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ABSTRACT

As society increasingly relies on space-based assets for everything from GPS-
based directions and global communications to human-driven research on the ISS, our
understanding of space weather becomes vital. Timely predictions of a solar storm’s
impact on the ionosphere are imperative to safing these assets before damaging storms
hit, while minimizing downtime during lighter storms. The topside transition region
(TTR) is a global boundary where the concentration of O+ significantly decreases
due to charge exchange with H+ and He+ from the thermosphere, as well as protons
and neutral atomic oxygen from the plasmasphere. When high-energy electrons in
the ionosphere intercept O+ ions, they combine and release photons at 135.6-nm.

The Ionospheric-Thermospheric Scanning Photometer for Ion-Neutral Studies
(IT-SPINS) mission will provide 135.6-nm nightglow measurements from a 3U
CubeSat equipped with a high-sensitivity UV photometer. The CubeSat will spin
about orbit normal, sweeping its photometer field of view through the ionosphere.
Ground-based post processing will yield 2D altitude/in-track images of O+ density,
providing weighting parameters for models of the TTR. This low-earth orbit (LEO)
small satellite mission is a collaboration between the John Hopkins University Applied
Physics Laboratory, SRI International, and Montana State University (MSU).

This research describes the design, fabrication, and implementation of the space
flight computer (SFC) hardware and software responsible for handling all commands,
telemetry, and scientific data required by this National Science Foundation (NSF)
funded mission. The SFC design balances requirements derived from the mission
objectives while leveraging heritage hardware and software from MSU’s many
successful CubeSat missions (HRBE, FIREBIRD, FIREBIRD-II) and payloads
(EPISEM) [1–3]. This low-power (100 mW) embedded computer features dual 16-
bit PIC microcontrollers running at 16 MHz with only 96 kB of RAM and runs the
µC/OS-II real-time operating system (RTOS). The SFC also includes a TCXO-driven
mission elapsed time clock with ±2 ppm temperatures stability, a 1 GB NAND flash
for data storage, and interfaces to all other subsystems in the satellite.

The SFC has passed all standalone testing. It is currently being integrated and
tested with the entire IT-SPINS spacecraft and is planned to fly in late 2018.
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INTRODUCTION

Space Weather

Space weather is a broad term used to describe the temporal and spatial variation

of charged particles and plasmas throughout the solar system and around the Earth’s

magentosphere, ionosphere, and thermosphere. Many of these charged particle are

released from the Sun and travel outward through the solar system, forming what is

known as the solar wind. This stream of charged particles interact with the planets’

magnetic fields, which can trap and release these particles. Figure 1.1 shows the

relative concentration of charged particles trapped along Earth’s magnetic field lines.

The field lines form the particles into two toroidal regions, known as the inner and

outer Van Allen radiation belts.

Humans have long been aware of one of the more visible effects of the radiation

belts, the aurora, also known as the northern and southern lights. Auroras occur

when excess charged particles are trapped in the radiation belts and precipitate down

along the field lines, entering the Earth’s upper atmosphere, generally near the poles.

The particles interact with the atmosphere, and disperse their excess energy as visible

light. However, in today’s technological age, the high energy particles can have much

more damaging effects on our infrastructure.

Electronic semiconductors, which are used in virtually every electronic device

from cellphones to satellites and airplane avionics, are susceptible to two main

types of disturbances from ionizing radiation Total Ionizing Dose (TID) and Single

Event Effects (SEE). TID refers to the total dose of radiation a semiconductor

device is exposed to. Over time, radiation breaks down the semiconductor material,
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Figure 1.1: Artist’s rendering showing NASA’s Van Allen Probes orbit through
Earth’s radiation belts. Image credit: JHU/APL, NASA.

eventually causing irreversible damage which prevents the device from operating as

designed. SEE result from high energy particle temporarily changing the state of a

semiconductor gate. In a digital system, this would change a binary 1 to a 0, or vice

versus. SEE can generally be mitigated by power-cycling the device and do not cause

permanent damage. However, if not detected and mitigated this temporary change

could cause a satellite computer to execute commands incorrectly or airplane avionics

to give inaccurate readings.

Figure 1.2 highlights many of the other effects of the radiation belts and solar

storms on key infrastructure. Variation in the Earth’s magnetic fields due to solar

storms can induce currents in power transmission lines as well as submarine cables

and pipelines. In March 1986, a geomagnetic storm caused widespread blackouts and

damage in the Hydro Quebec power system [4]. These storms can also disrupt GPS

and communication signals and damage space-based assets. Radiation exposure can

also have adverse health effects on humans aboard aircraft, the International Space

Station (ISS), and other crewed space exploration missions [5].
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Figure 1.2: Examples of effects of space weather on critical infrastructure [6].

IT-SPINS Mission

The topside transition region (TTR) is a global altitude boundary where the

concentration of O+ decreases to the point of being equal to the concentration of H+.

The height of the TTR is a key metric in characterizing the upper ionosphere [7].

Current studies of the TTR rely on data from ground-based incoherent scatter radar

[8] or satellite in situ observations [9]. However, both of these methods are limited to

localized observations.

Equatorial plasma bubbles (EPB) are large-scale (20-100 km) plasma instabil-
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ities which form in the lower ionosphere and rise upwards through the ionosphere

like bubbles. EPBs have been observed from space as regions devoid of 135.6-nm

nightglow and are disruptive to RF signals (GPS and communications) which pass

through them [10]. Polar patches are similar large-scale ionospheric instabilities which

also cause scintillation of satellite communications but form over the polar regions of

the Earth [11]. Polar patches and EPBs are also generally studied with ground-based

incoherent scatter radar or from satellite observations [10].

The Ionospheric-Thermospheric Scanning Photometer for Ion-Neutral Studies

(IT-SPINS) mission is a National Science Foundation (NSF) project that will

study the TTR, EPB, and polar patches from a 3U CubeSat platform. The

specific mission objectives are outlined in Table 1.1, taken from the the project

requirements verification matrix (RVM). By globally studying the TTR, EPBs, and

polar patches IT-SPINS will provide valuable input to ionospheric models, furthering

our understanding and enabling better real-time predictions of the impact of space

weather storms.

Table 1.2 lists the IT-SPINS mission requirements from the project RVM, which

are derived from the mission objectives and NSF requirements. From these top-level

objectives and requirements, intermediate-level requirements were derived and the

spacecraft design shown in Figure 1.3 was developed. The primary payload, the

CubeSat Tiny Ionospheric Photometer (CTIP), was developed by SRI International

and previously flown on the USAF Space Environment NanoSatellite Experiment

(SENSE) mission in a nadir viewing orientation [12]. CTIP is a high sensitivity UV

photometer, tuned to measure 135.6-nm emission (ε135.6) along a 3.8° field of view

(FOV). The IT-SPINS spacecraft will rotate about orbit normal at 2 RPM, sweeping

the CTIP FOV through the orbit plane as shown in Figure 1.4 while it makes half-

second integration measurements of ε135.6 resulting in 60 measurements per rotation.
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Table 1.1: IT-SPINS Mission Objectives.

Requirement
Number

Baseline Requirement Source

MO-1

The IT-SPINS mission will study the global variability
and underlying physics of the top side transition
region of the ionosphere where O+ transitions to
H+ and He+.

Proposal

MO-2
The IT-SPINS mission will study the global variability
of O+ altitude profiles throughout the F-region and
topside ionosphere.

Proposal

MO-3

The IT-SPINS mission will image the mesoscale
structuring and evolution of RF-disruptive
structures such as equatorial plasma bubbles
and polar cap patches.

Proposal

Custom
MAI-400

ADCS

CTIP
Instrument

Battery
Pack

COMM
Antenna

Coarse Sun
Sensor x6

Body-Mounted
Solar Panel x4

CTIP Sun 
Shade

Avionics Stack
(EPS, COMM, SFC, SCE)

IREHS x8

X

YZ

Figure 1.3: 3D CAD renders of exploded view of IT-SPINS CubeSat major subsystems
(left) and fully integrated spacecraft with coordinate definitions (right).
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Table 1.2: IT-SPINS Mission Requirements.

Requirement
Number

Baseline Requirement Source

M-1
IT-SPINS shall collect line-of-sight observations of
135.6nm nightglow produced from the recombination of
O+ and electrons in the nocturnal ionosphere.

MO-1
MO-2
MO-3

M-2

IT-SPINS shall utilize tomographic inversion to
reconstruct two-dimensional images (altitude vs.
in-track look direction) from the 135.6nm emissions
along multiple intersecting ray paths along the
spacecraft orbit with a vertical resolution of at
least 50km and a horizontal resolution of at least
200km.

MO-1
MO-2
MO-3

M-3
IT-SPINS shall have an on-orbit operational lifetime
of at least six months following commissioning of the
spacecraft and science payload.

MO-1
MO-2
MO-3

M-4
IT-SPINS shall have an orbital inclination of greater
than 45 degrees with an appropriate nodal precession
rate to provide routine eclipses.

MO-1
MO-2
MO-3

M-5
IT-SPINS shall conform to the current CubeSat
Design Specification.

NSF

M-6
IT-SPINS shall conform to the NASA CLSI mission-
specific launch canister Interface Control
Document (ICD).

NSF
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t=0.00 s t=3.75 s t=7.50 s

NADIR

Velocity

CTIP FOV
Orbit Path

IREHS FOV

Figure 1.4: Diagram of IT-SPINS rotating about orbit normal with CTIP and IREHS
field of views shown.

IT-SPINS will provide a unique dataset compared to previous projects. Inco-

herent scatter radar studies of the ionosphere are limited to localized observations.

Previous satellite-based studies of the TTR, EPBs, and polar patches used nadir-

viewing UV instruments [12], some with cross-track scans [10], which only take

integrating vertical measurements. The individual CTIP line-of-sight measurements

will be post processed on the ground with a tomographic inversion algorithm to

produce global two-dimensional altitude versus along-track distance images of ε135.6

for the nightside ionosphere.

In order to achieve the desired resolution from requirement M-2, simulations

determined the spacecraft’s Attitude Determination and Control Systems (ADCS)

would need to achieve a spin rate of 12°/s ±1.2°/s, about an axis within ±1.5°of orbit

normal. The ADCS must also determine the angular orientation of the spacecraft to

within 0.3°.

Early trade studies on how to achieve the required spin and attitude knowledge

quickly ruled out ADCS solutions based on start field trackers, as the spin-rate would

smear star fields over the required integration time. Instead, Maryland Aerospace Inc.
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(MAI) proposed an infrared Earth horizon sensor (IREHS) based variation of their

commercial off the shelf (COTS) MAI-400 three-axis ADCS. Four pairs of IREHS

grouped into two instrument clusters are used to derive the precise attitude of IT-

SPINS relative to the Earth limbs.

