft electronics.

Neutrons are uncharged subatomic particles traveling at relativistic speeds. Due

to their lack of charge they are not deflected by magnetic fields and are also difficult to

shield [7]. Neutrons vary from charged particles as they create charge paths through

kinetic effects and can cause issues on silicon devices.

Cosmic radiation is a combination of primarily protons and a smaller quantity of

heavy ions accelerated to relativistic speeds with sufficient energy to ionize silicon

devices. These are the particles which are of concern to space electronics.

In Earth orbit, charged particles are trapped in greater concentrations in the Van

Allen belts. The innermost of these belts consists primarily of protons, while the

outer belt consists of electrons. These belts of radiation are of interest for spaceflight

computers as they must be transited to achieve high orbits (Figure 1.2) [17].

Earth’s magnetic field deviates from the ideal dipole model in several parameters

which have a significant impact on the radiation environment of orbiting spacecraft.

The combination of the magnetic poles being rotated approximately 11◦ from the

rotational axis and the magnetic center being offset from the center of the planet
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Figure 1.2: Figure showing the approximate locations of the Van Allen radiation belts
compared to common satellite orbit altitudes measured in earth radii

towards the north pole result in the magnetic fields passing closer to the surface in

the vicinity of South America. The result is greatly increased radiation for satellites

in this portion of the globe and is referred to as the South Atlantic Anomaly (SAA).

Ionizing radiation effects for semiconductors fall into two distinct categories,

long term damage to the semiconductor device and the immediate effects of a

strike. Total Ionizing Dose (TID) degradation is a permanent long term effect of

semiconductor devices operating in radiation rich environments. The cause is low

energy particles impacting the device and remaining trapped in the semiconductor

structures, modifying the material properties. The primary cause of failure is charge

being trapped in the oxide layers, leading to oxide breakdown and leakage currents

in either in the gate or field oxide. This causes increased power consumption and

skews the threshold voltage resulting in timing failures (Figure 1.3) [18, 21]. TID

degradation is generally non-repairable, though its effect may be reduced through

annealing the component and reducing design level timing requirements.

The second major category of radiation effects is the Single Event Effects (SEEs).

These are the result of a single strike on the device and can be repaired by restarting

the system or by repairing corrupted memory. These errors are the result of a



5

radiation particle impacting a semiconductor device and creating a path of holes

and electrons within the silicon substrate in a sensitive region (Figure 1.3). This can

result in system glitches or memory devices changing states during system runtime,

thereby corrupting data. The classification of these errors is further divided into more

detailed sub-categories depending on the effect the strike causes (Figure 1.4).

Single event transients (SETs) are the least damaging of these errors and result in

a momentary glitch in the device. As digital logic circuits generally process data on

clock edges, these can often be ignored as they do not permanently corrupt memory.

The exception is if they occur during a setup and hold period or on a clock edge, at

which point they can manifest as single event upsets.

Single Event Upsets (SEUs) are of concern as they result in memory corruption.

For an SEU to occur, either a SET occurs on a clock edge and is latched into memory

or the memory itself is struck in a sensitive region causing it to change values. If an

SEU occurs in the device’s base functionality and halts the system operation, it is

classified as a Single Event Function Interrupt (SEFI).

The most serious form of SEE is a Single Event Latchup (SEL). For this to occur,

two transistors are struck in a manner that creates a short between power and ground.

The resulting short is self-sustaining and can only be halted with a system restart. The

current draw associated with the SEL can cause permanent device damage [1,22,23].

A comparison of the strike and the effect on timing of these different SEEs in

shown in Figure 1.3 and 1.4.

Conventional Radiation Effects Mitigation Techniques

The most obvious solution to radiation harden a system is to shield the electronic

components. This is effective in protecting against alpha and beta particles where the
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Figure 1.3: Cross section of charge paths that cause SEEs

Figure 1.4: Timing diagram comparison of the different types of SEEs

shielding requirement is minimal and inherently included in the spacecraft structure.

Shielding against gamma particles, neutrons and heavy ions is more difficult, requiring

thick radiation shields. For the highest energy particles, shielding cannot be made

effective and in this situation the shielding itself can cause multiple bit upsets to

occur as shielding material creates secondary radiation (Figure 1.5).

The lowest level of silicon device hardening is Radiation Hardening by Process

(RHBP). This involves specialized fabrication processes that reduce the influence

of radiation on the semiconductor device. Included in these techniques are process

changes such as Silicon on Insulator (SOI) or Silicon on Sapphire (SOS) transistors.

In these processes transistors are fabricated on a thin layer of silicon deposited over

an insulator. This reduction of silicon minimizes the length of the charge path and

reduces the effect of the strike (Figure 1.6) [21,24].
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Figure 1.5: Shielding thickness required to shield devices in low earth orbit [2]

Figure 1.6: Comparison of a conventionally fabricated transistor with a SOI device [3]
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Radiation Hardened by Design (RHBD) techniques include semiconductor layout

strategies to reduce the effect of radiation on semiconductor devices. These strategies

use larger transistors or BJTs, which are less susceptible to SEUs, and isolation of

transistors with guard rings (Figure 1.7). These techniques can also be used to make

devices latchup immune and eliminate the possibility of an SEE causing a destructive

failure.

Figure 1.7: Example of a radiation hardened by design inverter utilizing isolated
transistors with guard rings [3]

Radiation Hardened by Architecture (RHBA) is a third category of methods for

radiation hardening. This includes Triple Modular Redundancy (TMR) for improving

radiation tolerance of less reliable devices through use of redundant hardware [25,26].

By running two systems in parallel a fault in the system can be detected but the

correct output cannot be determined. By including a third system (TMR) and

assuming no multiple bit upsets, the correct result can be determined with a voting

circuit and the system can be allowed to continue operating with valid outputs (Figure

1.8). Once a checkpoint is reached, the system can repair the error and resume
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normal TMR operation. The space shuttle computer is an example of this type of

system, utilizing multiple microprocessors running in parallel to validate computed

results [27–29].

Figure 1.8: Example of a simple TMR system

Problems with Conventional Radiation Effect Mitigation Strategies

All radiation effect mitigation methods have tradeoffs. Shielding is heavy and only

effective against certain particles. The fabrication and design level RHBP/RHBD

procedures are costly due to the low numbers fabricated. This cost for the currently

available RAD6000 and RAD750 devices amounts to around $200,000 per flight board,

which exceeds the price of their commercially equivalent parts by several orders of

magnitude. In addition, radiation hardened processes are generally based on older

fabrication nodes, which are generally slower and less power efficient than their state-

of-the-art commercial counterparts [1].

TMR can be made to have high performance characteristics, but brings additional

issues from the triplication of hardware. TMR increases the sensitive areas of the

design by 300%, as well as the overall fault rate, but has the advantage that when

faults occur they can be detected and corrected. The redundant hardware also has far

greater power consumption and voting circuits leave a small area where a radiation

error will still result in a system failure.
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The current drive to improve radiation hardening and performance in spaceflight

computers by using COTS parts is driven by an effort to reduce cost and take

advantage of the high performance commercial offerings. In particular, the interest

in using COTS field programmable gate arrays is due to their ability to process large

amounts of data and the ability to be modified in flight based on the phase of the

mission or running experiment.

Commercial Off-The-Shelf FPGAs as a Solution

Field Programmable Gate Arrays (FPGAs) are programmable logic devices that

can be viewed as a programmable application specific integrated circuit (ASIC) device.

This is achieved by having programmable interconnects and logic blocks, which allows

the hardware to be modified with software-like design times [30]. With this flexibility,

the circuitry of the FPGA can be configured to meet the application requirements

using soft processors and custom parallelized hardware. With this, near ASIC level

performance can be achieved with design times and engineering costs more similar to

that of a software project.

Another advantage of modern FPGAs is the ability to utilize Partial Reconfiguration

(PR). This allows for small blocks on the FPGAs to be reconfigured while the device

is operating. This improves resource utilization, as hardware can be multiplexed

temporally. It can also improve timing by reducing interconnect lengths and reduce

power by eliminating temporally unnecessary circuitry [31]. This is also advantageous

for repairing radiation faults in the configuration RAM as adjacent sections of the

FPGA can be allowed to continue operating while the fault is repaired, thus improving

system availability [32].
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The use of high-end commercial FPGAs brings further advantages to space

computer platforms. As total ionizing dose degradation is due to oxide charge

trapping, a device’s susceptibility to this effect can be reduced though the use of

a thinner gate oxide layer which is inherent in modern fabrication nodes. Tests

have shown that commercial 32nm non-radiation hardened processors can exceed

many of the metrics for previous generations of radiation hardened processors. This

feature size compares favorably with the 40nm process of the Xilinx Virtex-6 and the

28nm process of the current Virtex-7 device families. In the case of Virtex-6 FPGAs,

accelerated tests have been performed at up to 2 MRAD doses with minimal timing

performance loss. This small feature size does, however, increase the probability of

SEEs, as the small size of the diffusion region decreases the charge required to cause

a data error [4, 29,33,34].

Problems with FPGAs in Radiation Environments

Modern FPGAs may be largely immune to TID, but they are uniquely susceptible

to SEEs. This is due to the presence of an additional large block of configuration

RAM used to store the device’s logic element configurations and interconnect paths.

An error in this region has the effect of re-wiring or changing the functionality of

the device and making the underlying circuitry not operate as desired. FPGAs, like

all other semiconductor microprocessors, are also susceptible to SEEs in data and

program memory (Figure 1.9).

All of these sources of system errors must be managed in a radiation tolerant

FPGA system. Errors in configuration memory must be repaired through partial

or full reconfiguration. A SEE in the program memory or registers can cause the

program to crash and require reloading the software program and errors in the data
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Figure 1.9: Simplified FPGA logic and fault conditions

memory can cause corrupted data to be output. FPGAs are only unique in that the

FPGA fabric adds the uncertainty of the configuration of the FPGA fabric. These

errors are of differing levels of severity and result in different amounts of data needing

to be discarded to bring the system back to a known good state (Figure 1.10). For

example, an error in the FPGA fabric could cause data corruption and the running

program to fail, necessitating both those memory blocks be repaired along with the

configuration memory; whereas an error in data would only require that good data

be loaded back into the system.

To manage the possibility of data and program errors, TMR is the most prevalent

and efficient method. By comparing three copies of the hardware, errors can be

detected and repaired by copying known good data to a spare processor tile and

allowing the system to resume operation.
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Figure 1.10: Levels of failure that can be caused by radiation events in an FPGA

For FPGA Configuration RAM, TMR may be effective, but other techniques can

potentially detect these errors more rapidly and efficiently. Blind Scrubbing involves

partially reconfiguring the unused portions of the FPGA to overwrite SEEs before

the logic is brought online. Readback scrubbing is more efficient by reading the

bitstream out of configuration memory and comparing it to a golden copy to detect

errors. Only if an error is detected is the FPGA reconfigured to repair the error.

Also, since readback does not overwrite active logic regions, readback scrubbing can

be run on the entire configuration memory region [29,35,36].

Routing data between tiles must also be protected to avoid a single point of

failure. This proves to complicate the design as the routing is not enclosed within a

PR tile but spread across the FPGA. This research uses readback scrubbing or full

reconfiguration to detect and repair these errors.
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MSU’S APPROACH TO FPGA RADIATION TOLERANCE

TMR with Scrubbing and Spares

The Many-Tile TMR+Scrubbing+Spares FPGA architecture is the base system

for MSU’s radiation tolerant computing research. In this architecture the control

system chooses three partially reconfigurable tiles to run in a TMR configuration to

provide fault tolerance. In the case of a TMR error, the system is halted, the faulted

processor is taken offline while valid data is copied to a spare processor and the system

is allowed to continue. The faulted tile is then repaired in the background and added

back into the pool of spares. By switching to a new tile rather than simply repairing

the damage, the system increases availability as the time to copy the data and start

a new tile is faster than repairing the underlying fault.

Multiple systems based on this architecture have been developed. The simplist

was a counter system of 256 simple VHDL counters. This system proved the system

scalability and basic functionality of the architecture.

A second system consisted of 64 PicoBlaze processor tiles. This system allowed

for processors to be implemented without the memory complexities of the MicroBlaze

core.

Finally, a 16 tile MicroBlaze processor system was developed. This system proved

the most difficult due to the complexity of peripheral initialization and copying

existing data to a new processor core when a fault occurred.

In addition to running TMR, the system scrubs the configuration memory in the

background to ensure the spare MicroBlaze tiles kept as spares are clean. This reduces

the probability that a faulted tile will be brought online and immediately fail [37].
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Figure 2.1: Tiled Counter System with TMR+Spares+Scrubbing

Silicon Based Spatially Aware Radiation Sensor

In addition to the TMR+Scrubbing+Spares architecture, Montana State University

developed a two-dimensional silicon based radiation sensor to provide environmental

feedback for the system. Through knowledge of the spatial location of a radiation

strike, a SEE can potentially be discovered prior to triggering faults, as well as provide

knowledge as to the radiation conditions in which the system is operating.

The sensor is created with P type regions on the upper surface of the silicon, and

N type regions on the bottom of the sensor creating a PN junction. When a radiation

strike occurs, it then leaves a charge path of ionized particles in its path. If not
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allowed to recombine in pace, these ions are attracted to opposite sides of the silicon

region and result in a transient current [38].

Figure 2.2: Radiation Sensor - Cross section of an idealized radiation strike

To increase the sensitivity of the sensor the PN junction is reverse biased, widening

the depletion region. When fully depleted, as is ideal for a silicon based radiation

sensor, the bias voltage is sufficient to increase the depletion region to its maximum

width, minimizing recombination and maximizing sensor sensitivity.

The output current from the sensor is too small and short to be detected by the

FPGA. To allow for the FPGA to detect these signals, an amplifier chain and pulse

stretching circuit was designed to convert the signals to a 3.3V TTL signal of sufficient

duration for FPGA sampling [39].

To create a two dimensional sensor and assuming single radiation strikes, the

doped regions are created in strips on the top and bottom of the sensor (Figure 2.3).

A strike that fully passes through the sensor then provides the X location of the strike
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as a current on the top strip, and the bottom sensor returns the Y location of the

strike [38,39].

