The SNL/MSU/DOE Fatigue Program: Recent Results

John Mandell
Montana State University

2010 Sandia Blade Workshop
July 20-22, 2010
Thanks

• To Sandia/DOE for support since 1989
• To our many partners in the industry
Research Group

- PI: John Mandell; Current Group:
 - CoPI Research Engineer: Daniel Samborsky
 - Testing, Materials Fabrication
 - Post Doc: Aaron Sears
 - FEA, Adhesives
 - Grad Student: Tiok Agastra
 - Processing, Complex Structure Coupon Testing and FEA
 - Undergraduate Assistants: Patrick Flaherty and David Buswell
- Sandia PI’s: Tom Ashwill, Josh Paquette
Fatigue Topics

- Standard laminates representing spars, skins and webs
- Adhesive joints
- Core/sandwich areas
- Damage growth at flaws
- Ply delamination at details like ply drops and joints, and near adhesive joints
- Resins, fibers, fabrics, adhesives, cores
- Processing effects
- Environment
- Loading conditions/spectrum loading

Sandwich Panel
Public Database

- SNL/MSU/DOE Fatigue Database
 (SNL Website or MSU program website: www.coe.montana.edu/composites/)
 - Over 190 Materials
 - 11,500+ test results
 - Updates each March
 - Trends analyzed in publications and contractor reports on website; Draft of current contractor report
More Details

Contractor reports and publications on www.coe.montana.edu/composites/; additional information including resins, adhesives, fabrics, etc.

Contact: johnm@coe.montana.edu.

Contractor Report and Recent Papers on Website:

1. 2010 Sandia Contractor Report (Draft), Mandell, et al.
2. 2010 Sandia Blade Workshop Presentation, Mandell.
7. ACS 2010, Cocoa Beach, Selection of Blade Materials, Mandell, Presentation.
Presentation Topics

• Summary of recent results:
 2. Ply delamination, complex structured coupons with ply drops (mini substructures).
Tensile Fatigue, $R = 0.1$:
1. Glass fiber laminates most sensitive to tensile part of fatigue cycles
2. “Clean” failure modes for materials comparisons

Ref. 1
MSU resin infusion process with hard mold on one side
(panels also supplied by industry)
Vectorply E-LT 5500 Fabric, Front and Back Views (MSU Fabric D, 1875 gsm)
PPG-Devold L1200/G50-E07 (MSU Fabric H, 1261 gsm)

Front

Back
Strain-cycles trends for eight MD laminates, UD fabrics 1200-2400 gsm, Hybon 2026 sized strands, filament diameters up to 23 microns, Hexion RIMR 135 epoxy, \(R = 0.1 \)

Studies involving systematic fabric variation with Devold and OCV in progress

- TLT1200: Strain = \(4.45N^{0.1195} \)
- L1400: Strain = \(5.74N^{0.1397} \)
- L2400: Strain = \(5.86N^{0.1445} \)
- L1200: Strain = \(4.62N^{0.1160} \)
- TT2: Strain = \(6.92N^{0.1570} \)
- TT5: Strain = \(5.12N^{0.1270} \)
- TT7: Strain = \(5.53N^{0.1300} \)
- TT-EP-1: Strain = \(4.73N^{0.1200} \)
Data Representation

Million Cycle Strain Parameter, Power Law Exponent, Linear-Log Plots, Polyester (UP) vs Epoxy (EP)

Note: Strains shown on figures are Initial Strains from extensometer in the first few fatigue cycles.