The spacecraft avionics and integration are the responsibility of Montana State

University’s (MSU) Space Science and Engineering Laboratory (SSEL). The avionics

are based on that of the FIREBIRD CubeSats and include a revised Phoenix Electrical

Power System (EPS), AstroDev Li-2 Radio, Space Flight Computer (SFC) Command

and Data Handling (CDH) system, and a Solar Cell Experiment (SCE).

Figure 1.5 shows a simulated reconstruction of ε135.6 based on six rotations

worth of data from the IT-SPINS spacecraft. The top panels shows the simulated

ε135.6 of a reference ionosphere based on the Thermosphere-Ionosphere-Mesosphere-

Electrodynamics General Circulation Model (TIME-GCM) [13]. The discrete line of

sight measurements from IT-SPINS are shown in the middle panel. The reconstructed

ionosphere based on the simulated measurements is shown in the bottom panel. The

John Hopkins University Applied Physics Laboratory (JHUAPL) is responsible for

the tomographic inversion processing that will produce the 2D reconstruction images

of the ionosphere.

Problem Statement

The IT-SPINS mission needs a CDH subsystem to coordinate data transfer and

storage between all other subsystems. Minimization of mission risk and minimization

of manpower would dictate using a duplicate of a previously flown CDH, such as that

of FIREBIRD. However, there were a number issues with both the hardware and

software of that CDH, which are described in Chapter 2 below. Additionally, the IT-

SPINS mission has a very different set of requirements from FIREBIRD. Therefore
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Figure 1.5: Simulated IT-SPINS reconstruction of ε135.6 over six rotations.

a new CDH subsystem has been designed to fit the needs of the IT-SPINS mission,

while leveraging heritage from successful SSEL projects.
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BACKGROUND

The SSEL at MSU has designed, built, and delivered over half a dozen CubeSats

for launch to date, and collaborated on many more small satellite projects. The

successes and failures of these projects, both on-orbit and during development, have

yielded many robust designs, rules of thumb, and other lessons learned. In this

chapter, three past SSEL projects are presented which have heritage designs and

lessons learned that will heavily influence the design of the IT-SPINS hardware and

software.

FIREBIRD Mission

The Focused Investigation of Relativistic Electron Burst Intensity, Range, and

Dynamics (FIREBIRD) missions are a collaborative effort between University of New

Hampshire, Montana State University, the Aerospace Corporation, and Los Alamos

National Laboratory to study relativistic electron microbursts. These microbursts are

very brief but intense increases in electron precipitation from the earth’s radiation

belts into the upper atmosphere. FIREBIRD’s mission objectives are to quantify the

spatial scale and energy dependence of individual microbursts, as well as to quantify

the total electron loss from the radiation belts due to microbursts globally. This

NSF-funded project has launched two pairs of 1.5U CubeSats.

The first pair of identical CubeSats, known collectively as FIREBIRD-I, were

launched on December 6, 2013 into a 121° inclination LEO orbit of 467 by 883 km

[2]. Unfortunately, due to an over-complicated and under-characterized electrical

power system (EPS) both FIREBIRD-I CubeSats had a very short operational life.

Additionally, a software bug prevented one of the pair from properly booting and

beaconing until a command was able to clear the bug several months into the mission.
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Due to the low inclination orbit and limited operational life, neither FIREBIRD-I

CubeSat observed a microburst.

A second pair, known collectively as FIREBIRD-II, were launched on January

31, 2015 into a 99° inclination LEO orbit of 440 by 670 km [2]. This pair featured

a re-designed and simplified EPS, resolving the lifetime issue. The FIREBIRD-II

CubeSats have exceeded 2 years in space and are still fully operational. Both have

observed hundreds of microbursts, resulting in scientific publication [14], with many

more in the works.

Hardware

Each FIREBIRD CubeSat features identical hardware and software, with some

revisions between the two flights. Figure 2.1 shows an exploded view of a FIREBIRD

CubeSat. The FIRE instrument, developed at University of New Hampshire, features

two solid-state silicon detectors, a low-noise pulse processor application specific

integrated circuit (ASIC), and a field programmable gate array (FPGA) to discretize

and package the electron measurements upto 50 times per second.

The Bus in Support of Radiation Detector (BIRD) package provides power, data

storage, and communications for the spacecraft. Developed by SSEL, BIRD includes

the Command and Data Handling (CDH), Electrical Power System (EPS), radio

Communications (COMM), and Multi-Function Interface Board (MFIB) subsystems.

The CDH is responsible for handling all commands and telemetry throughout

the satellite, requiring it to interface to each major subsystem (either directly or

through communications with another subsystem). The CDH on FIREBIRD is a

Commercial Off-The-Shelf (COTS) product purchased from Pumpkin Inc. It includes

a PIC24F microcontroller, 64MB NOR flash memory, 2GB SD Card, Real Time

Clock Calendar (RTCC) chip with battery backup, and Electrical Ground Support
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Figure 2.1: Exploded view of FIREBIRD CubeSat major subsystems. [2]

Equipment connections.

The EPS is responsible for managing power gathered by the body-mounted solar

panels to charge the batteries and run the system. As mentioned above, FIREBIRD-

I featured an over-complicated EPS which was purchased from a vendor hoping to

develop it as a COTS product. It included Maximum Power Point Tracking (MPPT)

for the solar panels, an excess power shunt, a configurable Watch Dog Timer (WDT)

circuit, and a lithium-ion battery pack all managed by an FPGA. As a COTS-targeted

design, it was designed to cover the requirements of many different types of missions,

each with different power requirements. In order to meet the requirements of higher

power missions, it lacked the resolution and efficiency required by FIREBIRD, which

has an orbit-average power consumption of only 0.3 Watts. The FPGA contained

many configuration registers for every aspect of the system; however, many of them
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were under-documented or the documentation was simply wrong. As a result, the

batteries were overcharged and the solar panels were under-utilized.

For the FIREBIRD-II flight, the EPS was completely redesigned from the ground

up by SSEL. This in-house design is known as Phoenix. It relied on direct energy

transfer, connecting the batteries directly (through a protection diode) to the matched

solar panels, eliminating the complexity of a MPPT system. Phoenix also included

a simplified WDT circuit based on a simple 4000-series logic counter driven by an

RC oscillator. This WDT circuit would count up to 12 hours before briefly removing

power from the entire spacecraft, forcing a hard reset. This WDT reset mitigates

the effects of Single Event Upsets (SEU) due to radiation and other latchups due

to potential software bugs. The Phoenix EPS includes a PIC24 microcontroller for

telemetry aggregation.

COMM is responsible for receiving and transmitting radio communications

between the satellite and a ground station. For FIREBIRD, the COMM subsystem

was a COTS He-100 from AstroDev Inc. and two tape measure antennas mounted

to the body of the CubeSat.

The MFIB is responsible for interfacing to the FIRE payload and storing it’s

data. It includes another PIC24 microcontroller, a 2GB NAND flash memory, and a

GPS module for timing. FIRE data is stored here, and the CDH requests the data to

be downlinked one packet at a time. FIREBIRD relies on a permanent magnet on the

MFIB for passive attitude control and has no direct method of attitude determination.

The magnet acts as a compass needle, roughly aligning the satellite to the earth’s

magnetic field.

The FIREBIRD IMM Solar Cell Experiment (FISCE) is an additional payload

added on the FIREBIRD-II mission. This experiment records IV characteristics of a

single string of solar cells assembled with a proprietary THINS technique developed
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by Vanguard Space Technologies, Inc. FISCE includes another PIC24 microcontroller

for control and telemetry gathering. The entire FISCE circuitry is included on the

back side of a solar panel.

Software

As shown in Figure 2.2, the FIREBIRD CDH uses the µC/OS-II Real-Time

Operating System (RTOS) as its kernel. This kernel as well as the other firmware

and application layers are written primarily in the C language, with low-level OS

functions implemented in assembly language. The µC/OS-II allows the flight software

to have multiple tasks, more commonly known as threads, running independently of

each other. It includes semaphores, event flags, mutual-exclusion semaphores that

eliminate unbounded priority inversions, message mailboxes, queues, task time and

timer management, and fixed sized memory block management.

Figure 2.2: Software stack for the FIREBIRD CDH fight software.

Within the “User Defined Software” of the flight software is a further subdivision

known as modules. A Module is a collection of functions that provides a specific

functionality to the flight software and provides the necessary interface for outgoing

data on hardware peripheral. In the FIREBIRD Flight software, a module can never

be an OS task, but instead it provides functions called by OS tasks. Modules can be

disabled or enabled at compile time as needed. Operations between modules are kept
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separate, and the utility provided by the module is highly independent of the flight

software and the OS in which the operations need to occur.

The FIREBIRD flight software contains the following eleven modules: Command

Manager (CMDMGR), Command Sequence (CMDSEQ), COMM, EPS, FISCE, GPS,

MFIB, SpaceCraft DataBase (SCDB), System, Telemetry Manager (TLMMGR), and

Telemetry Monitor (TLMMON). The CMDMGR module acts as a router passing

commands received from other modules (possibly from external hardware such as

the EGSE or COMM) to the appropriate destination module. The CMDSEQ

module retrieves and executes sequences of commands stored on the CDH’s NOR

flash. The COMM, EPS, FISCE, GPS, and MFIB modules all handle interfacing

to their respective subsystems throughout the spacecraft. The SCDB module acts

as a large current value table, maintaining telemetry values from all modules in

the flight software. The TLMMGR module handles output of telemetry from the

SCDB to external hardware at a configurable cadence or on demand. Finally, the

TLMMON module can be configured to monitor up to 7 telemetry points in the SCDB

simultaneously and trigger execution of a command sequence if the the telemetry point

falls out of limits.

Additionally, the “User Defined Software” includes hardware peripheral drivers,

which interface to the various built-in hardware peripherals (UART, I2C, SPI, etc.)

on the PIC and directly connected to the PIC.

In an early unused version of the flight software, each module had it’s own

OS task. This allowed each module to run on it’s own and rely on the OS to pass

information from module to module. However, each task requires it’s own software

stack and the limited RAM on the PIC microcontroller did not accommodate enough

tasks once the SD Card filesystem was added to the flight software. As a result

only five OS tasks were implemented: astrodev rx, novatel rx, power rx,
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sys ctrl, and wdt. Each of the rx tasks monitors one of the four UART drivers

receive buffer and processes incoming bytes. The sys ctrl task is responsible for

funneling all incoming packets to the CMDMGR, monitoring the rx tasks’ buffers,

and uses an OS timer to call worker functions within the various modules which run

continuously in the background.