Figure 2.3: Radiation Sensor - Two Dimensional Spatially Aware Sensor Layout

This sensor could then be sampled by the FPGA and top and bottom detections

correlated in time to determine intersections when applicable [39].

TMR+Scrubbing+Spares with Radiation Sensor Feedback System

The architecture was implemented and tested using a Xilinx ML605 evaluation

board using a single Virtex-6 FPGA. This system proved the viability of the

architecture [37], as well as to establish the system’s interaction with a silicon based

radiation sensor [39].

While this was valuable for initial testing, the size of the evaluation hardware and

associated power supplies did not permit for this system to be used for in-situ testing.
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Figure 2.4: MSU’s Proof-of-Concept Radiation Hardened FPGA System

Also, with a single FPGA, the system lacked dedicated control hardware which may

have reduced the hardness of the system in a radiation environment.

System and Sensor Testing

During the course of this research, the system has been tested using numerous

platforms including cyclotron testing, high altitude balloon flights and is being

prepared for a sounding rocket test flight. These tests have been used to validate

the operation of the radiation sensor and the ability of the payload to operate under

the constraints of a zero pressure environment.

Cyclotron testing of the system was performed at the Texas Cyclotron Facility

using 25 MeV Krypton and Argon beams. This testing utilized a custom aperture

that allowed for the beam to be isolated to a specific portion of the sensor and test
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the sensor’s ability to detect radiation and the FPGA system’s ability to respond to

the simulated radiation damage.

Figure 2.5: Hardware stack mounted in a cyclotron beam

Montana Space Grant Consortium Borealis research balloons were utilized in 2012

and 2013 to test the thermal properties and design of the payload in preparation for

longer duration, zero pressure research balloon flights. These balloons verified the

groups design of an enclosure, thermal simulations and the basic system functionality

in a realistic environment. Radiation was logged on these missions, but due to limited

flight time and altitude only a handful of potential strikes were identified.

The Borealis balloon flights were followed each year by a flight on NASA/LSU

HASP zero pressure balloons. These balloons verified system performance and

duration testing on 10-14hr float times at 120,000 ft. Several potential radiation
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(a) Borealis 2013 (b) HASP 2012

Figure 2.6: Research Balloon Launches

strikes were gathered during these flights due to the extended time spent at the float

altitude. The 2012 flight results were impeded by an insufficient power system, where

radiation strikes caused overall system crashes, while the 2013 flight was able to

detect and record several promising radiation sensor strikes. The FPGA system did

not experience any radiation induced faults due to the low probably of such strikes

in the upper atmosphere being much lower than would be experienced in orbit.

These tests showed that the overall system was capable of detecting radiation

and operating in a low pressure environment with the temperatures inherent in the

near-space environment.
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Next Steps

The goal of this research is to develop, test and analyze partial reconfiguration

as a technique for facilitating higher performance computers in radiation prone

environments. This research will reduce the cost while increasing the performance of

radiation hardened computers over the currently accepted systems.

The system hardware for a nearly CubeSat formfactor research platform was

developed and tested. My contribution to this system was in the design of a power

system capable of supplying the voltages required for the hardware stack as well as

providing for real-time monitoring of system parameters.

Once the hardware system was present, partially reconfigurable regions were

designed and tested to accelerate tasks. This included microprocessors, floating point

accelerators, and hardware interface tiles.

To ease software development, an operating system was designed for the hardware

stack. This improved the ability to monitor the system and facilitated partial

reconfiguration tasks.

Once the system was operational it was tested with benchmarking routines and

a star tracking gyroscope to evaluate the performance of the system with realistic

workloads.

The system was analyzed analytically using Markov chains to determine how

the design would react to different radiation environments. This testing showed the

system is capable of operating reliably and with high availability under a variety of

solar conditions and orbital locations.

Finally, an analysis of the system was performed to determine the tradeoff between

power, performance and time for the use of accelerators in partially reconfigurable
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FPGA designs. This work shows that partial reconfiguration can be useful to increase

system performance as long as the task consumes sufficient time.
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DIGITAL HARDWARE DEVELOPMENT

System Architecture

The research performed in this project was conducted on a custom CubeSat

formfactor FPGA system designed at MSU. The platform consists of two silicon

radiation sensors with amplifiers, a FPGA board with a Xilinx Spartan-6 75k, a

Virtex-6 75k device and a power board to supply the system voltages. In addition, a

camera board and battery board were developed to facilitate demonstration and test

applications (Figure 3.1).

The system was built with a series of 4 inch square printed circuit boards connected

by 100 mil headers. The radiation sensors are located at the top of the stack followed

by the FPGA board, the optional experiment board, and the power supply occupies

the bottom. If standalone power is required, a battery board is placed under the

power supply (Figure 3.2).

This digital system is based around two FPGAs. A Spartan-6 operates as a

control FPGA. This FPGA communicates with the SD card, configures the Virtex-6

on startup and manages the partial reconfiguration operations. It is also responsible

for communication with the radiation sensors and the PC, which can be achieved

through numerous UARTs. Lastly, the Spartan-6 monitors temperature and power

status for the stack. Radiation hardness is achieved through the Xilinx Soft Error

Mitigation (SEM) controller.

The Virtex-6 FPGA is the compute fabric for the system. This FPGA contains

higher performance MicroBlaze soft core processors and hardware acceleration tiles.

The results computed by this FPGA are output to the Spartan-6 for TMR voting.

This FPGA also contains a 16 bit GPIO bus to interface with experiment hardware.
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Figure 3.1: System architecture for the experimental FPGA system
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Figure 3.2: The custom hardware stack developed for this research

The design of the FPGA board is discussed in detail in [40].

Camera Subsystem

To develop imaging applications, a TCM8240 camera board was designed for the

system. This allowed the system to be used for imaging applications. The camera

module can collect images up to 1.3MP and could be configured to return either JPG

or BMP images.

The camera is connected to the camera interface board through a header for power

and flying leads to the experiment bus for data. This consists of an I2C bus (2 wire)

for camera setup and control as well as an 8 bit parallel bus with clock and frame

synchronization signals. The camera also requires a clock signal for internal logic.

Power supply requirements are both 1.8V and 2.5V rails [41].
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Figure 3.3: The camera module designed for use on the hardware stack.

Figure 3.4: The camera module connected to the experiment board
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The pinout between the connector and the FPGA was arbitrarily defined in Table

3.1:

Table 3.1: Pinout between the Camera PCB and the FPGA
Experiment Bus Pin V6 Pin Camera Pin Function

1 C7 SCL I2C Clock
2 D7 SDA I2C Data
3 E7 DOUT0 Parallel Data Bus
4 C8 DOUT1
5 D8 DOUT2
6 D9 DOUT3
7 A9 DOUT4
8 B8 DOUT5
9 B10 DOUT6
10 C10 DOUT7
11 A11 HBLK Horizontal Blank Strobe
12 B11 VBLK Vertical Blank Strobe
13 C11 DCLK Data Clock
14 D10 RST Camera Reset
15 F9
16 G9 CLK Clock Input

PRAM Daughterboard

Initial development of the camera module showed that the Virtex-6 did not contain

sufficient RAM to capture full resolution bitmap images, limiting its use. In an

attempt to resolve this issue, a phase RAM (PRAM) daughterboard was developed

to add additional memory to the system [42]. This daughterboard contains three

16MB PRAM modules and communication is achieved over a SPI communication

bus.

Data for this card was passed from the Virtex-6 through unused pins on the

Spartan-6 due to I/O limitations. The module can be used in different jumper
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Figure 3.5: Phase Ram Daughtercard designed for the hardware stack.

selectable modes allowing either all the banks to share a SPI bus with different chip

selects or each module to have an individual SPI bus.

Table 3.2: Pinout between the PRAM PCB and the FPGA
Spartan-6 Pin Pin Name Description

AA10 MEM1 S Bank 1 Chip Select
P6 MEM1 W Bank 1 Write Protect

AB10 MEM1 Q Bank 1 Data Out of PRAM
P8 MEM1 H Bank 1 Hold
P7 MEM1 D Bank 1 Data Into PRAM
B12 MEM1 C Bank 1 Serial Clock

In future revisions of the FPGA board, this memory solution will be replaced

with triplicated DDR SRAM modules to ease memory limits and increase read/write

speeds.



29

POWER SYSTEM DEVELOPMENT

Introduction

Design of power regulation circuits is a vital component of designing systems to

be power efficient and requires much care in circuit design and layout to permit the

circuit to operate optimally.

The requirements for the power board for this project were a flexible, efficient

and lightweight part that could be used in a wide variety of laboratory and in-situ

environments. Of importance was the board have a wide enough input range to be

flown both on the HASP Balloon (30±2V), or be self-powered with AA batteries (9V)

for other launches or laboratory demonstrations. It was also decided that it would be

desirable for the board to have internal monitoring capabilities. Once design began,

fault protection and closed loop margining circuitry were found to be minimally

invasive to add and extremely valuable. The fault protection has eliminated the

danger of shorting the board during bench testing while the closed loop margining has

increased voltage stability vs temperature or load and allows for in-situ adjustment

of the analog regulators.

Table 4.1: Power Supply Requirements

Minimum Typical Maximum
Input Voltage Range 4V 9V or 30V 42V
FPGA Voltages -5% 0% +5%
Analog Voltages -25% 0 +25%
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Theory of Operation

Linear Regulators

The simplest power supply circuit is the linear regulator. These supplies function

through use of a Zener diode to set the desired voltage, such as in the circuit shown

in Figure 4.1, while dissipating the excess as heat across a resistor. These regulators

are simple to design, have no EMI issues and provide clean DC power rails. However,

their conversion efficiency can be very low and is calculated by Eff = Vout/Vin.

Figure 4.1: Simple Zener Regulator Circuit

This results in unacceptably low efficiencies when running with a Vin of 30V for

this design. When outputting voltages between 1V and 3.3V a linear regulator circuit

would only achieve 3-11% efficiency, which was not acceptable.

Switching Regulators

Switching regulators operate by rapidly connecting and disconnecting the input

power line from an energy storage element. These regulators do not contain resistive

elements to dissipate the undesired energy, but simply disconnect the supply in a

PWM-like fashion. As such, they can achieve much greater efficiencies as losses are

limited to the non-ideal nature of the components, rather than being inherent in the
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design itself. The design of these regulators is more complex and the switching effect

results in output ripple and layout complexities, but result in conversion efficiencies

that can exceed 90%. This makes them ideal for situations where power efficiency or

heat are of concern.

The supplies used in this design fall into two of the common switching regulator

architectures, Buck and Boost.

Buck Regulator: A Buck regulator is a simple mode for step-down switching

voltage regulation. In this design, the input supply is switched to charge the inductor

I, which is the energy storage element of the design and the switching occurs based

on the voltage present at Vout to maintain the charge. The flyback diode presents an

ideal path for the current to flow when the switch is open and prevents reverse current

flow while the inductor is charging. The output waveform is filtered using the load

resistance and the output capacitor to achieve a DC output. This regulator design has

the advantage that since the current is sourced directly from Vin through the inductor,

the maximum current is not inherently limited by the regulator architecture.

Figure 4.2: Switching Power Supply Buck Regulator Circuit

Except the bias voltage regulator, all of the regulators in this design are either

Buck convertors or minor variants.
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Boost Regulator: Boost regulators are simple step-up regulators and can only

supply voltages greater then the input voltage. In this architecture, when the switch is

closed, the inductor has the greatest current and thus energy is stored in its magnetic

field. Upon opening the switch, the inductor will continue to supply the high current

across the load resistance causing a voltage spike above Vin. In this regulator circuit,

the output resistance and load resistance is also used to filter the output voltage to a

DC output.

Figure 4.3: Switching Power Supply Boost Regulator Circuit

This form of regulator is used to provide the 15V bias in this design.

Loop Feedback: In all designs, the switching circuits are developed around a

voltage comparator contained within the regulator that selects when to open and close

the MOSFET switch to maintain the desired output voltage. This control circuit is

of critical importance to set and maintain a stable output voltage.

To set the output voltage, a voltage divider is created by R1 and R2 to provide the

reference voltage specified in the regulator datasheet when the desired Vout is present.

To increase the stability of the feedback circuit, a feed-through capacitor and

resistor can be added across the inductor. This can serve to prevent the regulator

from responding to transients and reduce ripple, or if improperly chosen it can make
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Figure 4.4: Power Supply Feedback Circuit

the regulator respond slower to voltage changes and voltage droops. These capacitors,

if used, tend to have values on the order of pF.

Closed Loop Margining: To change the voltage of the regulator at runtime,

the effective values of the resistors in the feedback voltage divider circuit must be

modified. This can be accomplished by adding an additional resistor with an induced

voltage.

Figure 4.5: Closed Loop Margining Circuit

The value of Rmar can be computed by Rmar =
R1R2VrefVmar∗R1∗R2

R2∗Voutmax−R2VrefR1Vref
where

Voutmax is the maximum desired output voltage and Vref is the switching supplies

comparator voltage reference. The resulting Rmar will then allow margining

symmetrically ±∆V where ∆V = VoutmaxVout.
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In the simplest mode the Vmar is either Gnd (0V) or Vcc (3.3V), allowing for a

margin high and margin low setting in addition to the unmargined standard value.

The resulting values can be used to compensate for the voltage drop that occurs when

the power supply is loaded.

In active trimming mode Vmar is generated by a PWM with an RC filtering circuit.

Reference equations for choosing these values can be found in [43] and [44]. Combined

with the voltage monitoring circuitry, this allows the power controller to automatically

vary Vmar to maintain a set voltage at the output pin of the power board independent

of the load current.

Power Conversion Architecture

This power system required the design and implementation of 12 power supply

rails.

Table 4.2: Required voltage regulators and usage

Voltage Component Description
10V TI LM3150 Intermediate Voltage Regulator
15V TI LMR62014 Low Current, Sensor Bias Voltage
3.3V TI LMR14203 Power Board Digital Components
3.3V TI TPS62130 FPGA I/O Banks
2.5V TI TPS62130 FPGA I/O Banks
1.8V TI TPS62130 FPGA Configuration Voltage
1.0 or 1.2V TI TPS62130 Spartan-6 Core Voltage
0.9 or 1.0V TI TPS62130 Virtex-6 Core Voltage
2.5V TI TPS62130 Radiation Sensor Front-side Comparator Voltage
2.5V TI TPS62130 Radiation Sensor Backside Comparator Voltage
3.0V TI TPS62130 Radiation Sensor Amplifier Vdd Voltage
-3.0V TI TPS62130 Radiation Sensor Amplifier Vss Voltage



35

These rails were organized to either drive power from the connector directly

into the 2nd stage, or regulate higher voltages to a constant 10V for the 2nd stage

regulation circuits.