Multidirectional Laminates;
TT: Database Laminate Designation;
[±45/0/±45/0/±45]

Ref. 1, 5
Resin Comparison, Same Fabrics

Vinyl esters: intermediate
pDCPD (Materia): similar to epoxy
UP and EP resins with and w/out 90-strands removed in gage section before infusion, UD laminates

Significant effect only for UP resin laminates
Typical Infused Laminate Property Ratios

Polyester (UP) to Epoxy (EP)*

<table>
<thead>
<tr>
<th>Property</th>
<th>Ratio UP/EP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Tensile Modulus (UD)</td>
<td>1.0</td>
</tr>
<tr>
<td>Axial Tensile Modulus (MD)</td>
<td>1.0</td>
</tr>
<tr>
<td>Axial (UD) Static Tensile Strength</td>
<td>0.90</td>
</tr>
<tr>
<td>Axial (MD) Static Tensile Strength</td>
<td>0.95</td>
</tr>
<tr>
<td>Transverse (UD) Static Tensile Cracking Strain</td>
<td>0.42</td>
</tr>
<tr>
<td>Axial (UD) 10⁶ Cycle Strain (R = 0.1)</td>
<td>0.51</td>
</tr>
<tr>
<td>Axial (MD) 10⁶ Cycle Strain (R = 0.1)</td>
<td>0.65</td>
</tr>
<tr>
<td>Axial (MD) 10⁶ Cycle Stress (R = 0.1)</td>
<td>0.61</td>
</tr>
<tr>
<td>Axial (Biax) 10⁶ Cycle strain (R = 0.1)</td>
<td>0.91</td>
</tr>
<tr>
<td>Interlaminar G_{lc} (0-0 interface)</td>
<td>0.55</td>
</tr>
<tr>
<td>Interlaminar G_{llc} (0-0 interface)</td>
<td>0.48</td>
</tr>
<tr>
<td>Complex Coupon Ply Drop Delamination, Threshold Fatigue Strain</td>
<td>0.74</td>
</tr>
</tbody>
</table>

*V_f = 0.5 to 0.6, UD Fabrics D and H, Biax Fabrics M and P
Complex Coupons With Ply Drops

Thickess Tapering

Ref. 4
Delamination Testing

Mixed Mode Delamination Testing, Different Resins

- Fabric A, EP-3, $V_F = 0.32$
- Fabric D, EP-3, $V_F = 0.51$
- Fabric A, UP-4, $V_F = 0.37$
- Fabric A, VE-1, $V_F = 0.34$

Initiation G_I, kJ/m²

Initiation G_{II}, kJ/m²

Mode I
- Opening Mode
- Fiber direction

Mode II
- Shearing Mode

Ref. 1, 5
Complex Structured Coupons with Ply Drops, Resin Infusion

Purpose: Mini-substructure test. Simplified, less costly approach to substructure testing. Efficient comparisons of resins, fabrics, geometric details in structural context.

Coupons represent more realistic internal (infused) blade structural detail areas than standard laminate tests.

Ref. 1, 4
Complex Structured Coupon with Ply Drops
(See 2009 SDM, AIAA-2009-2411; and 2010 SAMPE paper 398)

Damage Components

Alternate Geometries

Ref. 1, 4
Damage Growth Curves

Damage Growth with Different Resins Correlates with Interlaminar G_{lc}, G_{llc}

Ref. 4
Effect of Number of Plies Dropped

- 1 PD = 1.3 mm
- 2 PD = 2.6 mm
- 4 PD = 5.2 mm

Static

Fatigue

(R = 0.1, $P_{max} = 55.6$ kN)

Ref. 1, 4
THRESHOLDS

Near-threshold damage growth results for three resins: epoxy (EP-1), polyester (UP-1) and pDCPD; $R = -1$.

Near threshold results (5-mm delamination length L_1 in 10^6 cycles), $R = -1$, two plies dropped at one position.

<table>
<thead>
<tr>
<th>Resin</th>
<th>Max. Force, kN, and thin side average strain (%)</th>
<th>Force Change From Epoxy</th>
<th>Observed Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy EP-1</td>
<td>19 (0.18%)</td>
<td></td>
<td>L1, L2, crack at ply ends</td>
</tr>
<tr>
<td>Polyester UP-1</td>
<td>14 (0.13%)</td>
<td>-26%</td>
<td>L1, L2, biax cracking, crack at ply ends</td>
</tr>
<tr>
<td>pDCPD</td>
<td>22 (0.21 %)</td>
<td>+16%</td>
<td>L1, crack at ply ends</td>
</tr>
</tbody>
</table>
Blade Adhesives