The CDH PIC microcontroller is the only one to run µC/OS-II. All other PIC

microcontrollers on the spacecraft (EPS, MFIB, FISCE) have much simpler roles and

therefore use simple Interrupt Service Routine (ISR) based code. However, many of

the hardware drivers developed for the CDH microcontroller are duplicated for the

other subsystem microcontrollers.

Lessons Learned

Throughout the design, build, and flight of all four FIREBIRD CubeSats there

have been a number of key lessons learned, both positive and negative. On the postive

side, we have now flown twelve discrete PIC24F microcontrollers and seen no signs of

permanent faults from any of them. Eight of these have operated on FIREBIRD-II

for over two years in a polar orbit. The 2GB NAND flash ICs used on the MFIB

for FIRE data storage have also performed without significant fault and are much

simpler to interface to and manage than the SD Card on the CDH. Additionally, the

Phoenix EPS WDT circuit has saved the system from several temporary latchups and

does not have a significant impact on operations.

One of most frustrating challenges facing the FIREBIRD science team is

determining what time a measurement was actually taken, both relative to two

satellites in a pair, and relative to official UTC time on the ground. The intent

was to use the on-board GPS receiver to synchronize the CDH’s RTCC to GPS time.

This time could then be used to timestamp the FIRE data as it is saved to the MFIB’s
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NAND flash. However, due to poor implementation and lack of timing calibration on

the ground, this method produces timing errors on the order of several seconds. It is

not known exactly when or if turning the GPS on for an orbit results in synchronizing

the RTCC. The RTCC’s oscillator drift was not characterized on the ground across a

range of temperatures. The MFIB timestamps FIRE data based on a software RTCC

running on the MFIB that is only synchronized once at the start of a data run to the

CDH’s RTCC, resulting in an additional unknown drift.

Another challenge faced by the FIREBIRD science team is an issue with data

downlink, which reduces the overall amount of data downlinked per pass. During

a pass, operators request data from a specific location in NAND memory. Ideally,

the satellite responds with a continuous stream of packets based on the request.

However, it is quite common for the satellite to respond with one packet at a time,

with several seconds of dead time between packets. This bug is due to a handshaking

issue between CDH and COMM, where COMM does not acknowledge the packet

given to it to downlink. This is a software bug in the AstroDev He-100 that has

not been resolved; however, there are several workarounds that could be written into

future flight software.

While fairly robust, because the COTS CDH is designed as a one-size-fits-all

part, it lacks the volume and power efficiency of a mission specific solution. The

USB and barrel jack EGSE interface takes up a significant external surface area, but

only provides six electrical connections into the satellite. The CDH is a two-board

construction with a bottom motherboard and replaceable processor module. The

motherboard supports different processor modules with different operating voltages,

which requires it to level shift all input/output (IO) lines. It also re-regulates the 5V

power provided to it down to 3.3V, resulting in power lost to the regulator efficiency.

Additionally, the CDH lacks interfaces and functionality that had to be implemented
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on the MFIB board.

The SD Card on the CDH has proven to be less than useful. The initial

FIREBIRD design did not include a NAND flash or processor on the MFIB. However,

early software development showed that the CDH processor could not handle writing

data to SD Card fast enough to support FIRE’s data rates. As a result, the

SD Card was left only for storing CDH telemetry from the SCDB and GPS data.

However, implementing a proper SD Card filesystem with low enough overhead for

a microcontroller with 96kB of RAM proved challenging. While the FIREBIRD-

II CubeSats are capable of storing some data to their SD Cards, it is frequently

corrupted and inefficient to downlink compared to downlinking from the NAND flash.

SD Cards slots are also not mechanically designed to withstand the strenuous launch

environment. Other CubeSats, such as RAX-2 have also experienced issues with SD

Cards [15].

As mentioned above, the FIREBIRD flight software only implemented a few

tasks within the OS. This low task count reduces the modularity of each module,

since the OS’s inter-task communication (mailboxes, semaphores, etc.) could not

be used. Therefore, more direct inter-module function calls are required. The main

reason for the low task count was to accommodate the memory usage of the SD Card

file system.

During initial development of the flight software, some tools were written to

auto-generate code for each module, based on the commands and telemetry required

by the module. This worked well initially; however, as the modules were further

customized to meet the evolving mission requirements, these tools fell out of use and

the modules morphed away from the standard templates generated by the tools. A

similar story is true for the hardware drivers written, which were initially written

to conform to a format and interface standard. As the drive software evolved, each
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devolved from the standard. The result was a code base not conforming any standard,

with each module and driver different from each other.

The lack of an attitude determination system has also caused frustration with

the science team. While the mission requirements do not require attitude knowledge,

knowing the rough attitude of each satellite would add significant value to the science

measurements.

In summary, while FIREBIRD has been extremely successful, there are several

inefficiencies and bugs in the design. Many of the hardware inefficiencies result from

using mission-agnostic COTS hardware. Some of the software issues discussed could

be resolved with minor updates; however, given the state of the code, a full refactor

and standardization would drastically increase the modularity and maintainability of

the code for future missions.

EPISEM

The Energetic Particle Integrating Space Environment Monitor instrument

(EPISEM) is a single board scientific payload developed by SSEL to fly on the NASA

Ames Edison Demonstration of Smallsat Networks (EDSN) 1.5U CubeSat mission.

The payload consists of a Geiger-Müller tube to detect ionizing radiation and the

required digital and analog support circuitry, as shown in Figure 2.3. The EDSN

mission was designed to test a star-type networking concept where multiple small

spacecraft would share their stored data over a low data rate cross link. A ground

station could then communicate with only one of the spacecraft to command a high

data-rate S-Band downlink. This platform of eight distributed 1.5U CubeSat were

ideal for the EPISEM payload to study the small-scale spatio-temporal variability of

of the Van Allen Radiation Belts.

SSEL delivered 14 flight-ready EPISEM payloads to NASA Ames in the spring
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of 2013 for integration and testing with EDSN’s eight flight units and two flight

spares. The eight EDSN flight units were lost due to failure of the Super Strypi

launch vehicle on November 3, 2015. The two flight spares were later deployed off

the ISS as the Network and Operation Demonstration Satellite (NODES) mission on

May 16, 2016 [3].

Figure 2.3: Image of the EPISEM circuit board displaying the location of the primary
circuits and components. [16]

The EPISEM project provided a unique opportunity for SSEL to branch into

large-scale production and test of a single design. Projects like FIREBIRD require

only a few copies of each board to be built and tested. EPISEM required the

development of an extensive Manufacturing Planning Sheet (MPS) document to

ensure each of the 33 steps to produce a single board were followed exactly on each

copy.
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In total, 30 EPISEM boards were built and tested. This high number was due to

a mistake in the Computer Aided Design (CAD) phase of the project. The dimensions

of the mounting holes were improperly transcribed into CAD and the 14 boards were

manufactured and had begun testing before the error was caught. The solution was

to build 15 more flight ready boards. This error could have been caught earlier if a

full 3D model of EPISEM had been output directly from the Electrical CAD (ECAD)

program to a Mechanical CAD (MCAD) program for a virtual fit check. Instead the

MCAD design was drawn by hand based on the correct mounting hole locations, so

the virtual fit check yielded no errors.

SSEL ICE

The SSEL Integrated CDH and EPS (ICE) was a senior capstone project at

MSU’s Electrical and Computer Engineering (ECE) department sponsored by SSEL.

The goal was to develop a prototype level single-board integrated CDH, EPS, and

COMM based on that of FIREBIRD. In this one year project, the team successfully

designed, built, and tested the board shown in Figure 2.4.

ICE includes the same PIC24 microcontroller and NAND flash used on

FIREBIRD, as well as the 12-hour WDT and an analog mux used for telemetry

collection on the Phoenix EPS. ICE also includes two DC-DC voltage regulators used

on Phoenix, a Remove Before Flight (RBF) switch, and accommodation for inhibit

foot switches. The PIC select DEMUX is a new circuit designed for ICE which allows

multiple PIC24 microcontrollers to be programmed through a single Microchip ICSP

bus entering the satellite through the EGSE connector. Provisions were also made

for the AstroDev Li-1 transceiver. The stacking bus header allowed for solar panel

and battery input as well as a range of digital IO to connect to a mission specific

payload.
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Figure 2.4: Annotated CAD renders of SSEL ICE showing all major sub-circuits on
the bottom (left) and top (right) of the board.

ICE proved that the FIREBIRD bus could have been greatly simplified into a

single ICE board with a mission specific battery, solar panel, and payload interface

board. It also verified the PIC select programming logic, which could have simplified

the FIREBIRD EGSE interfaces. However, software testing on ICE showed that a

single PIC processor could not easily handle running the full µC/OS-II while buffering

telemetry and simulated science data into NAND flash.
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DESIGN

As mentioned above in the Problem Statement, the IT-SPINS mission needs a

CDH subsystem to handle commands and telemetry and control all other subsystems.

Previously flown CDH subsystems such as that of FIREBIRD, while successful for

that mission, still have a number of issues and do not meet the requirements of

the IT-SPINS mission. Therefore, the decision was made to design a new in-house

CDH subsystem for the IT-SPINS mission, known as the Space Flight Computer

(SFC). The SFC was designed to take on the roles of both the CDH and MFIB from

FIREBIRD’s avionics stack, and re-use as much of those designs as reasonable, to

reduce mission risk.

SFC Subsystem Requirements

The complete SFC design requirements are listed in Appendix A. These

requirements were derived from the top level requirements listed above in Tables

1.1 and 1.2, as well as intermediate level requirements developed from the spacecraft

design and packaging.

Requirement SFC-1 is derived from the design decision to use CTIP as the

primary scientific payload. The 5V CTIP RS-422 hardware interface was already

defined from the SENSE mission which previously flew CTIP. The conversion to

UART was based on the availability of hardware peripherals on the heritage PIC24

microcontroller which will be used on the SFC.

Requirement SFC-2 is derived from the design decision to use a custom variation

of the MAI-400 ADCS. While the MAI-400 does offer a range of interfaces, the 3.3V

UART interface was choosen as the most compatible with the PIC24 microcontroller.

The decision to use an AstroDev radio was based on heritage from FIREBIRD
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and lack of a comparable competitor within the same price bracket, despite the

handshaking issues experienced on FIREBIRD. However, changes in IARU frequency

coordination rules, meant the VHF uplink/UHF downlink AstroDev He-100 used on

FIREBIRD could not be used on IT-SPINS. Therefore, the decision was made to

use a UHF uplink/UHF downlink AstorDev Li-1, which has a similar 3.3V UART

interface to the He-100, which is captured in requirement SFC-3.