Figure 4.6: Power Conversion Architecture for the switching power supply board

Power Supply Controller Devices

Power monitoring, power sequencing, fault detection, and margining are managed

by two TI UCD90124A devices. Each contains twelve, 12 bit analog to digital lines
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for voltage, current and temperature monitoring. They also have GPIO outputs for

supply enables and PWM outputs to facilitate closed loop margining [45].

Communication with the modules is achieved with the PMBUS protocol over I2C,

with either the Spartan-6 or a TI USB-GPIO operating as the master device. The

modules can be configured using the TI USB-GPIO dongle and the TI Fusion GUI

interface software. The I2C addresses are configured with resisters and are set such

that the digital supply voltages are contained on the controller with an I2C Address

of 0x52, and the analog voltages are on the controller with the I2C address 0x53.

Table 4.3: Digital Supply Configuration Parameters

Rail # Voltage Current Enable Margin Led Ext. Temp
10V 7 Pin 6 Pin 5 Pin 11 Pin 62
3.3V 3 Pin 59 Pin 63 Pin 33 Pin 17 Pin 12
2.5V 4 Pin 56 Pin 1 Pin 34 Pin 18 Pin 13
1.8V 1 Pin 54 Pin 2 Pin 35 Pin 19 Pin 14
1.0V S6 2 Pin 50 Pin 4 Pin 37 Pin 21 Pin 29
1.0V V6 6 Pin 52 Pin 3 Pin 36 Pin 20 Pin 25

Table 4.4: Analog Supply Pin Configuration Parameters

Rail # Voltage Current Enable Margin Led Ext. Temp
10V 6 Pin 56 Pin 11 Pin 63
15.0V 4 Pin 6 Pin 59 Pin 33 Pin 17 Pin 12
2.5V Fr 3 Pin 5 Pin 1 Pin 35 Pin 19 Pin 25
2.5V Bk 2 Pin 4 Pin 62 Pin 34 Pin 18 Pin 29
3.0V 1 Pin 50 Pin 2 Pin 36 Pin 20 Pin 14
-3.0V 5 (Pin 52) Pin 3 (Pin 37) (Pin 21) Pin 30

Voltage and Current Monitoring Circuits

Voltage monitoring is performed by ADCs on the power controller modules,

however, the ADCs are limited to a maximum voltage of 2.5V. For any voltage that

may exceed this, a voltage divider was used. These measurements were taken at

the output power connector pin in an attempt to increase the accuracy of these
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measurements and reduce the error at the load due to ohmic losses that might occur

within the power board itself.

The current measurements were taken at the output of the power supply block.

This circuit consisted of an inline 50 mOhm current sense resistor with a differential

op-amp measuring the voltage across it. This op-amp (TI INA196) amplified the

differential voltage by a ratio of 20x and passes the signal to an ADC on the

power controller for measurement. Some of the UCD90124 monitor pins have a

minimum voltage of 0.2V, so care was taken not to use these pins for current

monitoring. This results in an effective value for the current sense resistor of

Rcs effective = 20∗50mΩ = 1000mΩ. Use of an INA197 (50V/V) or INA198 (100V/V)

can be used on lower current rails to increase measurement accuracy if desired.

Table 4.5: Digital Power Supply Controller Voltage and Current Ratios

Rail Voltage Ratio [V/V] Current Ratio [mOhm]
Input 0.0625
3.3V 0.5714 1000
2.5V 0.6667 1000
1.8V 1 1000
1.0V S6 1 1000
1.0V V6 1 1000

Table 4.6: Analog Power Supply Controller Voltage and Current Ratios

Rail Voltage Ratio [V/V] Current Ratio [mOhm]
10.0V 0.1668 1000
15.0V 0.1333 1000
2.5V Fr 0.6667 1000
2.5V Bk 0.6667 1000
3.0V 0.5714 1000
-3.0V 0.5 1000
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Enable, Voltage Select and G-Switch Functions

To allow for this circuit to be used for a possible RockOn sounding rocket launch,

the safety circuitry for program was designed into this power supply board. This

includes:

• Ready for Flight Jumper: This jumper can be toggled once the payload is added

to the vehicle and must be connected to allow the payload to be powered. This

allows the payload design team to prevent the payload from powering prior to

the vehicle being moved to the Launchpad. Once the Read-For-Flight jumper

is powered, the input voltage and current circuitry are enabled and the device

will draw a small current.

• G-Switch / G-Switch Bypass Jumper: The g-switch is an empty header which

was designed such that a vertical board could be connected into it with a

pushbutton switch and a self-regenerating MOSFET circuit to power the circuit

when a vertical acceleration was observed by the payload, and thus prevent the

payload from fully powering while sitting on the Launchpad. Alternatively, this

can be replaced by a simple jumper to enable to power supply and operates as

a second enable jumper.

• Power Switch: The power switch is third in the line. This switch allows the

supplies to be turned on and off and the voltage range to be selected. This has

the effect of either adding the high voltage regulator to the circuit or bypassing

it and passing the input voltage directly to the primary voltage power plane.

Power Supply Sequencing:

Power supply sequencing is performed by the power sequencer devices primarily

as a means of reducing inrush currents. However, the Virtex-6 FPGA does have a
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preferred power sequencing which is respected through the sequencing pattern. As the

-3V rail is always enabled in the current design due to a faulty level shifter circuit, the

sensor rails are brought online first, followed by the Virtex-6 and Spartan-6 FPGAs.

Testing and Verification Results

The power supply was designed and built as a 4 square board, and tested to verify

its functionality and system operating parameters.

Figure 4.7: Fabricated Power Supply Board

Efficiency vs Load

Power supply efficiency vs load for the largest voltage rails was measured with

constant DC resistive loads and Vin = 9V . The power supply’s digital logic circuitry

also draws a constant current of approximately 50mW to power the power supply

controllers and monitoring circuitry.
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Figure 4.8: Efficiency of the power supplies vs the output load
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The high voltage regulator as designed became unstable when sinking over 2A,

and will require additional tuning to operate properly at higher currents.

Output Voltage vs Load

The power supply was also tested across the voltage range to determine the effect

of output load on the output voltage and voltage regulation parameter at the output

pin of the power supply board.

The linear drop apparent in these plots is due to the resistance in the traces

between the output pin of the regulator and the power connector.

These measurements lead to the output regulations at the power connector, where

the regulation is defined as:

regulationload =
|V0% − V100%|

V100%
∗ 100 (4.1)

Results in the calculated regulations of:

Table 4.7: Voltage regulation at the board output

Voltage Line Unmargined Load Regulation Margined Load Regulation
3.3V 17.9% 0%
2.5V 28.2% 0%
1.0V 117.4% 26%

These results show that the voltage regulators provided the desired voltage across

the entire range for 2.5V and 3.3V regulators when margined. The 1.0V regulator

provided the desired voltage up to about 60% of full load (1.8A) after which the

regulation voltage rapidly drops and becomes unusable before reaching full load.

The regulators with margining should be configured to use active trimming to

achieve the optimal output voltage across the load range.
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Figure 4.9: Output voltage of the power supplies vs the output load
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Efficiency vs Input Voltage

The power supply efficiencies were measured vs the input voltage when loaded

with a 0.5A DC load.

This test showed that the circuit was most efficient with lower voltages and the

greater efficiency of the high voltage regulator improved the efficiency of the circuit

when operating at voltages greater than the intermediate 10V rail.

Output Voltage Ripple

Ripple was determined to vary as the load varied but followed no long term trend

in the amount of ripple. Numerous measurements were recorded at different load

levels and the minimum and maximum recorded in Table 4.8.

Table 4.8: Calculated regulation due to ripple voltage (regulation at the regulator
circuit output)

Voltage Best Measurement [mVpp] Worst Measurement [mVpp]
mVpp %regulation mVpp %regulation

3.3V 15.4 0.47 35.2 1.07
2.5V 20.2 0.81 33.8 1.35
1.8V 13.2 0.73 24.2 1.34
1.0V 7.2 0.72 21.8 2.14

In all cases the regulation was better than the 5% recommended for the FPGA

for proper operation. Should quieter lines be required, the power board contains an

output ripple LC filter circuit, of which the capacitors were not populated on the

tested boards.
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FPGA HARDWARE TILES

Introduction

Microprocessors, while simple to utilize and program, are not without limitations.

For this research, lack of parallelism when combined with the slower clock speeds

inherent in FPGA designs results in lower performance systems. Softcore processors

like the Xilinx MicroBlaze are unique in their ability to be expanded with custom

instructions and hardware which allows for the strength of the FPGA to be exploited

while maintaining simplicity of design to the user. We seek to use this ability by

creating a hardware accelerated routines to improve the performance of common

scientific computing applications.

Partially Reconfigurable Tiles

In conventional FPGA design the device bitstream is loaded into the FPGA at

startup and remains static. This results in all the device functionality and digital

hardware to be present at all times. As an alternative, partial reconfiguration (PR)

can be used to divide the FPGA into smaller regions which can be reconfigured during

system operation. Each then contains a subset of the total functionally required for

the complete design (Figure 5.1).

By combining tile systems and temporal separation between events, the system

can utilize more specialized hardware blocks to increase performance. With this, it is

possible create a design that would conventionally use more than 100% of the FPGA

resources while eliminating unnecessary static power consumption.
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Figure 5.1: Conventional FPGA Resource Requirements in time vs Partially
Reconfiguration Resource utilization

Partial reconfiguration also provides the basis for FPGA memory scrubbing. If

the damage caused by a radiation strike can be isolated to a specific tiled region on

the FPGA, that tile can be partially reconfigured to restore it to proper functionality.

This eliminates the need to halt all operation and configure the entire FPGA.

MicroBlaze Tile

The MicroBlaze tile is the primary tile type for this research system and is the

only tile which has additional I/O beyond a BRAM interface. This tile contains the

microprocessor itself, a compiled program in BRAM and I/O interfaces needed for

the system. It is also the only tile whose outputs are protected by the TMR voter.

Compared to commonly used CubeSat processors, the implemented processor has

far greater performance, and is only lacking in memory present on the prototype

hardware (Table 5.1).
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Figure 5.2: MicroBlaze Tile Architecture

Table 5.1: MicroBlaze vs common CubeSat microprocessors

MicroBlaze SI 8151 PIC 24F dsPIC33 TI MSP430
Speed 180MHz 100 MHz 16 MHz 80 MHz 25 MHz
Width 32 bit 8 bit 16 bit 16 bit 16 bit
FLASH 128 KB 256 KB 256 KB 116 KB
RAM 64 KB 8KB 16 KB 30 KB 8 KB
DDR 1 GB

DMIPS 234 (uP) 20 24 92 25
Power 1.5W 195 mW 66 mW 297 mW 9.9 mW

Agnostic Hardware Accelerator Tiles

To interface the accelerator tiles with the MicroBlaze processor, it was determined

that the native block RAM (BRAM) interface would provide a simple interface with

high throughput. A high speed clock and reset logic was passed into the accelerator

allowing for them to operate at higher speeds.
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Floating Point Unit

Floating point math operations are multistage procedures in software which

results in basic numerical operations requiring 50-500 clock cycles to be performed

in software. As such, it is best performed in dedicated hardware floating point units

(FPUs) utilizing parallelism [46]. The addition of the designed floating point hardware

reduces the performance penalty of floating point operations to 20-100 clock cycles.

Figure 5.3: FPU Tile Architecture

The operations implemented in this accelerator are the basic mathematical

operations: addition, subtraction, multiplication, division and comparisons. These

operations were designed to replace the default double precision soft float library

through function overloading.

The state machine for the FPU is shown in Figure 5.4. When active, the state

machine loads data and the operation flags. The floating point cores run at 1/3 the

clock rate so the state machine checks for the data ready flag every 3 clock cycles

and stores the data to the output memory location when the operation is complete.
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After storing the data, the system sets a done flag for the MicroBlaze and returns to

an idle state.

Figure 5.4: FPU Tile State Machine

The theoretical performance of this FPU, assuming no data movement was

required is:

MFLOPS =

(
CyclesFPU
ClockFPU

)−1
(5.1)

For the design implemented, the parameters uPclk = 150MHz, and FPUclk =

400Mhz were used to determine the peak computational bounds once data is stored

in the accelerator:

Table 5.2: Implemented Double FPU Instructions

Operation Description
ADDD Double Addition
SUBD Double Subtraction
MULD Double Multiplication
DIVD Double Division
Misc Double Compare Functions

The memory overhead is a significant limiting factor on the system. This accounts

for an additional 16 clocks of CPU time at 150MHz to be added to the overall
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calculation time (4 clocks for each input and output plus 4 clocks for the operation

command). This expands above equation to:

MFLOPS =

(
CyclesFPU
ClockFPU

+
CyclesCPU
ClockCPU

)−1
(5.2)

and results in the following theoretical performance bounds:

Table 5.3: Theoretical FPU Accelerator Performance Limits
Operation FPUprocCycles MFLOPStheoretical MFLOPSmemLimited
Addition 21 19.05 6.28
Subtraction 21 19.05 6.28
Multiplication 30 13.33 5.51
Division 93 4.04 2.82
Compares 15 26.67 6.94

These performance metrics are a still a significant improvement over using a soft

float library, but show that reducing data movement when possible would greatly

improve performance.

Basic Linear Algebra Subprogram Accelerator

Despite this improvement, single data operations are not efficient on the FPGA.

The FPGA fabric is much better suited to operating on larger blocks of data such

as vectors and matrices which inherently contain large parallelizable data sections.

The Basic Linear Algebra Subprograms (BLAS) is a library of rudimentary functions

commonly used in low level vector and matrix operations. This library was first

proposed in 1979 and has become the standard API for linear algebra routines. The

BLAS library is used in many scientific computation packages including LINPACK

and high level languages such as MATLAB [47]. By building specialized hardware
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to perform these functions greater parallelism and greater performance computations

can be achieved [48–52].