• Initial Test Parameters
 – Characterize Nominally Good Quality Joints (Most Contain Significant Porosity)
 – Range of Uniaxial Loading Conditions (R-values)
 – Range of Crack Mode Mixity (G_I/G_{II})
 – Failure Modes; Crack initiation and Growth Location
 – Strength-lifetime or Fracture Mechanics-da/dN
Strength-Lifetime Lap Shear Test

Adhesive ADH-1, 3004 Cycles (left), 3006 Cycles (right) (Non-symmetrical Specimen Clamped in Hydraulic Grips)

Ref. 1, 6
Simulated blade joint study, see AIAA paper AIAA-2009-1510

Joint strength statistics and critical flaws; failure modes; geometry
Fatigue exponents
Porosity modeling

Ref. 1, 6
Fracture Mechanics Based Tests

- Mode I, Double Cantilever Beam (DCB) Test
- Mode II, ENF Test
- Mixed Mode I and II Cracked Lap Shear (CLS) Test
Adhesives and G_{ic} from DCB Test

<table>
<thead>
<tr>
<th>Designation</th>
<th>Adhesive</th>
<th>Cure temp ($^\circ$C)</th>
<th>G_{ic}, J/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH-1</td>
<td>Hexion EP135G3/EKH1376</td>
<td>70</td>
<td>581</td>
</tr>
<tr>
<td>ADH-5</td>
<td>Rhino 405</td>
<td>70</td>
<td>938</td>
</tr>
<tr>
<td>ADH-6</td>
<td>3M W1100</td>
<td>70</td>
<td>1626</td>
</tr>
</tbody>
</table>

DCB Test
CLS Adhesive Fracture Specimens

Adherend layers (unshaded areas) = 5 mm thick
Adhesive (blue shaded areas) = 3.8 mm thick

Adherend layers (unshaded areas) = 5 mm thick
Adhesive (blue shaded areas) = 3.8 mm thick
Steel (red shaded area) = 3.2 mm thick

Top View

0.25 mm thick Teflon starter crack

Edge View

Standard Coupon

Ref. 6

Coupon with Steel Reinforcement
G-Calibrations of CLS Specimens at 4.45 kN Tension Load

- **Std. 50 mm**
- **50 mm w/steel**
- **100 mm w/steel**
Adhesive Thickness Effect on Mode Mixity

short geometry (2" lap)

- 3.8 mm, steel
- 0.5 mm
- 1 mm
- 2 mm
- 3.8 mm (tested geom)
- 8 mm

crack length (mm)
Maximum G_T (tension half of cycle) vs da/dN, $R = -1$

Ref. 6
ADH-1 Adhesive, R = 0.1 and -1, separated by Mode Mixity Range (reversed loading 10X higher crack velocity)

Graphs showing crack velocity vs. energy release rate for different mode mixity ranges and R values.

- **R = 0.1**
 - Red squares: $G_{I} / G_{T} = 0.2 - 0.3$, $da/dN = 2 \times 10^{-18} (G_{T})^{5.36}$
 - Black squares: $G_{I} / G_{T} = 0.3 - 0.4$, $da/dN = 5 \times 10^{-17} (G_{T})^{4.96}$

- **R = -1**
 - Red squares: $G_{I} / G_{T} = 0.2 - 0.3$, $da/dN = 1 \times 10^{-15} (G_{T})^{4.72}$
 - Black squares: $G_{I} / G_{T} = 0.3 - 0.4$, $da/dN = 3 \times 10^{-15} (G_{T})^{4.38}$
In Progress:

Define static G_c and fatigue crack growth thresholds over full range of modes (G_I/G_{II}) and R-values experienced in blade joints (data for ADH-1).
Crack Path (Normal to Crack Direction)

CLS Crack Paths on Section Normal to Crack Direction Near Adhesive / Laminate Interface

CRACK PATH:
A. Cohesive in adhesive
B. Cohesive along peel surface
C. Adhesive along strand surface

Expanded View of Path B
Future Adhesives Work

- Laminate, Adhesive, Peel Ply Variations
- Environment
- Modeling
- Further Test Development