Requirement SFC-4 is derived from the design decision to use an updated

Pheonix EPS, based on that of FIREBIRD. While the FIREBIRD Pheonix EPS

featured a 3.3V UART interface, the PIC24 microcontroller used on the SFC only

has 4 dedicated UART hardware peripherals. These 4 UART interfaces are mapped

to CTIP (SFC-1), the MAI-400 (SFC-2), the Li-1 (SFC-3), and the GSE (SFC-7).

Therefore, the EPS interface was changed to an 3.3V I2C register interface for IT-

SPINS. This 3.3V I2C bus will be shared with the SCE to meet requirement SFC-6,

since the FISCE payload on FIREBIRD-II also used an I2C interface.

Requirements SFC-5 and SFC-7 are derived from existing designs for the MFIB

(3.3V SPI) and GSE (3.3V UART) interfaces on FIREBIRD. However, the 3.3V

UART GSE interface will be passed directly out of the satellite’s EGSE interface on

IT-SPINS, rather than through a UART-USB serial port converter, which was built

into the FIREBIRD CDH.

Requirement SFC-8 is derived from the angular attitude knowledge requirement

of 0.3°and spin rate requirement of 12°/s ±1.2°/s. Additionally, the problems with

the FIREBIRD RTCC timing scheme prompted the design of the new temperature

compensated oscillator (TCXO) based mission elapsed time (MET) clock.

Requirement SFC-9 is derived from the need to store CTIP and ADCS data long

term, until it can be downlinked over a ground station. Requirements SFC-10 through

SFC-16 are based on software features and command and telemetry processing that
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worked well on the FIREBIRD missions, and will support the science data, telemetry,

commands, and concept of operations for IT-SPINS.

Hardware

Figure 3.1 shows a system level block diagram for the SFC design. The system

bus (left) provides an interface the EPS, COMM, and SCE subsystems, while CTIP

and the MAI-400 will interface directly to the SFC via their own dedicated busses

(lower right).

Figure 3.1: Block diagram of SFC hardware.
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CTIP Interface

The SFC shall provide CTIP with regulated 5VDC ± 0.2VDC , 2A maximum.

This voltage rail will be provided to the SFC from the EPS through the IT-SPINS

System Bus. CTIP controls all Payload internal power distribution and switching.

CTIP shall not be damaged from the power service on/off states. CTIP power, along

with data and programming signals, is received through a 21-pin micro-D socket

receptacle Airborn P/N MS-262-021-435-220S. This is similar to a standard 21-pin

Micro-D; however, it is considered “low-profile” and not physically compatible. The

CTIP payload communicates via a four-wire full duplex RS-422 protocol at 57.6kbps.

The SFC’s PL1 connector provides the required interface to CTIP through a standard-

profile Micro-D connector from ITT Cannon, P/N: MDM-21SCBR-A174-F222. The

pinout of SFC’s PL1 and CTIP’s J3 connectors was intended to be identical; however,

due to a PCB footprint issue it is not. For future revisions of this board, it is suggested

that the same Airborn part be used on the SFC side of the CTIP interface with the

correct footprint. Lower-cost Harwin M80 series connectors, used on the IT-SPINS

Phoenix EPS, would also work well for this interface.

The UART/RS422 Converter block could have been based on one used on the

FIREBIRD MFIB to interface to the FIRE payload. The FIREBRID MFIB used

Texas Instruments part numbers DS90LV011AH and DS90LT012AH for differential

signaling to UART conversion. However, these parts had a poor ESD tolerance (2kV

HBM [17]) and had to be replaced on several occasions due to failure. Additionally,

the maximum supply voltage of the TI parts was only 4.0V. CTIP’s RS422 interface

required 5.0V signal levels. However, the SFC’s microcontroller can only driver UART

lines at its supply voltage of 3.3V. For these reasons, an alternative part(s) had to be

found.

After some searching, the Linear Technology LTC2865 RS485/RS422 transceiver
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was found to be a good replacement. It has higher ESD tolerance (15kV HBM),

combines transmitter and receiver into a single package, and also performs the level

shifting from 3.3V UART to 5.0V RS422 [18]. Figure 3.2 shows a block diagram of

the LTC2865. RE, DE, and SLO are control lines to enable the receiver, transmitter,

and “slow” mode, respectively. These control lines are driven by the SFC’s main

microcontroller. DE (driver enable) may be pulled low when not transmitting data,

which saves several milliwatts of power. The SLO pin puts the LT2865 into the slew

rate limited 250kbps max data rate mode, still plenty for CTIP’s 57.6kbps data rate.

This slow mode also saves power on the LT2865, while reducing transmission of high

frequency noise.

Figure 3.2: LTC2865 transceiver functional block diagram [18].

Because of the low data rate of the RS422 interface, little effort was made to

match lengths on the differential pairs; however, they were kept to a minimum. Table

3.1 shows the final trace lengths l and associated propagation time delay TD , based
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on Equation 3.1, for each of the CTIP RS422 traces. Since the propagation delay

of the longest trace is several orders of magnitude less than the Unit Interval (UI),

calculated to be 17.36 µs using equation 3.2, this length mismatch can be ignored.

Table 3.1: CTIP differential pair lengths and propagation delays.

Net Name Length (mils) TD (ps)

CMD A 612.07 99.21

CMD B 514.11 87.71

TLM A 419.91 68.06

TLM B 705.48 114.30

TD =
l
√
Dk

c
(3.1)

UI =
1

DR
(3.2)

In Equations 3.1 and 3.2, l is the length of the trace, Dk is the dielectric constant

of the PCB substrate equal to 3.66 for this design, c is the speed of light in a vacuum,

and DR is the data rate.

ADCS Interface

The SFC shall provide the MAI-400 with regulated 5VDC , 1.7A maximum. This

voltage rail will be provided to the SFC from the EPS through the IT-SPINS System

Bus. The MAI-400 internally regulates a 3.3VDC bus for its external magnetometer,

which will be mounted to the SFC. This magnetometer is external to the MAI-400

system, so it can be placed away from the magnetically noisy reaction wheel motors

and torque coils.



29

The MAI-400 uses two 13x2 pin connectors, J1 and J2, with 2mm pitch

for communications and power interfaces. SSEL will build an ADCS connector

adapter board that translates the MAI-400’s two 13x2 headers into a single Micro-

D connector interface. The SFC’s ADCS connector provides this interface using a

Micro-D connector from ITT Cannon, P/N: MDM-21PCBR-A174-F222. This ADCS

connector is nearly identical to that of the CTIP interface; however, it is the opposite

gender (male/pin) to avoid connecting the CTIP harness to the ADCS interface or

vice versus. The pinout of the SFC’s ADCS connector is based what was simplest to

route on the SFC, as no other constraints were placed on the pinout. This connector

pinout and footprint match correctly, unlike that of the CTIP interface.

The MAI-400 also requires input from six external Coarse Sun Sensors (CSS),

one on each face of the CubeSat. The CSS were placed on the solar panel substrates

and have signal conditioning circuits on the EPS and SCE, which pass the scaled

0VDC to 3.3VDC analog signal to the SFC through the IT-SPINS System Bus.

System Bus Interface

The system bus provides an interface between the SFC, EPS, COMM, and SCE.

The pinout and form-factor of this bus is based on that of the FIREBIRD-II mission

which was based on the Pumpkin CubeSat Kit (CSK) header. However, the current

revision of the system bus on the SFC is not directly compatible with the CSK

standard.

When the SFC was being designed, the final Phoenix EPS design for IT-SPINS

was not complete. It was known that the EPS would be made as similar to the

FIREBIRD-II Phoenix EPS as possible. One major change that had to be made

was the switch from a UART to I2C for EPS commands and telemetry. The EPS

will also act as a passthrough for programing and debug interfaces EGSE signals
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from the EPS’s GSE connector to the SFC via the system bus. The EPS provides

4 regulated power busses to the SFC via the system bus VCC CDH, VCC RTC,

VCC PL, and VCC ADCS. All power busses from the EPS will be power-cycled by

the EPS’s WDT every 12 hours, with the exception of VCC RTC and VCC ADCS.

This provides latchup recovery for the SFC without interrupting the clock or ADCS.

The SFC may manually power cycle the VCC RTC or VCC ADCS via the EPS I2C

interface.

Microcontrollers and Flash Memory

The main microcontroller on the SFC is a Microchip PIC24FJ256GB210. This

part was selected since it has been used on many previous SSEL designs, including the

FIREBIRD CDH, MFIB, Phoenix EPS, FISCE, SSEL ICE, and EPISEM. Because

of its heritage within the SSEL, there is a large code-base of software drivers and

modules for this part. SSEL has also ported the µC/OS-II to work on this part. This

16-bit, 100-pin microcontroller is run at 16 MHz and includes 96kB of RAM, 256kB

of program flash memory, 4 UART hardware peripherals, 3 SPI hardware peripherals,

and 3 I2C hardware peripherals.

From what we learned on the FIREBIRD missions, it was decided to use a

single NAND flash for storage of both science data and system telemetry. Based on

experience from SSEL ICE, it was decided to use another PIC24 microcontroller as a

dedicated buffer and memory manager for the NAND flash. Originally, this NAND

flash was intended to also store command sequence data, eliminating the need for the

NOR flash from the FIREBIRD CDH. However, early software development on the

SFC proved the NOR flash necessary, so it was added with a daughterboard on the

bottom of the SFC.

The PIC Programming Select Logic was developed on the SSEL ICE project as
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a way to program multiple PIC24F microcontrollers on a single ICSP bus, since they

do not have good support for JTAG or other similar interfaces. This allows a single

programming bus to enter the satellite through the EGSE (Electrical Ground Support

Equipment) connector and program multiple PIC24 microcontrollers throughout the

satellite. The key to this circuit is the use of a DEMUX to route the reset signal

within the ICSP bus to only one of many microcontrollers, based on the binary code

present on the DEMUXX’s select lines. All microcontrollers on the bus will receive

the same programming data and clock lines (GSE PGED and GSE PGEC), but will

ignore these signals unless they have just been reset.

TCXO Driven Mission Elapsed Time Clock

The FIREBIRD CDH featured a RTCC IC, which was occasionally synced to

GPS time. However, due to numerous issues with this architecture, there was a

desire to switch to a simpler integer-counter based clock. There was also concern

about the temperature stability of the FIREBIRD clock, so a TCXO (Temperature

Compensation Oscillator) was desired for the IT-SPINS mission. After a trade study

of the available TCXO’s and counter IC, the Maxim DS32KHZSN TCXO and Maxim

DS1372 32-bit binary counter were selected. This circuit is referred to as the MET

(Mission Elapsed Time) Clock.