The BLAS library consists of three levels of matrix abstraction. Level 1 routines

are basic scalar/vector operations. These include routines mostly follow the form

C = a∗B, such as dot products, scalar products and vector normals. Level 2 routines

are vector/matrix operations that can be in the form of C = A ∗ B, such as vector

matrix multiplications. Level 3 operations are matrix/matrix operations, of which

the most commonly used is the general matrix multiply, but also includes matrix

transformations such as Gaussian elimination. In general, the higher level operations

provide higher performance as they allow increased parallelism and pipelining while

reducing function overhead [53].

Figure 5.5: BLAS Tile Architecture

The basic computational instructions from the BLAS level 1 standard were

implemented in a partially reconfigurable FPGA tile. The operations included are:
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Table 5.4: Implemented BLAS Level 1 Instructions

Operation Description
DAXPY Double Scaler Vector Product
DASUM Double Product of Magnitudes
DDOT Double Dot Product
DSCL Double Vector Scaler Product
IDAMAX Index of Vector Maximum
IDAMIN Index of Vector Minimum

The instructions for DAXPY, DDOT and DSCL as well as element-wise operations

in the BLAS state machine follow the form in Figure 5.6. In this state machine, data

is brought in two doubles per vector per clock and operated on and continues until

the entire vector operation is complete. Upon completion the state machine toggles

a done flag and returns to its idle state.

Figure 5.6: BLAS Tile State Machine

IDAMAX, IDAMIN and DASUM follow the same basic structure but due to data

dependence form two results, one for the even and one for the odd indices, at which

point an additional state is needed to provide the final result.

The theoretical performance of the BLAS Level 1 Accelerator can be found using

the equation:

FLOPS =

(
CyclesBLAS
ClockBLAS

)−1
(5.3)
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The basic accelerator architecture is the same as the FPU; the constants

uPmemCycles = 12, BLASmemReadCycles = 6, and DSPclk = BLASclk/3 are unchanged.

Table 5.5: Theoretical BLAS Throughput

Operation Cycles MFLOPS (n=10) MFLOPS (n=100)
DAXPY 27+3n/2 95.24 238.10
DASUM 27+3n/2 95.24 238.10
DDOT 27+3n/2 95.24 238.10
DSCL 27+3n/2 95.24 238.10
IDAMAX 18+3n/2 121.21 238.10
IDAMIN 18+3n/2 121.21 238.10

In addition, simple vectorized instructions are present to expand upon the FPU

when data is known to be vectorizable. For these instructions, if the data is known to

be independent, performance can be increased by grouping multiple operations into

a single instruction operating on all the data in the same hardware call, and reducing

overhead.

Table 5.6: Theoretical elementwise vector throughput with bandwidth limited
memory

Operation FPU Cycles MFLOPS (n=10) MFLOPS (n=100)
Element Addition 3n/2+18 121.21 238.10
Element Subtraction 3n/2+18 121.21 238.10
Element Multiplication 3n/2+27 95.24 225.99
Element Comparison 3n/2+12 148.15 246.91

Data transfers have a major impact on the performance which can be modeled by

this accelerator by adding 12 clocks for each vector position and 4 for the operation

and status. This reduces the overall theoretical performance dramatically and shows

the memory throughput limitation of the architecture. Since the instructions operate

on vectors, which are passed as addresses, it is feasible to check the input and output
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array addresses and verify if the data can be operated on in place or if it must be

copied to the accelerator.

In the case where the data must be moved, the CPU cycles to copy the vector

into the accelerator memory must be added to the operation time:

FLOPS =

(
CyclesBLAS
ClockBLAS

+
CyclesCPU
ClockCPU

)−1
(5.4)

This results in the following theoretical performance bounds for the BLAS

instructions (Table 5.7):

Table 5.7: Theoretical BLAS Throughput with Bandwidth Limited Memory

Operation MFLOPS (n=10) MFLOPS (n=100)
DAXPY 11.05 11.85
DASUM 11.05 11.85
DDOT 11.05 11.85
DSCL 11.05 11.85
IDAMAX 11.33 11.88
IDAMIN 11.33 11.88

For the vectorized instructions this modifies the peak theoretical performance to

(Table 5.8):

Table 5.8: Theoretical Vector Operations with Bandwidth Limited Memory

Operation MFLOPS (n=10) MFLOPS (n=100)
Vector Addition 11.00 11.84
Vector Subtraction 11.00 11.84
Element Multiplication 10.73 11.80
Element Comparison 11.18 11.86

In all cases, if data needs to be copied into the accelerator, the performance is

reduced to roughly double that of the FPU.
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Camera Accelerator

The camera module used in this project required more rapid data communication

than could be provided with the microprocessor interface. A hardware accelerator was

developed to buffer the data from the camera module before writing it to PRAM as

a solution. This required that this accelerator contain additional pins for the camera

input lines.

Figure 5.7: Camera Interface Tile Architecture

To maintain uniformity with the other acceleration tiles and complexity issues,

the camera control and setup interface is part of the MicroBlaze tile. This interface is

only needed for the initialization, after which image acquisition can be done entirely

through the camera accelerator.

With this accelerator, a GUI interface to the registers and camera image was

created to allow for the camera interface to be tested and the correct registers to be

determined. The proper initialization of the camera required setting undocumented

registers found through testing with the GUI interface and documented in Appendix

A.
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Figure 5.8: GUI for testing and configuring camera register settings

With this information the camera could be fully integrated into the system and

could produce either JPG compressed images, or raw bitmap images for processing,

storage or downlink.

Bitstream File Concatenation GUI

The MicroBlaze system as designed reads the bitstreams from an unformatted

SD card. To place multiple bitstreams on the same cards, the bitstream header

must be removed and the files placed starting at a 512 byte block boundaries. As

the complexity of this operation increased, it became necessary to automate this
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procedure. This resulted in a software application to concatenate these hex files and

to provide the information for the MicroBlaze system as to the file locations and sizes.

Figure 5.9: GUI for building SD Card images with multiple bitstreams
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PARTIALLY RECONFIGURABLE OPERATING SYSTEM

Introduction

During the development of the hardware accelerators, it was discovered that the

software for the research platform was becoming increasingly complex due to the

number of system peripherals and configuration options available (Figure 6.1). The

programming overhead to utilize the monitoring the performance, radiation hardening

and partial reconfiguration features could be greatly decreased by implementing an

underlying operating system.

The design was split in two separate programs, one to manage the system

monitoring tasks and manage the partial reconfiguration, while the other was designed

to utilize the available reconfiguration resources in the tiles themselves. These two

program act in concert with each other to perform the required desired tasks.

This permits a layered approach to be taken for application development (Figure

6.2). The applications each have access to a standardized library of functions, as well

as to the base hardware functionality. This abstraction and access to higher level

functionality includes specialized terminal function calls and partial reconfiguration

options, as well as providing standard timing functions for benchmarking routines.

The two sides of the the operating system were named Control Operating System

(ControlOS) for the Spartan-6 side and Partial Reconfiguration Operating SystEm

(prOSe) for the Virtex-6 MicroBlaze tiles.
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Figure 6.1: Functions performed by each operating systems, and the function name
prefixes for the operations

Figure 6.2: Operating System Abstraction Levels
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Control and Monitoring Operating System (ControlOS)

Program Objective

The control side of the operating system was designed to monitor the system

parameters, perform the radiation tolerant functions, oversee partial reconfiguration

and provide a user interface to monitor the operation of the system.

As this design is not triplicated but fault mitigated using the Xilinx SEM

controller, the system has access to more BRAM resources than the TMR’ed Virtex-

6 processing tiles. This allows this program to have more complexity then its

counterpart and less emphasis on performance.

To allow for ease of use to monitor and change system parameters, the system

was configured to run as a terminal application. This allows for the operating system

parameters to be monitored and adjusted using the mouse and keyboard in a terminal

emulator.

Power-On-Self-Test (POST)

Upon startup the operating system first tests initializes and tests all the hardware

functions to ensure the system is working properly. These test results are stored in

a SYSTEM POST struct that can be stored, downlinked or accessed during system

operation to help debug the system.

At the conclusion of the POST, the Spartan-6 and Virtex-6 have been initialized

and any initialization errors are logged. The Spartan-6 then enters a default non-

interactive program mode in which streams data out the serial port. The Virtex-6 is

configured and running its default program.
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Figure 6.3: ControlOS Power on Self-Test (POST)

Scheduling Algorithm

This operating system was implemented as a first-in-first-out (FIFO) cooperative

scheduling kernel with 16 task slots in a circular queue structure. Processes are

added to a scheduled task list by a periodic timer interrupt function. This scheduling

algorithm was chosen as it was simple to implement with the low overhead [54,55].

Figure 6.4: Ouput voltage of the power supplies vs the output load

This YEILD() function checks the scheduled task list for if any scheduled tasks

are present and ready and if so runs the next scheduled task. Upon task completion

the idle function marks the task as no longer scheduled and increments the scheduled

task pointer.
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The GUI is given a time slot between every YEILD() operation and is allowed

to utilize any time unused by other tasks to improve the responsiveness of the GUI

interface. This has the effect of increasing the performance of the GUI at the cost of

higher latencies for the scheduled tasks.

Figure 6.5: Example Process Timing using the YEILD() Function

The WAIT Keypress() function builds on the YEILD() function by completely

yielding time to the scheduler until a keypress is registered. This function can be used

to decrease the latency of the events when periodic GUI updates are not required.

Figure 6.6: Example Process Timing using the WAIT() Function

For both functions, equivalent YEILD GUI() and WAIT Keypress GUI() wrapper

functions were created for use in the terminal programs.
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Figure 6.7: GUI Interface for monitoring scheduler activity

Radiation Sensor and TMR
Voter Monitoring Functionality

To collect the data required for this research, the outputs of all three tiles operating

in TMR on the tile FPGA were monitored. This was simplified by having the

control FPGA control the three tile UARTs. The system monitored voltages and

temperatures periodically.

To provide radiation hardness for the Virtex-6, the control operating system

monitored the radiation sensor as well as the TMR voter circuit to determine if

and when errors occurred. In the event of an error, the system would mark the tile as

bad, call for a context switch to a spare tile and then partially reconfigure the faulted

tile and add it back to the spare list.

Virtex-6 Reconfiguration Controller Interface

The control operating system will also perform partial reconfiguration at the

request of the tile microprocessors to bring accelerators online as well as perform

background scrubbing to ensure tile health.
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Figure 6.8: GUI interface for monitoring tile activity

Prior to a partial reconfiguration being performed, the SD card must be

initialized with SDCARD init() and the reconfiguration control state machine with

PRCONTROL init(). These functions configure the SD card and state machine into

an initial known state.

To configure the Virtex-6 with a full bitstream, the PRCONTROL ConfigureFull()

function is used. This function takes the start address of the bitfile on the SD card and

the bitstream length as required parameters. This function blocks until the Virtex-6

is programmed and the configuration done pin is asserted.

Partial reconfiguration is performed using much the same method, but using the

PRCONTROL ConfigureTile() function. The program blocks until the configuration

controller responds that it has configured the full tile, but does not monitor a Virtex-

6s response.

With this functionality, the blind scrubbing task is trivial to implement. The

SCRUBBER Blind Init() function initializes a structure with the desired variables

and current scrubber location. The SCRUBBER ScrubBlindTile() is then scheduled
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at periodic intervals and performs the blind scrubbing and increments the next tile

to scrub counter.

System Health Monitoring

The operating system communicates with the power controller modules to record

current voltages, currents and temperatures throughout the system, which can be

logged or viewed in real-time using the GUI interface.

Figure 6.9: GUI interface for real time power monitoring

Partially Reconfigurable Tile Operating System (prOSe)

Program Objective

The operating system on the processing tiles was designed to make the accelerator

functions transparent to the programmer and provide common functionality, such as

timer events. This was accomplished by overloading functions based on available

hardware and keeping metrics of function utilization to allow the software to

determine the best hardware accelerator for its current application needs.
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Floating Point Unit Acceleration Functions

For the FPU functions, the double function call is overloaded. If an accelerator

is available it is used with priority given to the faster FPU function over the higher

latency BLAS versions. If no accelerator is present a software version of the floating

point accelerated functions is called. This introduces some overhead but is offset by

the additional functionality provided.

Figure 6.10: Decision Trees for FPU Overloaded Operations

Table 6.1: Floating point instructions and their overloaded alternatives

Called Function Software Function FPU Function BLAS Function

A+B adddf3 adddf3 FPU adddf3 BLAS adddf3
A−B subdf3 subdf3 FPU subdf3 BLAS subdf3
A ∗B muldf3 muldf3 FPU muldf3 BLAS muldf3
A/B divdf3 divdf3 FPU divef3
A > B gtdf2 gtdf2 FPU gtdf2
A = B eqdf2 eqdf2 FPU eqdf2
A < B ltdf2 ltdf2 FPU ltdf2
A ≥ B gedf2 gedf2 FPU gedf2
A ≤ B ledf2 ledf2 FPU ledf2
A 6= 0 nedf2 nedf2 FPU nedf2
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Basic Linear Algebra Subprograms
(BLAS) Acceleration Functions

For the BLAS functions, a very similar process is carried out. The BLAS functions

check to see if an accelerator is present. If so that accelerator is used immediately.

If not a looped version of the function is used. This looped version then calls FPU

functions above and uses the FPU if available.

Figure 6.11: Decision Trees for BLAS Overloaded Operations

The functions implemented in the accelerator encompass most of the commonly

used BLAS level 1 instructions.

Table 6.2: Implemented BLAS Level 1 Functions

Operation Function Description

argmax ~A idamax Index of the largest vector element

argmin ~A idamin Index of the smallest vector element∑
|Ai| dasum Sum of the vector magnitudes

a ~B daxpy Scaler vector product
~A · ~B ddot Dot product
~Ab dscal Vector scaler product
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TEST APPLICATIONS AND RESULTS

LINPACK Benchmark

Background

The system was benchmarked using conventional tools to provide an indication

of system performance and compare the platform with existing systems. The

LINPACK benchmark was chosen as it allowed for testing floating point performance

of the system with software floating point, floating point accelerator and the BLAS

accelerator tiles.