The DS32KHZ is a 32.768 kHz oscillator which measures its own temperature

every 64 seconds and adjusts its output frequency accordingly. It has a frequency

stability of ±2ppm from 0°C to +40°C and ±7.5ppm from -40°C to +85°C. It can

be supplied either 4.5VDC to 5.5VDC on its VCC pin or 2.7VDC to 5.5VDC on its VBAT

pin. [19]

The DS1372 is a 32-bit binary counter clock with an integrated 64-bit ID. The

32-bit counter is designed to be driven by a 32.768 kHz oscillator and increment its
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32-bit counter once per second (1 Hz). This results in a maximum value of 232 seconds

or approximately 136 years. The DS1372 also features a 64-bit ID which is unique to

each device manufactured by Maxim. This ID will serve as the serial number of an

SFC board once assembled and tested. It can be supplied 2.4VDC to 5.5VDC on its

VCC pin. [20] The DS1372 communicates as a slave to the SFC main microcontroller

via the SFC I2C bus at 3.3VDC .

Since the DS1372 must communicate at 3.3VDC , both it and DS32KHZ are

supplied with regulated 3.3VDC from the EPS via the RTC 3V3 bus. RTC 3V3 will

not be turned off by the EPS during watchdog resets, so that the clock may continue

counting. In the event that the clock becomes latched-up, the SFC may manually

power cycle the MET circuit via a command to the EPS.

Experimental IMU

While the IT-SPINS ADCS will have its own IMU (Inertial Measurement Unit)

for determining the attitude of the spacecraft, there is a strong desire to develop

a familiarity and flight heritage with an IMU, so that it could be used on future

missions. After researching the available low-cost integrated 3-axis accelerometer,

3-axis gyroscope, and 3-axis magnetometers available on the market, the InvenSense

MPU-9250 was selected. The MPU-9250 is multi-chip module featuring two dies

integrated into a single QFN package. The primary die houses the 3-Axis gyroscope,

the 3-Axis accelerometer, and a temperature sensor. The other die houses the

AK8963 3-Axis magnetometer from Asahi Kasei Microdevices Corporation. Since

this subcircuit is not critical to mission success, its full implementation and testing

is not required unless time is available.
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Software

Science Data as Telemetry

In the FIREBIRD flight software, telemetry and science data were handled

differently. FIRE’s data bandwidth was too high for the CDH to handle writing

to SD Card, so science data storage was moved to the MFIB’s NAND flash, while

the SD Card was left to store telemetry data. Because of the priority placed on

FIRE data, optimizing downlink from the SD Card was not performed. Only FIRE

data downlink was optimized. However, the TLMMGR system for routing SCDB

telemetry to different hardware outputs (GSE, COMM, or SD Card) at fixed time

intervals and on-demand worked well.

For IT-SPINS the science data storage requirements are much lighter. Only an

integer photon count, MET timestamp, and ADCS attitude knowledge data needs to

be stored twice per second. Therefore, the design decision was made to treat science

data as telemetry, taking advantage of the SCDB and TLMMGR while using the

MFIB-like NAND Manager as an alternative SD Card output. Data downlink will be

based on that of the MFIB, combing the best of both systems.

Code Base Refactor

As discussed above in the Background chapter on FIREBIRD, the flight software

code base diverged from the standards originally set out for it. Additionally, the low

task count prevented full utilization of the µC/OS-II RTOS’s semaphores, event flags,

mutual-exclusion semaphores, queues, and time management. In order to resolve

these issues, two changes were proposed: (1) switch to Microchip MPLAB Code

Configurator (MCC) auto-generated hardware peripheral drivers and (2) redefine a

standard that each module will conform to, including an OS task for each module.
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Microchip’s MCC tool gives the user a graphical interface to configure the

functionality of each hardware peripheral built into the PIC, such as the UART, SPI,

I2C, and IO peripherals. MCC auto-generates C code with a standard interface for

each peripheral configured. Microchip offers an alternative Libraries for Applications

(MLA) standard library of drivers. However, an internal trade study showed that

MCC was a better fit for this project, as it maintains a standard source code format,

while allowing the necessary customization of each driver.

During initial implementation of the NAND Manager module, it was discovered

that calls to OSMutexPend() and OSMutexPend(), which ensure exclusive access

to a resource, were silently failing. Because the sys ctrl task handles multiple

modules simultaneously, if module A acquires mutex on a resource, when module B

requests access to the resource, it would get a failure code indicating the sys ctrl

already has exclusive access. This caused problems, since the failure was not handled

properly and module B would continue assuming it had acquired the exclusive access

to the resource. This triggered a full refactor and reorganization of the flight software

into an individual task for each module.

The new standard for each module is outlined below. Each module will

be organized into the following 3 files <ModName>.h, <ModName> task.c, and

<ModName> cmds.h, where <ModName> is the name of the module. Modules which

interface to external hardware (NANDMGR, MET, EPS, COMM, etc.) will have two

additional files <module> driver.c and <module> driver.h. All module files

(both .c and .h) be contained within one directory of the same name. Templates of

each of these files can be found in Appendix B.

<ModName>.h shall contain only function prototypes and data that should

be accessed outside the module, while others will be defined within the .c files.

Previously the header files had contained many declarations which unnecessarily made
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them globally accessible to other modules. These internal declarations will be moved

to the top of the appropriate .c file in where they will be used. If a declared variable

or function needs to be accessible within multiple .c files in the same module, it be

redefined with the extern attribute.

<ModName> task.c shall contain the <ModName>Task() function which is

the entry point for task, once initialized. This file shall also contain functions

that are intended to be called from other modules. To reduce inter-module

communication, increasing modularity, <ModName> task.c should generally only

contain <ModName>QPost() and <ModName>SetFlag(). These functions post

an OS message pointer to the module’s queue and set an OS flag within the module

respectively. Functions which process OS Flags or events may also be defined in this

file, but should not be declared globally in the module’s header file.

<ModName> cmds.c shall contain the <ModName>ProcessLocalCmd()

function as well as per-command functions. When a message is posted to the module’s

queue using <ModName>QPost() a flag is posted as well. The task loop, pending

on flags, will then call <ModName>ProcessLocalCmd() until the message queue

is empty. <ModName>ProcessLocalCmd() will validate the command message

and call the corresponding per-command function. The message will always be freed

in <ModName>ProcessLocalCmd() to prevent memory leaks.

<ModName> driver.c shall abstract calls to the hardware drivers (SPI,

UART, etc.) and provide utility functions. For example, read and write register

functions for an I2C device or SendPacket and GetData functions for UART devices.

<ModName> driver.h shall declare only functions and data that should be

accessible to the module. This file should only be include by its own module.
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HARDWARE FABRICATION

This chapter covers the steps required to take the block diagram in Figure 3.1

and build a fully functional Printed Circuit Board (PCB). This includes the CAD

steps of schematic capture and layout, as well as fabrication and assembly.

CAD

The first step in CAD schematic capture is drawing each part that will be used

in the CAD program and saving it within a library. In the case of the SFC, many

parts have heritage from previous designs, so their drawings were simply imported

from an existing library. The part drawing includes all of the pins on the device and is

often organized based on pin function, rather than pin location on the actual device.

Once all the parts are drawn they are placed on schematic pages and wires

or “nets” are drawn to indicate connections between pins on each part. Figure 4.1

shows an example of a the completed sub-circuit schematic for the experimental IMU.

The connections made are based on the device’s datasheet recommendations. Off-

page symbols are used to show that a net connects to something elsewhere in the

schematic. For example SYS_3V3 is the 3.3V supply for most of the devices, so it

is cleaner to use off-page symbols than to draw a continuous line to each device that

needs it. De-coupling capacitors C27 through C28 are connected to each power pin

of the device, to filter out noise on the power line before entering the device, as well

as prevent noise from the device propagating out onto the power line. Notes can also

be made on the schematic such as Slace Addr: 1101001, which indicates that

the IMU will have the given slave address in binary on the I2C bus.

Following schematic entry, the design moves onto PCB layout, where the actual

PCB is drawn. As with the schematic, each part must have a corresponding drawing
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Figure 4.1: Example of schematic entry view, showing experimental IMU circuit.

with all pins and dimensions accurately represented. In layout parts are first organized

by sub-circuit and then sub circuits are organized based on the interconnectivity

between them. In the case of the SFC, a 4 layer PCB design was chosen with one

internal ground plane layer and another internal power plane. Since almost all devices

require a connection to both power an ground, they can simply drop down to the

internal layer to for these connections, rather than having to route power and ground

traces across the while board. All parts were placed on the top surface, with the

bottom surface reserved for additional routing.

Figure 4.2 shows an example of a the completed sub-circuit layout for the

experimental IMU. Layout software tools are linked to the schematic tool, so

they can indicate which connections need to be drawn based on the schematic’s

connections. The colors used in the layout indicate the layer a copper trace is drawn

on. Additionally, power and ground connected pads are shown in yellow and green

respectively.

After making all required connections in layout, the Design Rule Check (DRC)

tool is used to verify that all connections drawn in the schematic are present in the

layout and that no copper traces will be too close together to manufacture. Once all

checks pass and the final design has been reviewed, Computer-Aided Manufacturing
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Figure 4.2: Example of layout and routing view, showing experimental IMU circuit.

(CAM) files are output to describe the layout to the board house that will fabricate

the board.

Fabrication

The SFC PCBs were ordered from OSHPark.com at a cost of $149.10 for 3 copies

shipped, based on their 4-layer cost of $10 per square inch. Several minor issues were

found with the completed boards. First, one of the three boards received had a slight

misalignment of the topside solder mask. This misalignment was worst in the upper

left corner of the board around the IMU, as shown in Figure 4.3.

Another issue visible in Figure 4.3 are small “bubbles” in the solder mask. These

bubbles appear near any copper on both the top and bottom side of the PCB.

OSHParksupport reasoned that the panel may have dried and cured too quickly,

leaving water trapped near the traces and causing some water bubbles to pop up.

This is not normal for OSHPark PCBs. This cosmetic issue does not affect the

performance of the boards, and required no correct actions.
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Figure 4.3: Microscope picture of solder mask misalignment and bubbles.

Assembly

Parts were ordered from DigiKey.com; however, some components were already

in available in SSEL’s stock. Two of the three PCBs were assembled in stages by

Randy Larimer, PE. All components were hand-soldered, with the exception of U8

(the IMU) and U5 (RS422 transceiver) which were reflowed, since both have thermal

ground pads under the package. Initially all but the expensive PL1-2 connectors were

loaded on one PCB. After some basic testing and verification, the PCB was returned

to load the remaining parts and fully populate the second board. This provided SSEL

with two identical copies of the SFC, one of which is shown in Figure 4.4.
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PIC Programming
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Figure 4.4: Annotated picture of fully assembled SFC showing all major sub-circuits.
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SOFTWARE IMPLEMENTATION

The flight software was developed in Microchip’s MPLAB v3.60 Integrated

Development Environment (IDE) with the XC16 compiler. As mentioned in the

Design chapter, Microchip’s MCC tool was also used to auto-generate device

configuration and hardware peripheral driver source code.

During the code base refactor, a Python tool called mod-gen was written to

take templates of the new module standard, shown in Appendix B, and generate each

module’s files. Existing code from the FIREBIRD project was then added function-

by-function into the newly generated files and updated to conform to the standard.

Much of the code required by IT-SPINS was already implemented for FIRE-

BIRD. However, it still took significant effort to refactor and reorganize the

FIREBIRD software modules into the new standard outlined in the Design chapter.

In total, this took approximately 6 weeks for full-time labor to complete the migration

of approximately forty-five thousand lines of code. While very time-consuming, this

refactor has made the code base much more modular and maintainable for both IT-

SPINS and future missions.

Development of new modules for IT-SPINS was fairly straightforward (CTIP,

IMU, etc.); however, the MAI-400 software interface was rather challenging. MAI-400

commands were straightforward, as they are required to begin with a two-byte sync

character, they are a constant length, and they have a checksum in the final two bytes.

The telemetry is divided among a “standard” telemetry packet and two “additional”

packets. Each of these three different packets are structured slightly differently, with

some containing a “packet type” field, while others use a unique sync character as

a type identification. Additionally, one of the “additional” telemetry packets uses a

different checksum algorithm from the commands and other telemetry packets. The
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solution was to implement the MAI-400 driver with three separate receive buffers,

for each of the telemetry types. A state machine is used to determine which packet

type is currently being received and push incoming bytes into the appropriate buffer.

This approach was used instead of a single receive buffer, as all three packets are

usually received in rapid succession and the RTOS would not always service the flag

indicating the buffer contained a packet before the next packet needed to be buffered.

Giving each module its own task required each module to have its own CPU

stack, which µC/OS-II switches into operation on context switches between tasks.

The nature of the PIC24 microcontrollers used required this stack space to be

allocated in the lower 32kB of RAM, limiting available stack space. In order

to minimize the pre-allocated stack of each task, while avoiding stack overflows,

additional telemetry points were added to the System module to monitor stack usage.

This was implemented using µC/OS-II’s OSTaskStkChk() function. Each time a

module was implemented its stack would be allocated larger than needed. After

running the new module and exercising all of its functionality while monitoring

the stack telemetry, a more conservative stack size would be chosen based on the

maximum usage under load with some added margin.

The FIREBIRD flight software had been developed using Apache Subversion

(SVN) for code revision control, with the TortoiseSVN tool and a self-hosted instance

of WebSVN. However, this provided only simple code revision control. There was a

strong desire to switch to a git-based system to handle feature branches and a system

that handles issue or task tracking. After reviewing the available options, a self-hosted

instance of GitLab Community Eddition (CE) was chosen to handle revision control,

issue tracking, collaboration, and Continuous Integration (CI).
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TESTING

Standalone Testing

Standard SSEL policy dictates that each PCB board built should be thoroughly

tested before applying power and before mating with other hardware. This ensures

that a mistake in the design, fabrication, or assembly of the board does not cause

damage to other equipment or subsystems. This prevents unnecessary repairs to

the device under test (DUT) as well as other subsystems, which consumes excess

resources. This standalone testing consists of an unpowered and powered Safe-To-

Mate (STM), followed by powered functionality tests for each major subcircuit.

Safe-To-Mate Testing

After receiving each board from assembly, each was tested with the SFC STM

procedure, SSEL document number IS-Test-0005. This test involves measuring the

resistance of each pin of each connector to ground, with the board unpowered.

Resistance measurements were also made between different points of the same net,

to verify conductivity. Then, the voltage of each pin was measured with the board

powered. This test verifies the board is functioning at a basic level and is safe to

connect to other equipment.

This testing revealed the CTIP connector footprint error, mentioned in the

Design chapter above. Some of the expected resistance and voltage values in the

initial STM test procedure were incorrect, but shown to be acceptable. Other than

that, both assembled boards passed their STM tests.
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PIC Processor

After passing a STM, each board was programmed with simplified versions of

the FIREBIRD CDH and MFIB software, with most functionality disabled. At

this point, the IT-SPINS software implementation had not been started. The first

time programming was attempted, neither microcontroller would respond to the

programmer hardware. Additionally, the main microcontroller’s 8MHz oscillator

would only intermitently run on power up. After reviewing the schematic, layout, and

microcontroller datasheet, it was found that the analog power supply (AVDD) pin was

left unconnected. While the analog functions of the microcontroller were not being

used, this pin requires power for proper operation, according to the datasheet [21].

After installing a jumper wire to power the AVDD pin, shown in Figure 6.1, each

microcontroller could be programmed.

Figure 6.1: Microscope picture of jumper wire connecting the PIC24 microcontroller’s
AVDD pin to a nearby decoupling capacitor.

The first software and hardware tested was the EGSE UART connection. This

provided an interface to the InControl ground station software and worked without

issue.
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MET Clock Thermal Characterization

Because the TCXO MET clock was a new mission-critical design, there was

a strong desire to begin long-term testing early, to gain confidence in the clock

and characterize its performance. In order to characterize the TCXO over a range

temperatures, one of the SFC EDUs was placed in the SSEL thermal chamber for two

weeks. The first week, the chamber was set to 0°C and the second week, the chamber

was set to +60°C. In addition to verifying the performance of the TCXO, this 2 week

continuous runtime serves as burn-in time for the entire board.

The SFC was mounted to a PCB test stand with simple breakout board mated

and a Fluke Type-K thermocouple mounted to the TCXO, as shown in Figure 6.2.

USB and power were passed through the chamber feed-through. Two separate 3.3V

connections were brought into the chamber so that SYS 3V3 and RTC 3V3 could

be reset independently from outside the chamber. During this test, the computer

running the InControl groundstation software outside the chamber was being synced

to NIST using the nistime-32bit.exe program and considered time “truth.”

Figure 6.2: SFC board mounted in thermal testing chamber with required power and
data connections.
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Figure 6.3 shows the results of the MET clock testing in the thermal chamber.

The clock incremented for 1 week while “cold” (0°C) and another week while “hot”

(60°C). Excel’s linear fit tool was used to approximate the rate at which the clock

was incrementing during each temperature period.

Figure 6.3: Plot of MET cumulative ticks versus elapsed time at hot and cold
temperatures with linear fits.

Table 6.1 summarizes the above data. Ideally the clock would always increment

exactly once per second, resulting in 86,400 ticks per day. When cold, the clock ran

2.9ppm fast and when hot it ran 5.2ppm fast. This thermal dependent error is within

specifications for the TCXO [19]. Another result from this test is that the SFC was

able to run for 2 weeks continuously without any latch-ups (however this was with a

very simple software load).

NAND Manager

Testing of the NAND Manager and NAND flash hardware was fairly straight-

forward. The NAND Manager microcontroller was initially tested by attempting

to program it. Once the AVDD jumper had been installed on this microcontroller,

as described above for the primary microcontroller, the device could easily be
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Table 6.1: Summary of MET thermal test data.

Average

Ticks per Day

Absolute Error

(ppm)

Estimated Drift

(sec. per month)

Cold Tick Rate 86400.247758 2.8676 7.5360

Hot Tick Rate 86400.451940 5.2308 13.7464

Relative Error 0.204182 2.8676 7.5360

programmed.

Special care was taken in each revision of code flashed to the NAND Manager

microcontroller to avoid performing write operations to the NAND flash. The NAND

flash comes from the factory blank; however, defective blocks of memory are marked

by the manufacture. Before performing any write operations, read operations were

performed on the entire flash, to detect any manufacture-marked bad blocks marks.

No manufacture-marked bad blocks have been detected on the SFCs.

Once the NAND Manager microcontroller code bad been sufficiently developed,

long term tests were performed to verify the NAND Manager microcontroller and

NAND flash could support several telemetry IDs being written at flight-like cadences

for several days consecutively. No significant issues have been found. Note that this

test has only been performed on the engineering model (EM) SFC, as write/erase

cycles will be limited on the flight model (FM) SFC, to allow a longer on-orbit

life. Readback and downlink of data has also been performed; however, the ground

station software has not yet been sufficiently developed to characterize the validity

and efficiency of these downlinks.
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Experimental IMU

Because the experimental IMU is not mission critical, only minimal testing

has been performed. Readback of the 3-axis accelerometer, 3-axis gyroscope, and

temperature sensor have been verified through telemetry. Only simple tests rotating

the SFC by hand have been used to verify the response of these devices. One issue

that has not been resolved is the readback of the 3-axis magnetometer, which is only

intermittently working.

Inter-Subsystem Testing

Once stand-alone testing was completed and the required software had been

implemented, the SFC was integrated and tested with all other subsystems on the

satellite one at a time. The SFC has passed all tests performed with the CTIP, ADCS,

EPS, and COMM subsystems. However, at this time the SCE has not been built,

and therefore, has not been tested.

CTIP Payload

CTIP was one of the first external subsystems tested with the SFC, since a

CTIP EM was available early in the development of the mission. A custom cable was

made to interface between the SFC and CTIP, which resolved the footprint error on

the SFC’s CTIP connector. This interface proved to be functional, with all CTIP

commands and telemetry working well.

MAI ADCS Development Unit

In order to test the MAI-400 interface on the SFC, a cable was made to connect

the SFC to the MAI-400 development unit, which contains only the main circuit

board and processors, with no sensors or actuators. This interface proved to be
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functional, with most commands and telemetry working well. There were several

bugs in the MAI-400 interface found, including an invalid temperature telemetry

point and invalid packet checksum. These bugs have workarounds implemented for

now, and MAI intends to resolve them in their final firmware release.

Electrical Power System

Testing of the SFC with the EPS was delayed, as a flight-like fully functional

EPS was not complete until very late in the mission design cycle. However, once

an EPS had been built, all software and power interfaces to the SFC proved to be

functional. This interface was tested by mating an EPS and SFC through the system

bus connector, and verifying that SFC could read and write to all command registers

of the I2C interface and that the commands turned on or off the desired rail.

COMM

Testing of the SFC with the AstroDev COMM subsystem was also delayed,

as only a flight model COMM board was purchased due to budget constraints.