The LINPACK benchmark performs a Gaussian elimination with partial pivoting

on an n × n matrix. This results in an operation count of 2/3n3 + n2 floating

point operations. By modifying n, the memory requirements can be modified and

the asymptotic performance of the architecture can be found. For this system, the

asymptotic bound is beyond the memory the current hardware. Traditionally, 100

and 1000 are used as standard sizes for n [53].

Implementation

The system was implemented on the MicroBlaze utilizing the hardware accelerator

hardware. The accelerations could be chosen through software flags and the

performance results were printed over the UART terminal.

Results

During benchmark operation, the power consumption was recorded in addition to

the performance to allow for performance and performance per watt to be determined.
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The results of this test show that having an accelerator in all cases improves the

performance of the system. Since the LINPACK benchmark heavily relies upon vector

operations, use of the BLAS accelerator significantly improved performance over the

basic FPU.

Figure 7.1: LINPACK Results vs Matrix Size and Enabled Accelerator

Much of the occupied time in these tests is spent moving data between the

accelerator and the microprocessor. By placing the entirety of the matrix on the

accelerator and operating on it in-place, the performance is increased dramatically.

Due to the structure of the functions, this improvement is only achievable with the

BLAS tile as the output memory location is a variable of the input function.

Performance is extrapolated so that n = 100 to allow for comparison with

published results. With these results, the system can be estimated to have
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Figure 7.2: LINPACK Results vs Matrix Size and Enabled Accelerator with and
without data movement

approximately the performance of a Pentium Pro, which is roughly comparable to

a RAD750 in overall performance.
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RADIATION TOLERANT HARDWARE ANALYSIS

The system architecture was studied to allow for estimates to be calculated as to

the availability and mean time to failure that the general system architecture would

achieve in a space radiation environment. With these results, the different techniques

to achieve radiation hardness in FPGAs could be quantitatively compared.

Error Rate Analysis

Error rate for silicon based systems can be predicted through the use of an

exponential distribution. For this analysis the radiation strike rate is assumed to

be a Poison process where λ can be computed with CREME96 and device fabrication

parameters.

CREME96 Simulations

CREME96 is a simulation tool designed by Vanderbilt University and the United

States Navy. This tool is commonly used for simulating the radiation environment

inside Earth’s magnetosphere. While the tool does contain some data on deep space,

it is less accurate in this environment.

Environmental inputs for CREME96 include solar activity parameters (Kp or solar

wind/activity) and the orbital location. Device parameters input include the device

size, and the number of memory elements. Spacecraft shielding parameters are also

input into the simulation routines.

The error rate can then be calculated for the configuration memory and data

memory and the device error rates extracted in terms of either deviceErrors/deviceDay

or bitErrors/deviceDay.
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Computing Orbital Parameters

CREME96 orbital parameters are coded using McIlwain L-Parameters (also called

L-Shells). As the orbital environment is reliant on the Earths magnetic field, the

radiation environment in orbit is the same along the same magnetic field line. These

lines are named depending on their radius from Earths center using an ideal dipole

model (Figure 8.1).

Figure 8.1: Ideal Dipole Model for Earths Magnetic Field Lines and L-Shells

As earth is not an ideal dipole, this method has been expanded to utilize the same

concept with the International Geomagnetic Reference Field model (IGRF). This

model takes into account the magnetic fields dipping lower at the South Atlantic

Anomaly and models the magnetic field based on measured data.

In practice the higher of shells are compressed on the sun facing side due to the

effect of solar wind. This is added to the L-shell calculated with an external field

model which adds solar activity and day/night to the conversion between altitude

and L-Shell (Figure 8.2).
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Figure 8.2: Impact of Solar Wind on Earths Magnetic Field Lines

These parameters were computed for this research using an IRGF library, and

the satellite positions were computed using a Simplified General Perturbation (SGP)

library and publicly available two line element (TLE) files.

Parametric Device Error Rate Analysis

For systems lacking repair, the error rate and Mean Time between Failures

(MTBF) can be computed analytically using an exponential distribution. This

assumes that the errors are distributed according to a Poison process which is

commonly accepted as a valid distribution for radiation induced faults.

The exponential distribution is defined as having the probability density function:

f(t, λ) =

 λe−λt if t ≥ 0

0 otherwise
(8.1)

The probability of an error occurring in time t is then modeled as the cumulative

probability function:
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F (t, λ) =

 1− λe−λt if t ≥ 0

0 otherwise
(8.2)

The mean time to an error is the value t where F (t, λ) = 1
2

which simplifies to:

MTBF =
ln(2)

λ
(8.3)

For repairable cases, Markov chain models were developed. The exponential

distribution was used to validate the chains for non-repairable cases. This provided

a second technique to ensure the validity of the more advanced techniques.

Markov Reliability Analysis

Mathematical Model

To determine the failure rate for the system, a Markov chain was developed for

a simplex system, a TMR system, a TMR system with scrubbing as well as the

proposed TMR+scrubbing+spares system. The model was then run to determine

the probability of failure based on fault rates.

The Markov Chain was developed where the state transition probabilities were

entered in a square matrix Pr where [56]:

Pr(Xn+1 = x|X1 = x1, X2 = x2...) (8.4)

An initial state vector (x) was created, assuming the system always started in the

good state:

x(0) = [1, 0, 0, ..., 0]T (8.5)
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The state probabilities could then be computed for each time step with the

iterative procedure:

x(n+1) = x(n) ∗ P (8.6)

which is equivalent to:

x(n) = x(0) ∗ P n (8.7)

Mean time to system failure was modeled as the point where:

Pr(Xn|FAILED) = 0.5 (8.8)

To determine the availability, the long term state probabilities were then

approximated using:

x(n) = lim
n→∞

x(0) ∗ P n (8.9)

However, for this system at infinite time the probability of failure is 100%. To more

realistically model availability an external system watchdog circuit was simulated by

added a path in the Pr matrix from failed back to a good state (a watchdog timer)

with an associated probability of restart at each time step.

To estimate the fault rates for orbits, the fabrication node information and orbital

locations were found and CREME96 was used to compute the fault rates and entered

into this chain.

The system assumptions used in this simulation study were that the contact switch

to a spare tile was 2 ms, the scrubbing time was 100 ms and that the system was a

nine tile MicroBlaze system. In addition it was assumed that 70% of the area in a

tile was occupied by logic.
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Markov Chain with No Radiation Hardening

A simplex system model was the simplest Markov chain studied. In this

simulation, a MicroBlaze nine tile system was operated with a single tile and without

TMR or scrubbing activated so in the case of a fault the system transitions from

State 0 (Active) to State 1 (Faulted) [57].

Figure 8.3: Markov State Transition Diagram - Simplex System

Pr(Xn + 1) can then be generated where λ is the FPGA device fault rate.

Pr(Xn + 1) =

 1− λA∆T λA∆T

0 1

 (8.10)

Markov Chain with TMR

This simulation implements the tiled system with a TMR. The system operates

normally until such time as two errors have occurred. This should result in an

improved reliability of the system but will not improve the MTBF due to the increased

area occupied by this system [57].

The transition matrix for this configuration is modeled as:

Pr(Xn + 1) =


1− 3λA∆T 3λA∆T 0

0 1− 2λA∆T 2λA∆T

0 0 1

 (8.11)
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Figure 8.4: Markov State Transition Diagram - TMR System without scrubbing

Markov Chain with TMR and Scrubbing

For the third simulation the system was operated in TMR mode with a memory

scrubber. To fail, the system must experience two failures prior to a scrub event

completing. This scrubbing activity causes MTBF to increase as the system will

continue to operate as long as two faults do not occur during the repair time, rather

than two faults during overall system operation.

Figure 8.5: Markov State Transition Diagram - TMR System with scrubbing

With this Pr(Xn + 1) can be generated where State 0 = Active, State 1 = One

Tile Faulted and State 2 = Failure [57]. The variable R is the scrubber repair rate.

Pr(Xn + 1) =


1− 3λA∆T 3λA∆T 0

µ∆T 1− 2λA∆T − µ∆T 2λA∆T

0 0 1

 (8.12)
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Due to the limited FPGA resources available in the development hardware, this

was the radiation hardening technique used for the implemented system.

Markov Chain with TMR, Scrubbing and Spares

The final Markov chain was a TMR+Scrubbing+Spares system with nine total

tiles. In the case of a fault, the system rapidly switches the faulted tile to a spare and

reduces the number of spares. The system must either experience two faults prior

to processor swap completing or run out of spares to result in the failure state being

observed. This further improves MTBF by decreasing the effective repair time while

the system has spares available.

This Markov chain adds the concept of a fast context switch between tiles noted

by the variable ν, measured in ContextSwitches/∆T .

The FPGA used for this research lacked sufficient resources to implement this

technique. The system was designed such that future hardware revisions can use this

technique instead of TMR+Scrubbing to further improve reliability.

The initial good state is modeled as [57]:

Pr(Xn + 1, good) =


1− 3λA∆T 3λA∆T 0

µ∆T 1− 2λA∆T − µ∆T 2λA∆T

0 0 1

 (8.13)

From a spare fault state, the transition to repair the fault is modeled as:

µ∆T (8.14)
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The probability of transitioning to a fault on an active tile is:

#ActiveλA∆T (8.15)

And the probability of encountering a strike on an additional spare tile is modeled

as:

#SparesλA∆T (8.16)

From an active tile fault, the probability of a context switch to a spare tile is:

ν∆T (8.17)

While the probability of an additional fault on an active tile failing the system is:

2λA∆T (8.18)

The probability of a strike on a spare tile prior to a context switch is also modeled

as:

#SparesλA∆T (8.19)

For all states, the probability of remaining in the same state is defined such that

the sum of all probabilities of the state is equal to 1.

Results

The Markov models were run with the CREME96 fault rates for a number of

orbital conditions to estimate the MTBF and availability of the systems.

The simulation shown in Figure 8.7 shows that for an orbit during average

solar conditions in a low earth orbit, the use of either TMR+scrubbing or
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Figure 8.6: Markov State Transition Diagram - TMR with Spares and Scrubbing
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Figure 8.7: Mean time between failures for the system in a LEO orbit during average
solar conditions

TMR+scrubbing+spares is sufficient to result in a near infinite mean time to

failures. Use of any system lacking scrubbing results in a MTBF which would not be

appropriate for any mission as the system would require restarts on average of twice

per day.

Figure 8.8: Mean time between failures for the system passing through the SAA in a
LEO orbit during average solar conditions
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Figure 8.8 shows the predicted mean time to failure for FPGA systems operating

in the South Atlantic Anomaly during average solar conditions.

Figure 8.9: Mean time between failures for the system in the worst orbital section
during the worst week of a solar maximum in an ISS orbit

During worst week of the solar max conditions (Figure 8.9) MTBF values are

decreased dramatically. In this situation the systems without scrubbers fail instantly,

while TMR+Scrubbing only survives 1.35 minutes. TMR+Scrubbing+Spares

continues to operate for over an hour resulting in a far greater likelihood of the

computer surviving the flare condition.

In the simulation shown in Figure 8.10, the system is being subjected to an intense

flare while in the SAA. None of the systems are capable of operating under these

conditions and the system would need to be restarted by a harder watchdog circuit

after the event.

These results show that during average solar conditions a simple TMR+Scrubbing

system is capable of providing the necessary radiation hardening for operation in a

LEO orbit. During worst case situations, the TMR+Scrubbing+Spares has a greater

lifetime and is more likely to survive the transit through the worst case portions of
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Figure 8.10: Mean time between failures for the system in the worst orbital section
during the worst 5 minutes of a solar flare in an ISS orbit.

the orbit without failing. The addition of the fast context switches is a significant

improvement and allows the system to respond as though the partial reconfiguration

operation was much faster.

The Markov chains were also run to determine the operating availability of the

systems. For these simulations a two minute watchdog counter was added to the

model to allow for recovery in the case of complete system failure, and long term

values were found for the states in which the system is processing data.

Figure 8.12 shows that the decrease in time involved to switch to a new tile

in the TMR+Spares+Scrubbing system results in the system having much greater

availability during periods of moderately high solar activity and would likely be able

to meet the computational needs of the mission.

The simulation shown in Figure 8.13 shows that the non-redundant system

very loses its high availability when any significant SEE rate is present. The

TMR+Scrubbing system maintains availability until SEE rates exceed 1 SEE/ms.
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Figure 8.11: Simulation of the MTBF for the different systems studied vs fault rate

The TMR+Scrubbing+Spares system by comparison, achieves high availability until

SEE rates exceed 20 SEEs/ms.

The availability of the system is improved over the alternative options due to the

processing being continued after a short context switch rather than waiting for a PR

operation to complete. This effect is especially dramatic as fault rates increase. Use

of a non-redundant system is shown to not be a viable solution to operate in any

radiation prone environment.



84

Figure 8.12: Comparison of system reliability vs fault rate

Figure 8.13: Simulation showing estimated fault rate vs reliability

The TMR+Scrubber+Spares architecture has higher availability and reliability

than conventional FPGA TMR techniques and make the system a viable solution for

allowing the use of the computational abilities of FPGAs in harsh environments.
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Orbital Fault Injection Simulator

To bench test the reaction of the system for realistic orbits a test routine

was developed to model the error rate and frequency of radiation strikes in earth

orbits. Using CREME96 data, orbital simulations, and magnetic field line solvers

we were able to both compute satellite orbits and approximate the error rate at

that location in orbit. By running this simulation connected to a hardware fault

injector the system’s ability to respond to radiation can be demonstrated in realistic

environmental conditions.

The CREME96 data and the orbital mechanics were programmed into a PC based

interface to inject faults into the tile FPGA (Figure 8.14). In the case of an error the

system communicated the presence of a fault to the Spartan-6 control FPGA through

a serial link. This system could also induce FPGA faults through the FPGA sensors

and monitor system parameters such as voltage and temperature.

Figure 8.14: Orbital Radiation Fault Injection GUI with radiation sensors for a nine
tile MicroBlaze System
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SYSTEM POWER AND PERFORMANCE ANALYSIS

Introduction

Performance and power are broken into two sections, the steady state performance

of the microprocessor with a chosen accelerator and the time and power required to

configure the accelerator. Should the system consume more power than is saved by

using acceleration hardware, or if the hardware consumes more time than is saved,

the acceleration hardware is not advantageous. This section provides an analysis of

this power/time/hardware tradeoff.