Additionally, the Li-1 radio order arrived several months late and turned out to

be a Li-2, with different mechanical, electrical, and software interfaces, which has yet

to be defined by the manufacture. This forced a resign of the carrier board for the

radio, since it had already been designed and manufactured to meet the published

specifications of the AstroDev Li-1 radio. Basic testing of the UART command

and telemetry interface of the Li-2 proved the device could properly receive radio

transmission and pass them to the SFC, as well as transmit data provided to it. The

configuration registers could also be written to and readback via the UART interface.
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Software Testing

Throughout the implementation of the flight software code base, its stability was

tested regularly. Each time a significant feature was implemented, the SFC would

be run for several days continuously with as many subsystems connected and in use

as possible. This verified the new feature or change had not adversely affected other

modules and was performing as expected. Added commands and telemetry would be

tested with the InControl ground station software.
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CONCLUSION

Timely and accurate prediction of space weather storms are extremely important

to maintaining today’s space and ground based infrastructure. Current models

of the Earth’s ionosphere and its interaction with the Sun as a coupled system

lack the in situ measurements needed to improve predictions. The IT-SPINS

mission will provide line-of-sight measurements of 135.6-nm nightglow emissions from

O+/electron recombination from a 3U CubeSat in LEO. Post processing will yield

2D altitude versus in-track images of the O+ density. These 2D images will further

our understanding of the TTR, as well as mesoscale structures like EPB, and polar

patches and will provide weighting parameters for space weather models.

The IT-SPINS Space Flight Computer has been designed, built, and tested at

the Space Science and Engineering Laboratory at Montana State University. The SFC

hardware and software designs leverage heritage from SSEL’s past CubeSat missions,

while fulfilling the unique command and data handling requirements of the IT-SPINS

mission. All tests to date have shown the SFC to meet its subsystem requirements,

derived from the top-level mission requirements.

Lessons Learned

While the PIC select DEMUX design works as intended, as other subsystems

were added to the avionics stack, each with their own copy of the circuit, several flaws

became apparent. The static power consumption of the DEMUX, while only a few

milliwatts, was duplicated on each board in avionics stack. Additionally, this circuit

is only used for programming on the ground, so it acts only as a complicated pull-up

resistor on orbit. For future designs it is suggested to move the DEMUX circuit out

of the satellite to the external EGSE, and route the output of the DEMUX through
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the EGSE harness. This would reduce power consumption, simplify the design, and

yield more layout space.

As mentioned in chapter 3, the NAND flash architecture was found to not be

a good fit for storing the small commands sequences and system state information.

This is because the NAND flash used requires half-megabyte block of memory to be

erased at a time. The solution was to add a NOR flash, identical to the one used on

FIREBIRD’s CDH, to the SFC with a small daughterboard.

My Contribution

Expect where noted, the described work of designing, building, software

implementation, and testing for the IT-SPINS SFC is my own. However, I did

receive guidance, review, and assistance from the staff and students of the MSU

SSEL throughout the process.

Future Work

Because the SCE hardware has not yet been built, the SCE software module

has not been fully tested. Currently the SCE software module has been developed

based on the FIREBIRD FISCE software while incorporating lessons learned from

the IT-SPINS EPS software. Once the SCE has passed all stand-alone tests, it should

be integrated and tested with the SFC.

While the radio interface software on the SFC has been tested, the InControl

ground station processing of stored data downlink has not been completed. Due

to several changes in the packet structure of stored data downlinks, InControl’s IT-

SPINS mission interface will need to be updated to accept the new structure.

The specifics of the mission concept of operations (data collection timing,
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required ADCS data for tomographic reconstruction, etc..) still need to be defined.

Once defined, this will allow the flight command sequences and custom telemetry IDs

to be developed and tested in software.

Finally, there are two known bugs in the software which should be resolved before

flight. First, the NAND Manager’s bad block management will incorrectly flag some

blocks as bad during reformatting of the NAND flash. Second, the system has been

seen to freeze after running for several days with many telemetry IDs configured to be

sent out of EGSE at high cadences; however, this is not a major issue, as the EPS’s

WDT will reset the system every 12 hours.
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APPENDIX A

SFC SUBSYSTEM LEVEL REQUIREMENTS
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Table A.1: IT-SPINS SFC System Interface Requirements

Requirement
Number

Baseline Requirement Source

SFC-1

The SFC shall interface with the CTIP payload utilizing
a dedicated 5V RS-422 link for command and telemetry.
The RS-422 signals will be converted to UART to
interface with the SFC.

Derived

SFC-2
The SFC shall interface with the MAI-400 ADCS utilizing
a dedicated 3.3V UART link for command and telemetry.

Derived

SFC-3
The SFC shall interface with the AstroDev radio
utilizing a dedicated 3.3V UART link for command and
telemetry.

Derived

SFC-4
The SFC shall interface with the EPS utilizing a 3.3V
I2C link for command and telemetry.

Derived

SFC-5
The SFC shall interface with the NAND Manager
utilizing a 3.3V SPI link for command and telemetry.

Derived

SFC-6
The SFC shall interface with the solar cell experiment
utilizing a 3.3V I2C link for command and telemetry.

Derived

SFC-7
The SFC shall interface with the ground support
equipment utilizing a dedicated 3.3V UART link for
command and telemetry.

Derived
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Table A.2: IT-SPINS SFC Time Management Requirements

Requirement
Number

Baseline Requirement Source

SFC-8
The SFC shall utilize a system clock with less than 8ms
measurement resolution and temperature stability less
than TBD parts per million.

Derived

Table A.3: IT-SPINS SFC Data Handling and Storage Requirements

Requirement
Number

Baseline Requirement Source

SFC-9
The SFC shall have non-volatile, partitioned data
storage capacity for both mission science and
spacecraft telemetry.

Derived

Table A.4: IT-SPINS SFC Command Processing Requirements

Requirement
Number

Baseline Requirement Source

SFC-10

The SFC shall receive, authenticate, process and
distribute commands from GSE, COMM and stored
command sequences to individual subsystems and the
science payload.

Derived

SFC-11 The SFC shall be able to reject erroneous commands. Derived

SFC-12

The SFC shall utilize a stored command sequencer for
autonomous start-up (including activation of
deployables) following deployment from the launch
canister.

Derived
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Table A.5: IT-SPINS SFC Telemetry Requirements

Requirement
Number

Baseline Requirement Source

SFC-13
The SFC shall collect, packetize and store time-tagged
telemetry from all subsystems and the science payload
in real-time.

Derived

SFC-14
The SFC shall transmit current-value telemetry to GSE,
COMM or non-volatile storage on demand and at a
configurable rate.

Derived

SFC-15
The SFC shall transmit specific stored telemetry to
GSE or COMM upon request

Test
Plan

SFC-16

The SFC shall utilize spacecraft telemetry monitors
with configurable trigger conditions to execute
autonomous corrective or protective action against
anomalous system behavior.

Derived
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APPENDIX B

MODULE FILE TEMPLATES
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1 /*******************************************************************************
2 *

3 * Space Sc i ence and Eng ineer ing Labora tory
4 * Montana S t a t e Un i v e r s i t y
5 *

6 * F l i g h t So f tware
7 *

8 * Filename : <ModuleName>.h
9 * Des c r i p t i o n : Header f i l e f o r <ModuleName> module

10 * Authors ( s ) : { author }
11 * Date Created : { da t e }
12 *******************************************************************************/
13
14 // This i s a guard c ond i t i o n so t h a t c on t en t s o f t h i s f i l e are not i n c l u d e d
15 // more than once .
16 #ifndef <ModuleName> H
17 #define <ModuleName> H
18
19 /*******************************************************************************
20 * INCLUDES
21 ********************************************************************************/
22 #include "os/ ucos_ii .h"
23
24 /*******************************************************************************
25 * DEFINES
26 ********************************************************************************/
27 #define <ModuleName> STK SIZE 256u
28 #define <ModuleName>MAX MSGS SYS NUM PKTS
29
30 #define <ModuleName> FLAG MSG Q 0x01
31
32 /* Commands */
33 enum E <ModuleName>COMMANDS
34 {
35 E <ModuleName>NOOP = 0 , /* Noop command */
36 E <ModuleName> RESET SOH = 1 , /* Reset SOH S t r u c t command */
37 E <ModuleName> */
38 } ;
39
40 /* Module s t a t e o f Hea l th */
41 typedef struct <ModuleName>SoH
42 {
43 INT8U cmd cnt ;
44 INT8U inv cmd cnt ;
45 INT8U last cmd ;
46 INT32U byte s s en t ;
47 INT32U bytes rcvd ;
48 } <ModuleName>SoH ;
49
50 /*******************************************************************************
51 * EXTERNALS
52 ********************************************************************************/
53 extern OS STK <ModuleName>Stk [ ] ;
54 extern OS EVENT * <ModuleName>Queue ;
55 extern OS FLAG GRP * <ModuleName>Events ;
56 extern void * <ModuleName>MsgArray [ ] ;
57
58 extern <ModuleName>SoH ;
59
60 /*******************************************************************************
61 * PROTOTYPES
62 ********************************************************************************/
63 void <ModuleName>Task ( void * pdata ) ;
64 void <ModuleName>SetFlag ( INT8U f l a g s ) ;
65 INT8U <ModuleName>QPost ( void * msg ) ;
66
67 #endif /* <ModuleName> H */
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1 /*******************************************************************************
2 *

3 * Space Sc i ence and Eng ineer ing Labora tory
4 * Montana S t a t e Un i v e r s i t y
5 *

6 * F l i g h t So f tware
7 *

8 * Filename : <ModuleName> t a s k . c
9 * Des c r i p t i on : Task f i l e f o r <ModuleName> Module