Ideally, the system can perform any operation with the microprocessor given

enough time and the total power consumption is represented by the area under the

curve (Figure 9.1). When the microprocessor has completed its operation it returns

to a low power state.

Figure 9.1: Expected power consumption with only a microprocessor
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When using acceleration hardware, this analysis is modified to have a partial

reconfiguration time followed by a shorter, higher power computation time and the

system returning to an idle state (Figure 9.2). As long as the area under the partial

reconfiguration and computation section is smaller than the microprocessor-only

section, the partially reconfigurable hardware is advantageous in the total system

operations.

Figure 9.2: Expected power consumption with only a partially reconfigurable
hardware accelerator

Simplex System

Design Layout

The system and accelerators were placed on the FPGA fabric in separate tiles

to allow for the tiles to be configured independently. This system layout has the

potential for the greatest performance and resource utilization, but has limited

radiation hardening due to the lack of TMR and no resource sharing.



88

Figure 9.3: Block Diagram of a partially reconfigurable system with hardware
accelerators

Figure 9.4: Floorplan of a partially reconfigurable system with hardware accelerators
implemented on the Virtex-6 FPGA
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Figure 9.5: Measured power consumption showing power consumed by the PR
operation and power saving by eliminating unnecessary acceleration hardware

This data was analyzed and added to a MATLAB simulation. By running this

model, the power consumption of the system under different operating systems can be

quickly analyzed. To initially verify the model, the same operating conditions as the

test conditions was simulated. This allows for average power to be quickly estimated

and for the power consumption to be determined without requiring extensive lab

tests.
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Figure 9.6: Simulation of the power consumption showing power consumed by the
PR operation and power saved by eliminating unnecessary acceleration hardware

Partial Reconfiguration Timing
and Power Consumption

The initial analysis was of the time and power consumed by the partial

reconfiguration task. The reconfiguration time can be modeled by computing the

time to read the bitstream from for the Spartan-6 to read the bitstream from the

SD card and the time to write the bitstream from the Spartan-6 to the Virtex-6

configuration memory.



91

The average power consumption for the configuration is a product of the SD card

read time and power as well as the configuration interface write time and power:

Pconfig = Pconfig ∗ TwriteSelectMap + Pconfig ∗ TreadSD (9.1)

The reconfiguration timings were measured to program the full bitstream and

partial bitstreams for the Virtex-6 and these values were measured and recorded in

Table 9.1:

Table 9.1: Power and Time for FPGA Configuration

Time [sec] Average Power [W]
Full Reconfiguration 2.139 0.119
Partial Reconfiguration 0.233 0.089

In addition the power consumed for the system with the un-programmed Virtex-6

and the different programming modes was recorded.

Table 9.2: Power Consumed to Perform Full Reconfiguration

Un-Programmed Full Reconfiguration Difference
mA mW mA mW mA mW

3.3V 90 297 90 297 0 0
2.5V 30 75 60 150 30 75
1.8V 80 144 60 108 -20 -36
1.0V S6 80 80 120 120 40 40
1.0V V6 390 390 410 410 20 20
Total 986 1085 119

As the power consumption on the Virtex-6 during partial reconfiguration is

dependent on the design running on the remainder of the chip, the difference

introduced by this operation was measured.
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Table 9.3: Power and Time for FPGA Configuration

∆ Current [mA] ∆ Power [mW]
3.3V 0 0
2.5V 30 75
1.8V -20 -36
1.0V S6 30 30
1.0V V6 20 20
Total 89

From these tests, performing a full FPGA reconfiguration consumes 119mW of

additional power over an idle Virtex-6, and performing a partial reconfiguration

consumes an additional 89 mW.

System Power Analysis

During the operation of the FPGA design, the power consumption can be modeled

on a tile by tile basis. Average power consumption was measured for each tile type

when in idle or active states.

Table 9.4: Power consumed by the tiles based on activity

Tile Type Average Power
Unconfigured 410 mW
MicroBlaze Tile +490 mW
FPU Tile +50 mW
BLAS Tile +70 mW

With this data having been collected, the system power consumption during

runtime can be approximated by summing the respective tiles and tile states where

system supports where n = 9 for the implemented system and Pother includes the

non-tile related FPGA logic, including the DCM and tile interconnects.
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Poperation = toperation ∗ Pother +
n∑

tiles=1

t ∗ PtileState (9.2)

Performance Analysis

To model the timing performance improvements of the system, an average

performance improvement for each tile was found and averaged from Chapter 5.

Table 9.5: Potential Speedup vs Tile Type

Tile Type MFLOPS Speedup
MicroBlaze Tile 0.4 1
FPU Tile 5.6 14
BLAS Tile 10.8 27

The performance improvement provided by the tile can then be modeled using

Amdahls law where [58]:

Speedup =
ExecutionT imeold
ExecutionT imenew

(9.3)

The point where the new system exceeds the performance of the old system is then

where the ratio is equal to 1. A speedup less than 1 indicates a loss of performance

and a speedup ratio greater than 1 is an improvement in system performance.

With this data, the system speedup with partial reconfiguration can be found

dependent on the number of floating point operations as:

Speedup =
n ∗ FLOPSnoAccel

n ∗ FLOPSaccel + TPR
(9.4)

This data shows that for small numbers of operations the partial reconfiguration

overhead is not practical, but as n increases the speedup becomes substantial.
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Table 9.6: Speedup vs tile type with partial reconfiguration time

Speedup
Tile Type n=1 n = 1e3 n = 1e6 n = 1e9
MicroBlaze Tile 1 1 1 1
FPU Tile 1.235e-5 1.24e-2 1.26 1.34
BLAS Tile 1.235e-5 1.24e-2 2.22 2.70

Figure 9.7: Speedup achieved vs the MicroBlaze using accelerators based on number
of floating point operations with partial reconfiguration time

System Analysis

Combining the processing time and state analysis with the performance analysis,

Figure 9.8 can be generated to show the conditions under which tiles will result

in improved performance, reduced power consumption or both. Depending on the

implementation details of the hardware, this tradeoff point will vary. Once online,

the FPU and BLAS tiles use dramatically less power to perform operations.

The assumption in figure 9.8 that the MicroBlaze is idle while the partial

reconfiguration is occurring can be avoided in many situations by requesting the tile

prior to it being required. In this case, the MicroBlaze can be occupied on another
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Figure 9.8: Power consumed for an operation on the simplex system

required task and the idle power from the time is not counted against the total power

to complete this operation. If this can be achieved, the power penalty is greatly

reduced (Figure 9.9).

Figure 9.9: Power consumed for an operation normalized to the MicroBlaze processor
time without the microprocessor idle power during PR counted in the total operation
power consumption



96

The power required to perform the operation compared to the MicroBlaze is shown

in Figure 9.10. This demonstrates that power can be conserved through use of the

additional specialized hardware.

Figure 9.10: Power consumed for an operation normalized to the MicroBlaze processor

Finally, the power efficiency per MFLOP of computation was performed (Figure

9.11). This analysis shows that as the number of operation increases, the power

efficiency increases for all but the MicroBlaze system. This is due to the increased

performance of the accelerator tiles being more efficient per operation, but requiring

a fixed amount of power to start.

Power Consumption vs Fault Rate

In the final analysis the simplex system was simulated to evaluate the power

increase caused by performing partial reconfiguration on the tiles at varying rates.

For reconfiguration rates sufficient to manage realistic space radiation environments

the additional power required by the system is negligible.
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Figure 9.11: Power efficiency for the TMR system vs the size of the operation in
MFLOPS

Figure 9.12: Power consumed by the system based on partial reconfiguration rates

MicroBlaze System Analysis with Accelerators and TMR

Design Layout

After initial analysis and development was completed on the simplex system, a

TMR version of the design was developed using three MicroBlaze processors and

agnostic acceleration tiles.
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Figure 9.13: Block Diagram of a partially reconfigurable TMR system with hardware
accelerators

Figure 9.14: Floorplan of a TMR MicroBlaze partially reconfigurable system
implemented on the Virtex-6 FPGA
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While this system is functionally similar to simplex system, the increased device

utilization required relaxed timings to be implemented, slowing the overall system

performance.

Figure 9.15: Measured power consumption showing power consumed by the PR
operation and power saving by eliminating unnecessary acceleration hardware on
a TMR system

System Power Analysis

Due to the greater resource utilization of this device, timing constraints needed

to be relaxed to meet timing. This leads to reduced power consumption on a tile by

tile basis for the tested system.

The reconfiguration task consumed the same power as the simplex system, but

due to the triplicated hardware required three times longer to perform the task.
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Figure 9.16: Simulation of the power consumption showing power consumed by the
PR operation and power saving by eliminating unnecessary acceleration hardware in
a triplicated system

Table 9.7: Power consumed by the tiles based on activity for the TMR system

Tile Type Average Power
Unconfigured 410 mW
MicroBlaze Tile +280 mW
FPU Tile +100 mW
BLAS Tile +160 mW

Performance Analysis

The slower clock rates of this system necessitated recalculating the performance

achievable by the tiles. The MicroBlaze was reduced to 125MHz while the FPU and

BLAS clocks were reduced to 300MHz.
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Table 9.8: Potential Speedup vs Tile Type for the TMR system

Tile Type MFLOPS Speedup
MicroBlaze Tile 0.3 1
FPU Tile 4.2 14
BLAS Tile 8.1 27

When longer partial reconfiguration times were added, this resulted in (Table 9.9):

Table 9.9: Speedup vs tile type with partial reconfiguration time for the TMR system

Speedup
Tile Type n=1 n = 1e3 n = 1e6 n = 1e9
MicroBlaze Tile 1 1 1 1
FPU Tile 1.8e-5 1.78e-2 1.39 1.51
BLAS Tile 1.8e-5 1.24e-2 2.51 2.92

The result of this accelerator’s performance vs data size are very similar to the

earlier case. The additional partial reconfiguration time required to reconfigure three

tiles increases the data size required to offset the bitstream swap making it less

advantageous unless large amounts of data are required.

System Analysis

The tradeoff point for power is also greatly increased by the partial reconfiguration

time. Once online the efficiency of the accelerator tiles uses far less power per floating

point operation.

Compared as a ratio to the MicroBlaze’s power consumption, it is apparent

that the accelerator systems can result in lower system power consumption in some

instances.
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Figure 9.17: Speedup over the MicroBlaze using accelerators based on number of
floating point operations with partial reconfiguration time for the TMR system

Figure 9.18: Total power consumed for an operation vs the acceleration hardware
available on the TMR system

Lastly the efficiency per MFLOP was computed for the TMR system. This system

like in the simplex case showed that computation efficiency is increased using the

accelerators, but that efficiency is initially reduced due to the power consumed during

the partial reconfiguration phase.
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Figure 9.19: Power consumed for an operation normalized to the MicroBlaze processor
for the TMR System

Figure 9.20: Power efficiency for the TMR system vs the size of the operation in
MFLOPS

Both systems were helped by available accelerators. Should the system need to

wait for the acceleration hardware to become available, the dataset required becomes

large. The performance per watt characteristics, do show the validity of the concept

if the program can be written to pre-configure the FPGA tiles.
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CONCLUSION AND FUTURE WORK

This research showed the design of a design and construction of a radiation

hardened FPGA computer system utilizing partially reconfigurable accelerator

hardware tiles. This fills a gap in currently available knowledge about using FPGAs

in extreme environments. While FPGAs are a topic of interest for these situations,

the practical implementation of such a system and the analysis of it is still an area of

growing knowledge.

The system was further analyzed to mathematically verify failure rates in the

harsh space radiation environment. In-situ and synthetic environmental testing done

to date has verified the hardware can operate both mechanically and electrically in

the desired environments.

In addition, this research shows an analysis of how partially reconfigurable

accelerators impact system performance and power efficiency. This demonstrates

and validates that FPGAs using partially reconfigurable accelerators can result in

lower cost, high performance radiation computers with improved power efficiencies

when compared to existing alternatives.

The hardware designed for this research greatly improves the amount of

computational power available for small form factor CubeSats at the cost of increased

overall power consumption over the common embedded, non-radiation hardened

processors commonly used. The performance of the system also approaches that of

the larger, high performance RAD750 processor, while achieves higher performance

per watt (Table 10.1).

The FPGA MicroBlaze system performance metrics are under-estimated in Table

10.1, as these metrics do not include custom designed hardware accelerators which

cannot be fairly applied to the Dhrystone benchmark.
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Table 10.1: Performance comparison between the designed MicroBlaze based system,
the RAD750 and common CubeSat processor boards

RAD750 RAD750 MicroBlaze SI 8151 PIC 24F dsPIC33 MSP430
Core Speed 200MHz 132MHz 180MHz 100 MHz 16 MHz 80 MHz 25 MHz
Bus Width 32 bit 32 Bit 32 bit 8 bit 16 bit 16 bit 16 bit
RHBP X
RHBD X
RHBA X
FLASH/EEPROM 4MB 4MB 128KB 256KB 256KB 116KB
uP RAM/Cache 1MB 1MB 64 KB 8KB 16KB 30KB 8KB
External RAM 4-128MB 4-128MB 1GB
DMIPS 400 260 234 20 24 92 25
Power 10-25W 10-25W 1.5-2W 195mW 66mW 297mW 9.9mW

The primary obstacle this research demonstrated for achieving power savings

through PR and accelerator tiles is in hiding the reconfiguration time for the system.

Only if this time can be hidden or in the case of large computations do the power

and performance improve over a microprocessor system.

Future work for this research is largely dependent on additional RAM that will

be present in the next revision of the hardware stack. This will allow for larger

matcicies to be computed and larger values of n for the LINPACK benchmarking.

In addition, development was started on a startracking algorithm (Appendix B), but

limited memory prevented its full development and testing.