10 * Authors ( s ) : { author }
11 * Date Created : { da t e }
12 *******************************************************************************/
13
14 #include "os/ ucos_ii .h"
15 #i f TASK <ModuleName> EN
16 #include " modules /<ModuleName >.h"
17 #include " modules /<ModuleName > _driver .h"
18 #include " modules / system / system .h"
19
20 OS STK <ModuleName>Stk[<ModuleName> STK SIZE ] ; /* Task S tack */
21 void * <ModuleName>MsgArray[<ModuleName>MAX MSGS ] ; /* Task Message Array*/
22 OS EVENT * <ModuleName>Queue ;
23 OS FLAG GRP * <ModuleName>Events ;
24
25 extern void <ModuleName>ProcessLocalMsg ( PACKET * msg ) ;
26
27 extern void <ModuleName>I n i t ( void ) ;
28
29 void <ModuleName>Task ( void * pdata )
30 {
31 /* l o c a l va r s */
32 INT8U er r ;
33 PACKET * msg ; /* message v a r i a b l e f o r t a s k queues */
34 OS FLAGS f l a g s ; /* Var i a b l e to g e t Events from the OS */
35
36 /* Create e ven t f l a g group */
37 <ModuleName>Events = OSFlagCreate (0 x00 , &e r r ) ;
38 i f ( <ModuleName>Events == (OS FLAG GRP*) 0 )
39 {
40 #ifde f DEBUG
41 bu i l t i n s o f twa r e b r e a kp o i n t ( ) ; // ERROR
42 #endif
43 }
44
45 /* Create Message queue */
46 <ModuleName>MAX MSGS) ;
47 i f ( <ModuleName>Queue == (OS EVENT*) 0 )
48 {
49 #ifde f DEBUG
50 bu i l t i n s o f twa r e b r e a kp o i n t ( ) ; // ERROR
51 #endif
52 }
53
54 /* i n i t <ModuleName> hardware */
55 <ModuleName>I n i t ( ) ;
56
57 /* Never l e a v e t h i s l oop */
58 while ( 1 )
59 {
60 /* Wait f o r e v e r f o r any o f t h e s e e v en t s */
61 f l a g s = OSFlagPend(<ModuleName>Events ,
62 /* wai t f o r f l a g */
63 <ModuleName> FLAG MSG Q,
64 OS FLAG WAIT SET ANY | OS FLAG CONSUME,
65 0 , /* wai t f o r e v e r */
66 &e r r ) ;
67
68 /* I f v a l i d e v en t f l a g ( s ) was read , hand l e each one */
69 i f ( e r r == OS NO ERR )
70 {
71 /* Message queue even t */
72 i f ( f l a g s & <ModuleName> FLAG MSG Q )
73 {
74 /* Read and p ro c e s s a l l messages in queue */
75 msg = (PACKET*)OSQAccept(<ModuleName>Queue , &e r r ) ;
76 while ( e r r == OS ERR NONE)
77 {
78 <ModuleName>ProcessLocalMsg (msg) ;
79
80 /* Get t h e nex t message , i f t h e r e i s one */
81 msg = (PACKET*)OSQAccept(<ModuleName>Queue , &e r r ) ;
82 }
83 }
84 }
85 else
86 {
87 #ifde f DEBUG
88 bu i l t i n s o f twa r e b r e a kp o i n t ( ) ; // ERROR
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89 #endif
90 }
91 }
92 }
93
94 void <ModuleName>SetFlag ( INT8U f l a g s )
95 {
96 /* l o c a l va r s */
97 INT8U er r ;
98
99 /* Set t h e OS f l a g s */

100 OSFlagPost(<ModuleName>Events , f l a g s , OS FLAG SET, &e r r ) ;
101
102 /* check f o r e r r o r */
103 i f ( e r r != OS ERR NONE)
104 {
105 #ifde f DEBUG
106 bu i l t i n s o f twa r e b r e a kp o i n t ( ) ; // ERROR
107 #endif
108 }
109 }
110
111 /*******************************************************************************
112 * Funct ion : INT8U <ModuleName>QPost ( vo i d * msg )
113 * Des c r i p t i o n : Send a message to a message queue and s e t an even t f l a g
114 * Arguments : vo i d * msg − message b e in g po s t ed to t h e t a s k
115 * Returns :
116 * Remarks :
117 *******************************************************************************/
118 INT8U <ModuleName>QPost ( void * msg )
119 {
120 INT8U er r ;
121
122 e r r = OSQPost(<ModuleName>Queue , msg) ;
123 i f ( e r r == OS ERR NONE)
124 {
125 /* Set an even t */
126 (void ) OSFlagPost(<ModuleName> FLAG MSG Q, OS FLAG SET, &e r r ) ;
127
128 /* check f o r e r r o r */
129 i f ( e r r != OS ERR NONE)
130 {
131 #ifde f DEBUG
132 bu i l t i n s o f twa r e b r e a kp o i n t ( ) ; // ERROR
133 #endif
134 }
135 }
136 else
137 {
138 #ifde f DEBUG
139 bu i l t i n s o f twa r e b r e a kp o i n t ( ) ; // ERROR
140 #endif
141 }
142 return ( e r r ) ;
143 }
144 #endif
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1 /*******************************************************************************
2 *

3 * Space Sc i ence and Eng ineer ing Labora tory
4 * Montana S t a t e Un i v e r s i t y
5 *

6 * F l i g h t So f tware
7 *

8 * Filename : <ModuleName> cmds . c
9 * Des c r i p t i on : Commands f o r <ModuleName> Module

10 * Authors ( s ) : { author }
11 * Date Created : { da t e }
12 *******************************************************************************/
13
14 #include "os/ ucos_ii .h"
15 #i f TASK <ModuleName> EN
16 #include " modules /<ModuleName >.h"
17 #include " modules /<ModuleName > _driver .h"
18 #include " modules / system / system .h"
19
20 /************************************
21 * Loca l Va r i a b l e s f o r t h e System
22 ************************************/
23 <ModuleName>SoH ;
24
25 /*******************************************************************************
26 * Funct ion : vo i d <ModuleName>NoOp ( vo i d )
27 * Des c r i p t i o n :
28 * Arguments :
29 * Returns : none
30 * Remarks : none
31 *******************************************************************************/
32 void <ModuleName>NoOp ( void )
33 {
34 ;
35 }
36
37 /*******************************************************************************
38 * Funct ion : vo i d <ModuleName>ResetSoH ( vo i d )
39 * Des c r i p t i o n :
40 * Arguments :
41 * Returns : none
42 * Remarks : none
43 *******************************************************************************/
44 void <ModuleName>ResetSoH ( void )
45 {
46 <ModuleName>SoH . cmd cnt = 0 ;
47 <ModuleName>SoH . inv cmd cnt = 0 ;
48 <ModuleName>SoH . last cmd = 0 ;
49 }
50
51 /*******************************************************************************
52 * Funct ion : vo i d <ModuleName>I n i t ( vo i d )
53 * Des c r i p t i o n :
54 * Arguments :
55 * Returns : none
56 * Remarks : none
57 *******************************************************************************/
58 void <ModuleName>I n i t ( void )
59 {
60 <ModuleName> I n i t ( ) ;
61 }
62
63 /*******************************************************************************
64 * Funct ion : vo i d <ModuleName>ProcessLoca lMsg ( PACKET * msg )
65 * Des c r i p t i o n : Process a message from another module to t h i s module
66 * Arguments : PACKET * msg − message from another module
67 * Returns :
68 * Remarks :
69 *******************************************************************************/
70 void <ModuleName>ProcessLocalMsg ( PACKET * msg )
71 {
72 BOOLEAN msg val id = OS TRUE;
73
74 /* Ver i f y d e s t i n a t i o n */
75 i f ( GetINT8U(msg+DESTID OFFSET) == E MODULE ID <ModuleName> )
76 {
77 /* Process t h e pack e t depending on the pac k e t t ype */
78 i f ( GetINT8U(msg+CMDTLMOFFSET) == E CMD PKT )
79 {
80 <ModuleName>SoH . last cmd = GetINT8U(msg+FUNCID OFFSET) ;
81
82 /* Handle s p e c i f i e d command */
83 switch ( GetINT8U(msg+FUNCID OFFSET) )
84 {
85 /* COMMANDS */
86 case E <ModuleName>NOOP:
87 <ModuleName>NoOp( ) ;
88 break ;
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89
90 case E <ModuleName> RESET SOH:
91 <ModuleName>ResetSoH ( ) ;
92 break ;
93
94 case E <ModuleName> INIT :
95 <ModuleName>I n i t ( ) ;
96 break ;
97
98 default :
99 /* I n v a l i d command */

100 msg val id = OS FALSE ;
101 break ;
102 }
103 }
104 else i f ( GetINT8U(msg+CMDTLMOFFSET) == E TLM PKT )
105 {
106 ;
107 }
108 else
109 {
110 /* I n v a l i d command */
111 msg val id = OS FALSE ;
112 }
113 }
114 else
115 {
116 msg val id = OS FALSE ;
117 }
118
119 i f ( msg val id )
120 {
121 <ModuleName>SoH . cmd cnt++;
122 }
123 else
124 {
125 <ModuleName>SoH . inv cmd cnt++;
126 }
127
128 #i f TASK SYSTEM EN
129 /* a lways r e l e a s e t h e message */
130 SystemReleasePacket ( ( void *)msg) ;
131 #endif
132 }
133 #endif
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1 /*******************************************************************************
2 *

3 * Space Sc i ence and Eng ineer ing Labora tory
4 * Montana S t a t e Un i v e r s i t y
5 *

6 * F l i g h t So f tware
7 *

8 * Filename : <ModuleName>.h
9 * Des c r i p t i o n : Header f i l e f o r <ModuleName> d r i v e r

10 * Authors ( s ) : { author }
11 * Date Created : { da t e }
12 *******************************************************************************/
13 #ifndef <ModuleName> DRIVER H
14 #define <ModuleName> DRIVER H
15 /*******************************************************************************
16 * INCLUDES
17 ********************************************************************************/
18
19 /*******************************************************************************
20 * DATATYPES
21 ********************************************************************************/
22
23 /*******************************************************************************
24 * EXTERNS
25 ********************************************************************************/
26
27 /********************************************************************************
28 * PROTOTYPES
29 ********************************************************************************/
30
31 /*******************************************************************************
32 * DEFINES
33 ********************************************************************************/
34
35 /********************************************************************************
36 * Macros
37 ********************************************************************************/
38
39 /********************************************************************************
40 * PROTOTYPES
41 ********************************************************************************/
42 void <ModuleName> I n i t ( void ) ;
43
44 #endif /* <ModuleName> d r i v e r h */
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1 /*******************************************************************************
2 *

3 * Space Sc i ence and Eng ineer ing Labora tory
4 * Montana S t a t e Un i v e r s i t y
5 *

6 * F l i g h t So f tware
7 *

8 * Filename : <ModuleName>. c
9 * Des c r i p t i o n : Dr iver f o r <ModuleName>

10 * Authors ( s ) : { author }
11 * Date Created : { da t e }
12 *******************************************************************************/
13
14 #inc lude "os/ ucos_ii .h"
15 #i f TASK <ModuleName> EN
16 #include " modules /<ModuleName >.h"
17 #include " modules /<ModuleName > _driver .h"
18
19 /*******************************************************************************
20 * Funct ion : vo i d <ModuleName> I n i t ( vo i d )
21 * Des c r i p t i o n : I n i t i a l i z e d t h e <ModuleName> Driver
22 * Arguments : None
23 * Returns : None
24 * Remarks : none
25 *******************************************************************************/
26 void <ModuleName> I n i t ( void )
27 {
28 //TODO: implement
29 }
30 #endif
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