This research is also being integrated into the development of a 3U CubeSat as a

technology demonstration to show the techniques operating in the space environment

(Figure 10.1).
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Figure 10.1: Solidworks Rendering of preliminary 3U Cubesat Design
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TCM8240 CAMERA INITIALIZATION



116

Table A.1: Toshiba TCM8240 JPEG Mode Initialization Sequence

Address Value Operation
0x02 0x00 Camera on
0x02 0x40 Reset camera
0x02 0x00 Camera on
0x03 0xC7 Enable PLL Mode 7
0xE9 0x10 Q Table Gain (Image Quality)
0xEA 0x10 Q Table Gain (Image Quality)
0x24 0x5E Unknown, but necessary
0x01 0x00 Unknown, but necessary
0xF1 0x02 DRI
0x04 0xC0 Set the image size
0x0B 0x00 Disable the whitebar
0x52 0x50 Set the exposure mode
0x58 0x30 Set the exposure time
0x32 0x8C Automatic picture correction
0x05 0x80 Set the Frame Speed
0x1A 0xB3 HCNT (low byte)
0x1B 0x3B HCNT (high nibble) VCNT (low)
0x1C 0x21 VCNT (high byte)
0x11 0x48 Unknown, but necessary
0x14 0x23 Reduces image noise
0x1E 0x87 SPCOUNT (low byte)
0x1F 0x0B SPCOUNT (high byte)
0xE6 0x00 Unknown, but necessary
0x0E 0x00 Center image horizontally
0x48 0x85 Auto Level Control Enable
0x4A 0x48 Auto Level Control Mode
0x6D 0x48 Auto White Balance Enable and Mode
0x38 0x00 AGMIN PPED
0x39 0xFF AGMAX PPED
0x5A 0x00 AGMIN
0x5B 0xFF AGMAX
0x23 0x00 Changes BGR to RGB mode
0x81 0x48 Red-Green Balance
0x82 0x22 Blue-Green Balance
0xB8 0x9F Gamma Correction
0xEF 0x3F JPG Encoder Options
0xEE 0x3F JPG Encoder Options
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Table A.2: Toshiba TCM8240 Bitmap Mode Initialization Sequence

Address Value Operation
0x02 0x00 Camera on
0x02 0x40 Reset camera
0x02 0x00 Camera on
0x03 0xC1 Enable PLL Mode 1
0x04 0x8A Set the image size
0x0B 0x00 Disable the whitebar
0x52 0x50 Set the exposure mode
0x58 0x30 Set the exposure time
0x32 0x8C Automatic picture correction
0x05 0x80 Set the Frame Speed
0x1A 0xFF HCNT (low byte)
0x1B 0xB3 HCNT (high nibble) VCNT (low)
0x1C 0xA1 VCNT (high byte)
0x11 0x4A QVGA Setting
0x14 0x23 Reduces image noise
0x1E 0x23 SPCOUNT (low byte)
0x1F 0x0C SPCOUNT (high byte)
0x0E 0x00 Center image horizontally
0x48 0x85 Auto Level Control Enable
0x4A 0x48 Auto Level Control Mode
0x6D 0x48 Auto White Balance Enable and Mode
0x38 0x00 AGMIN PPED
0x39 0xFF AGMAX PPED
0x5A 0x00 AGMIN
0x5B 0xFF AGMAX
0x23 0x00 Changes BGR to RGB mode
0x81 0x48 Red-Green Balance
0x82 0x22 Blue-Green Balance
0xB8 0x9F Gamma Correction
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APPENDIX B

STAR TRACKING GYROSCOPE
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Background

To test the system with a more realistic application, a star tracking gyroscope

algorithm was developed and tested for the system. This consisted of the system

collecting an image, identifying stars and the relationships between them, and using

subsequent images to determine the transition of the system compared to its initial

location. This application utilizes the camera, floating point operations, and matrix

operations in rapid succession allowing for testing of all three system accelerators

with a single commonly required software application.

Figure B.1: Startracker procedure vs accelerator type

The initial step in star tracking is to collect an image from the camera on the

hardware stack using the camera tile.

Once the initial image has been collected the image is filtered with a threshold

detector to filter noise, dust and small stars.
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After the image has been threshold filtered, the starts are located by sweeping the

image with a filter to detect the center of the stars, which appear as white circles in

the image. These xy coordinates are then processed in the remainder of the procedure.

After a second image is collected and processed, the several stars are picked at

random from the image. These are corralled with the previous image by finding the

xy with the minimum vector distance between the images and the gyroscopic motion

is computed.

Mathematical Model

The image is collected by the camera as a grayscale bitmap stored in an array

IMG.

The threshold image filter if run on the image is defined as:

IMG = IMG > threshold (B.1)

The star centers are then located and the xy coordinates are stored in the matrix

star where each row of star contains [ starXn starYn ].

To correlate the new star’s position with its previous location the minimum vector

distance between the desired star’s previous image location and the current location

of all stars is computed.

starCorr+n = arg min
n

(‖star − starn‖2) (B.2)
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Once the stars have been located and correlated between images, the slope of the

tangent line associated with a line between the correlated stars are computed by:

mstar =
∆X

∆Y
(B.3)

An overdefined system of equations is then created to locate the intersection of

the tangent lines which is equivalent to the center of rotation for the image:



Y1 +m1 ∗X1

Y1 +m1 ∗X1

...

Yn +mn ∗Xn


=



m1 1

m1 1

...
...

mn 1


 Xcenter

Ycenter

 (B.4)

The result of solving this system of equations is the location of the center of

rotation movement observed between the frames.

The rotation of the image is then normalized through solving the system of

equation to find the intersection, and a finite difference approach, translating the

image in x and y (pitch and yaw) to center to observed rotation in the center of the

image.

The result of this process allows the yaw to be computed with:

φ = arctan

(
∆X

viewfieldX rad

)
(B.5)

The pitch is computed with:

θ = arctan

(
∆Y

viewfieldY rad

)
(B.6)
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Figure B.2: Star tracker showing a mis-centered center of rotation

And the roll can be computed with:

ψ = 2 ∗ arctan

(
X

Y

)
(B.7)

Once differences are computed, the data is feed into a Kalman filter to reduce the

noise and increase the accuracy of the tracking data. This also serves to eliminate

noise issues where stars are detected improperly in one set of frames and allow the

long term observations to correct for this error. In addition, once initialized the

Kalman filters output can be used to guess roll, pitch, and yaw, reducing the chance

mis-correlating the observed stars.

The mathematical model for the traditional Kalman Filter is used where the state

estimate is defined as:

xk|k−1 = Fkxk−k|k−1 +BkUk−1 (B.8)
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Figure B.3: Star tracking algorithm with displacements to normalize the rotation
around the z axis

and the predicted covariance is:

Pk|k − 1 = FkPk−1|k−1F
T
k +Qk (B.9)

The update procedure is then to update the innovation parameter:

yk = zk −Hkxk|k−1 (B.10)

and the innovation covariance:

Sk = HkPk|k−1H
T
k +Rk (B.11)
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The optimal Kalman gain is then computed by:

Kk = Pk|k−1H
T
k S
−1
k (B.12)

The state estimate is then updated with:

xk|k−1 +Kkyk (B.13)

and the covariance estimate is updated by:

Pk|k = (I −KkHk)Pk|k−1 (B.14)

MATLAB Implementation

The algorithm was initially developed and tested in a MATLAB simulation.

A simulated starfield was generated with randomly placed stars. Each star was

represented as a 2-dimensional Gaussian distribution. The script then rotated

the simulated starfield by a known amount and the rotation and translation was

computed.

Yellow circles are the previous frame location of the star, the red is the current

frames location of the detected star, and the blue circle denotes the location of the

star after the center of rotation is fixed to the center of the image frame.

With this filtering, the Kalman output reduced the noise and converged towards

the simulated rotation rate. This output could then be integrated into the next time

step to reduce the search space.
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Figure B.4: MATLAB Simulated Star Tracking Algorithm

Figure B.5: MATLAB Simulated Star Tracker roll angle after Kalman filtering
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Matlab Code

%% Global Var i ab l e s

xlim = 1024 ;

ylim = 1024 ;

maxStars = 40 ;

m = 7 ;

%% Generate a s t a r f i e l d

img = zeros ( ylim , xlim ) ;

%random no i s e in the image

img = 1.2∗ rand ( ylim , xlim ) ;

%generate the s t a r s

for ind = 1 : maxStars

%random s t a r l o c a t i o n

x = round( xlim∗rand ) ;

y = round( ylim∗rand ) ;

%random s t a r s i z e

i n t e n s i t y = rand ;

%random s t a r s i z e

sigma = 20∗rand ;
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%generate the s t a r

for xind = (x−12) : ( x+12)

for yind = (y−12) : ( y+12)

t ry

img ( yind , xind ) = img ( yind , xind ) + m∗exp(−((

xind − x ) ˆ2 / (2∗ sigma ) +(( yind−y ) ˆ2/(2∗

sigma ) ) ) ) ;

end

end

end

end

%show the r e s u l t i n g s t a r f i e l d

f igure (1 )

imagesc ( img )

colormap (gray ) ;

axis square

%% f ind the s t a r s . . . .

%Threshold the data so I ’m only l ook ing at br i gh t ob j e c t s

thImg = img>5;

imagesc ( thImg )
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axis square

xCenter = zeros ( ylim , xlim ) ;

yCenter = zeros ( ylim , xlim ) ;

xStarWidth=0;

yStarWidth=0;

%Then step through the image and f i nd the c en t e r s

for yind = 1 : ylim

for xind = 1 : xlim

%x cen t ro id

i f ( thImg ( yind , xind ) == 1)

xStarWidth = xStarWidth+1;

else

i f ( xStarWidth>0)

t ry

xCenter ( yind , xind − round ( ( xStarWidth ) /2)

) =1;

end

xStarWidth = 0 ;

end

end

%y cen t ro id

i f ( thImg ( xind , yind ) == 1)
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yStarWidth = yStarWidth+1;

else

i f ( yStarWidth>0)

t ry

yCenter ( xind − round ( ( yStarWidth ) /2) , yind

) =1;

end

yStarWidth = 0 ;

end

end

end

end

%then ex t r a c t the p o s i t i o n s

[ starPosX , starPosY ] = find ( xCenter .∗ yCenter == 1) ;

%% Rotate and t r a n s l a t e to make a 2nd image

imgR = imrotate ( img , 2 ) ;

img2 = imgR(9:1024+8 ,11:1024+10) ;

%% Find the s t a r s again

%Threshold the data so I ’m only l ook ing at br i gh t ob j e c t s

thImg = img2>5;
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imagesc ( thImg )

axis square

xCenter = zeros ( ylim , xlim ) ;

yCenter = zeros ( ylim , xlim ) ;

xStarWidth=0;

yStarWidth=0;

%Find the s t a r c en t e r s again

for yind = 1 : ylim

for xind = 1 : xlim

%x cen t ro id

i f ( thImg ( yind , xind ) == 1)

xStarWidth = xStarWidth+1;

else

i f ( xStarWidth>0)

t ry

xCenter ( yind , xind − round ( ( xStarWidth ) /2)

) =1;

end

xStarWidth = 0 ;

end

end

%y cen t ro id
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i f ( thImg ( xind , yind ) == 1)

yStarWidth = yStarWidth+1;

else

i f ( yStarWidth>0)

t ry

yCenter ( xind − round ( ( yStarWidth ) /2) , yind

) =1;

end

yStarWidth = 0 ;

end

end

end

end

%then ex t r a c t the p o s i t i o n s

[ starPosXn , starPosYn ] = find ( xCenter .∗ yCenter == 1) ;

%% Calcu la te the disp lacement / r o t a t i on between frames

maxNodes = 4 ;

%randomly pick the s t a r s to use

s ta r Index = randsample ( 1 : length ( starPosX ) , maxNodes ) ;

de l tax = 0 ;
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de l tay = 0 ;

for aaa = 1:50

%f ind the new l o c a t i o n o f a s t a r

for s t a r = 1 : maxNodes

[ ˜ , i x ] = min( sqrt ( ( starPosX ( s ta r Index ( s t a r ) ) −

starPosXn ) .ˆ2+( starPosY ( s ta r Index ( s t a r ) ) −

starPosYn ) . ˆ 2 ) ) ;

dx ( s t a r ) = starPosYn ( ix ) − starPosY ( s ta r Index ( s t a r ) )+

de l tax ;

dy ( s t a r ) = starPosXn ( ix ) − starPosX ( s ta r Index ( s t a r ) )+

de l tay ;

starX ( s t a r ) = starPosX ( s ta r Index ( s t a r ) ) ;

starXn ( s t a r ) = starPosXn ( ix )+de l tax ;

starY ( s t a r ) = starPosY ( s ta r Index ( s t a r ) ) ;

starYn ( s t a r ) = starPosYn ( ix )+de l tay ;

i f ( dx ( s t a r )>10)

s t a r = star −1;

end

end

%ca l c u l a t e the cent e r o f r o t a t i on

% f i nd the s l op e s
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for s t a r = 1 : maxNodes

de l t aS l ope ( s t a r ) = ( starX ( s t a r )−starXn ( s t a r ) ) / (

starY ( s t a r )−starYn ( s t a r ) ) ;

end

%draw the l i n e s . . . .

for s t a r = 1 : maxNodes

l ine ( [ starY ( s t a r ) , starYn ( s t a r ) ] , [ starX ( s t a r ) ,

starXn ( s t a r ) ] , ’ c o l o r ’ , ’ c ’ )

end

% get the equat ion o f the tangent l i n e s and cente r po in t s

tanSlope = de l t aS l ope .ˆ−1;

tanX = mean ( [ starY ; starYn ] ) ;

tanY = mean ( [ starX ; starXn ] ) ;

%generate a system o f equat ion and f i nd the i n t e r s e c t i o n

o f the tanget

%l i n e s ( the cent e r o f r o t a t i on )

sysEqu = [ ] ;

for s t a r = 1 : maxNodes

sysEqu = [ sysEqu ; tanSlope ( s t a r ) , 1 , tanY ( s t a r ) +

tanSlope ( s t a r )∗tanX ( s t a r ) ] ;

end
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i n t e r s e c t P t = inv ( ( sysEqu ( : , 1 : 2 ) ’ ) ∗ sysEqu ( : , 1 : 2 ) )∗ sysEqu

( : , 1 : 2 ) ’∗ sysEqu ( : , 3 ) ;

i f sum( isnan ( i n t e r s e c t P t ) )

s ta r Index = randsample ( 1 : length ( starPosX ) , maxNodes ) ;

end

for s t a r = 1 : maxNodes

text ( starY ( s t a r ) , starX ( s t a r ) +25,num2str( s t a r ) , ’ c o l o r ’

, ’ white ’ ) ;

l ine ( [ tanX ( s t a r ) , i n t e r s e c t P t (1 ) ] , [ tanY ( s t a r ) ,

i n t e r s e c t P t (2 ) ] )

end

hold o f f

A = sqrt ( ( starX−tanY ) .ˆ2 + ( starY−tanX ) . ˆ 2 ) ;

B = sqrt ( ( tanY−512) . ˆ2 + ( tanX−512) . ˆ 2 ) ;

theta = mean( 2∗atan (A. /B) ∗ 180/pi ) ;

de l tax = de l tax − ( i n t e r s e c t P t (1 )−512) /100 ;

de l tay = de l tay + ( i n t e r s e c t P t (2 )−512) /100 ;

i f ( sum( ( i n t e r s e c t P t − 512) . ˆ 2 ) )<.01
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break ;

end

end

disp ( [ ’ Delta x = ’ , num2str( de l tax ) ] )

disp ( [ ’ Delta y = ’ , num2str( de l tay ) ] )

disp ( [ ’ Delta Theta = ’ , num2str( theta ) ] )
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APPENDIX C

MATLAB CODE FOR MARKOV RELIABILITY MODELS
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%% Simulat ion Parameters

Str ikeRate = 1 . 1 0 7 5 ; % Values in 10ˆn s t r i k e s /

second

TimeLimits = [ −5 ,2 ] ; % Values in 10ˆn hours

T i l e s = 9 ; % Number o f system t i l e s

PercentUta l i z ed = 1 ; % Percent o f hardware

s e n s i t i v e

ContextSwitch = 1 . 1 ; % Context Switch Time in ms

TilePRTime = 100 ; % PR Scrub time in ms

dera t ing = . 8 5 ; % Percent that cause a SEE

%% Simulat ion Var iab l e s

s t r i k e sPerDayL i s t = Str ikeRate ∗PercentUta l i z ed ∗ dera t ing ∗7e−4;

t imeL i s t = logspace ( TimeLimits (1 ) , TimeLimits (2 ) ,1000) ∗60∗60;

f a i l u r e P r o b = [ ] ;

A = 1/ T i l e s ∗ PercentUta l i z ed ;

mu = 1/TilePRTime ;

nu = 1/ ContextSwitch ;

%% Run the s imu la t i on f o r a l l S t r i k e Rates

for sInd = 1 : length ( s t r i k e sPe rDayL i s t )

lambda = st r i k e sPerDayL i s t ( sInd ) ;

%% State t r a n s i t i o n p r obab i l i t y matrix − TMR + Spares

p = zeros (29 ,29) ;
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%n1 (Good)

p (3 , 1 ) = 3∗A∗ lambda ;

p (2 , 1 ) = 6∗A∗ lambda ;

p (1 , 1 ) = 1−sum(p ( : , 1 ) ) ;

%n2 (0 t i l e f a u l t s , 1 spare f a u l t s

p (1 , 2 ) = mu;

p (4 , 2 ) = 5∗A∗ lambda ;

p (6 , 2 ) = 3∗A∗ lambda ;

p (2 , 2 ) = 1−sum(p ( : , 2 ) ) ;

%n3 (1 t i l e f a u l t s , 0 spare f a u l t s )

p(2 ,3 ) = nu ;

p (29 ,3 ) = 2∗A∗ lambda ;

p(5 ,3 ) = 6∗A∗ lambda ;

p(3 ,3 ) = 1−sum(p ( : , 3 ) ) ;

%n4 (0 t i l e f a u l t s , 2 spare f a u l t s

p(2 ,4 ) = mu;

p(7 ,4 ) = 4∗A∗ lambda ;

p (10 ,4 ) = 3∗A∗ lambda ;

p(4 ,4 ) = 1−sum(p ( : , 4 ) ) ;

%n5 (1 t i l e f a u l t s , 1 spare f a u l t s
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p(4 ,5 ) = nu ;

p(8 ,5 ) = 5∗A∗ lambda ;

p (29 ,5 ) = 2∗A∗ lambda ;

p(5 ,5 ) = 1−sum(p ( : , 5 ) ) ;

%n6 (1 t i l e f au l t , 1 spare f a u l t )

p(4 ,6 ) = nu ;

p(9 ,6 ) = 5∗A∗ lambda ;

p (29 ,6 ) = 2∗A∗ lambda ;

p(6 ,6 ) = 1−sum(p ( : , 6 ) ) ;

%n7 (0 t i l e f au l t , 3 spare f a u l t )

p(4 ,7 ) = mu;

p (11 ,7 ) = 3∗A∗ lambda ;

p (15 ,7 ) = 3∗A∗ lambda ;

p(7 ,7 ) = 1−sum(p ( : , 7 ) ) ;

%n8 (1 t i l e f au l t , 2 spare f a u l t )

p(7 ,8 ) = nu ;

p (12 ,8 ) = 4∗A∗ lambda ;

p (29 ,8 ) = 2∗A∗ lambda ;

p(8 ,8 ) = 1−sum(p ( : , 8 ) ) ;

%n9 (1 t i l e f au l t , 2 spare f a u l t )

p(7 ,9 ) = nu ;
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p (13 ,9 ) = 4∗A∗ lambda ;

p (29 ,9 ) = 2∗A∗ lambda ;

p(9 ,9 ) = 1−sum(p ( : , 9 ) ) ;

%n10 (1 t i l e f au l t , 2 spare f a u l t )

p (7 ,10 ) = nu ;

p (14 ,10) = 4∗A∗ lambda ;

p (29 ,10) = 2∗A∗ lambda ;

p (10 ,10) = 1−sum(p ( : , 1 0 ) ) ;

%n11 (0 t i l e f au l t , 4 spare f a u l t )

p (7 ,11 ) = mu;

p (16 ,11) = 2∗A∗ lambda ;

p (21 ,11) = 3∗A∗ lambda ;

p (11 ,11) = 1−sum(p ( : , 1 1 ) ) ;

%n12 (1 t i l e f au l t , 3 spare f a u l t )

p (11 ,12) = nu ;

p (17 ,12) = 3∗A∗ lambda ;

p (29 ,12) = 2∗A∗ lambda ;

p (12 ,12) = 1−sum(p ( : , 1 2 ) ) ;

%n13 (1 t i l e f au l t , 3 spare f a u l t )

p (11 ,13) = nu ;

p (18 ,13) = 3∗A∗ lambda ;
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p (29 ,13) = 2∗A∗ lambda ;

p (13 ,13) = 1−sum(p ( : , 1 3 ) ) ;

%n14 (1 t i l e f au l t , 3 spare f a u l t )

p (11 ,14) = nu ;

p (19 ,14) = 3∗A∗ lambda ;

p (29 ,14) = 2∗A∗ lambda ;

p (14 ,14) = 1−sum(p ( : , 1 4 ) ) ;

%n15 (1 t i l e f au l t , 3 spare f a u l t )

p (11 ,15) = nu ;

p (20 ,15) = 3∗A∗ lambda ;

p (29 ,15) = 2∗A∗ lambda ;

p (15 ,15) = 1−sum(p ( : , 1 5 ) ) ;

%n16 (0 t i l e f au l t , 5 spare f a u l t )

p (11 ,16) = mu;

p (22 ,16) = 1∗A∗ lambda ;

p (28 ,16) = 3∗A∗ lambda ;

p (16 ,16) = 1−sum(p ( : , 1 6 ) ) ;

%n17 (1 t i l e f au l t , 4 spare f a u l t )

p (16 ,17) = nu ;

p (23 ,17) = 2∗A∗ lambda ;

p (29 ,17) = 2∗A∗ lambda ;
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p (17 ,17) = 1−sum(p ( : , 1 7 ) ) ;

%n18 (1 t i l e f au l t , 4 spare f a u l t )

p (16 ,18) = nu ;

p (24 ,18) = 2∗A∗ lambda ;

p (29 ,18) = 2∗A∗ lambda ;

p (18 ,18) = 1−sum(p ( : , 1 8 ) ) ;

%n19 (1 t i l e f au l t , 4 spare f a u l t )

p (16 ,19) = nu ;

p (25 ,19) = 2∗A∗ lambda ;

p (29 ,19) = 2∗A∗ lambda ;

p (19 ,19) = 1−sum(p ( : , 1 9 ) ) ;

%n20 (1 t i l e f au l t , 4 spare f a u l t )

p (16 ,20) = nu ;

p (26 ,20) = 2∗A∗ lambda ;

p (29 ,20) = 2∗A∗ lambda ;

p (20 ,20) = 1−sum(p ( : , 2 0 ) ) ;

%n21 (1 t i l e f au l t , 4 spare f a u l t )

p (16 ,21) = nu ;

p (27 ,21) = 2∗A∗ lambda ;

p (29 ,21) = 2∗A∗ lambda ;

p (21 ,21) = 1−sum(p ( : , 2 1 ) ) ;



143

%n22 (0 t i l e f au l t , 6 spare f a u l t )

p (16 ,22) = mu;

p (29 ,22) = 3∗A∗ lambda ;

p (22 ,22) = 1−sum(p ( : , 2 2 ) ) ;

%n23 (1 t i l e f au l t , 5 spare f a u l t )

p (22 ,23) = nu ;

p (29 ,23) = 3∗A∗ lambda ;

p (23 ,23) = 1−sum(p ( : , 2 3 ) ) ;

%n24 (1 t i l e f au l t , 5 spare f a u l t )

p (22 ,24) = nu ;

p (29 ,24) = 3∗A∗ lambda ;

p (24 ,24) = 1−sum(p ( : , 2 4 ) ) ;

%n25 (1 t i l e f au l t , 5 spare f a u l t )

p (22 ,25) = nu ;

p (29 ,25) = 3∗A∗ lambda ;

p (25 ,25) = 1−sum(p ( : , 2 5 ) ) ;

%n26 (1 t i l e f au l t , 5 spare f a u l t )

p (22 ,26) = nu ;

p (29 ,26) = 3∗A∗ lambda ;

p (26 ,26) = 1−sum(p ( : , 2 6 ) ) ;
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%n27 (1 t i l e f au l t , 5 spare f a u l t )

p (22 ,27) = nu ;

p (29 ,27) = 3∗A∗ lambda ;

p (27 ,27) = 1−sum(p ( : , 2 7 ) ) ;

%n28 (1 t i l e f au l t , 5 spare f a u l t )

p (22 ,28) = nu ;

p (29 ,28) = 3∗A∗ lambda ;

p (28 ,28) = 1−sum(p ( : , 2 8 ) ) ;

%n29 ( Fa i l ed )

p(1 ,29)= 0 ;

p (29 ,29)= 1 ;

%% State t r a n s i t i o n p r obab i l i t y matrix − TMR no scrubber

pTMRnoS = zeros ( 3 , 3 ) ;

%Good State

pTMRnoS(2 , 1 ) = 3∗A∗ lambda ;

pTMRnoS(1 , 1 ) = 1−pTMRnoS(2 , 1 ) ;

%1 Ti l e Fault

pTMRnoS(3 , 2 ) = 2∗A∗ lambda ;

pTMRnoS(2 , 2 ) = 1 − pTMRnoS(3 , 2 ) ;
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%Fai l ed

pTMRnoS(3 , 3 )= 1 ;

pTMRnoS(1 , 3 )= 0 ;

%% State t r a n s i t i o n p r obab i l i t y matrix − TMR+Scrubber

pTMR = zeros ( 3 , 3 ) ;

%Good State

pTMR(2 ,1 ) = 3∗A∗ lambda ;

pTMR(1 ,1 ) = 1−pTMR(2 ,1 ) ;

%1 Ti l e Fault

pTMR(3 ,2 ) = 2∗A∗ lambda ;

pTMR(1 ,2 ) = mu;

pTMR(2 ,2 ) = 1−pTMR(3 ,2 )−pTMR(1 ,2 ) ;

%Fai l ed

pTMR(3 ,3 )= 1 ;

pTMR(1 ,3 )= 0 ;

%% State t r a n s i t i o n p r obab i l i t y matrix − No TMR

pNoTMR = zeros ( 2 , 2 ) ;

%Good State



146

pNoTMR(2 ,1 ) = 1∗A∗ lambda ;

pNoTMR(1 ,1 ) = 1−pNoTMR(2 ,1 ) ;

%Fai l ed

pNoTMR(2 ,2 )= 1 ;

pNoTMR(1 ,2 )= 0 ;

%% Run the Markov Chain f o r a l l t imes

for ind = 1 : length ( t imeL i s t )

%No TMR

xNoTMR = [ 1 , 0 ] ;

xNoTMR = xNoTMR∗ ( (pNoTMR’ ) ˆ(1000∗ t imeL i s t ( ind ) ) ) ;

%TMR

xTMRnoS = [ 1 , 0 , 0 ] ;

xTMRnoS = xTMRnoS∗ ( (pTMRnoS’ ) ˆ(1000∗ t imeL i s t ( ind ) ) ) ;

%TMR+scrubber

xTMR = [ 1 , 0 , 0 ] ;

xTMR = xTMR∗ ( (pTMR’ ) ˆ(1000∗ t imeL i s t ( ind ) ) ) ;

%TMR+spare s

x = zeros (1 , 29 ) ; x (1 ) = 1 ;

x = x ∗ ( ( p ’ ) ˆ(1000∗ t imeL i s t ( ind ) ) ) ;
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f a i l u r e P r o b = real ( [ f a i l u r e P r o b ; x (29) ∗100 ,xTMR(3)

∗100 ,xNoTMR(2) ∗100 ,xTMRnoS(3) ∗100 ] ) ;

end

end

%% Plot probably o f f a i l u r e vs time

f igure (1 )

t imeL i s t = t imeL i s t /60/60; %Covert t imes from sec to hrs

semilogx ( t imeList , f a i l u r e P r o b ( : , 3 ) , t imeList , f a i l u r e P r o b ( : , 4 ) ,

t imeList , f a i l u r e P r o b ( : , 2 ) , ’−− ’ , t imeList , f a i l u r e P r o b ( : , 1 ) ,

’−. ’ , ’ l i n ew id th ’ , 2 ) ;

legend ( ’Non−Redundant ’ , ’TMR’ , ’TMR+Scrubbing ’ , ’TMR+Scrubbing+

Spares ’ ) ;

xlabel ( ’ Hours ’ ) ;

ylabel ( ’ P r o b ab i l i t y o f Fa i l u r e [%] ’ ) ;
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