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ABSTRACT 

 
Characterizing the mechanical properties of composite materials is difficult and 
expensive.  There is a legacy for the scale up from basic materials testing to final 
structures in composites.  Each material architecture and manufacturing technique 
potentially represents a different mechanical response in a structure.  Hence, as new 
composite material forms and manufacturing techniques become available, a need exists 
to streamline the characterization process. 

In this study, a new methodology for characterization of composite materials and 
structures is presented.  It has its roots in fracture mechanics, but has been extended to the 
complexities of composite materials.  The methodology is provided along with sample 
applications.  While preliminary, the methodology has the potential for providing a 
meaningful scaling procedure for the materials / manufacturing / structural performance 
links for composite materials and structures. 
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CHAPTER 1:  INTRODUCTION 
 

 Composite materials and structures are enabling new commercial, industrial, 

aerospace, marine, and recreational structures.  Much previous work has been done to 

understand the application of these materials for primary structural applications [e.g. 1-4]. 

Unfortunately, as a new material, material architecture, manufacturing technique, or 

structural configuration is considered, it becomes necessary to perform an expensive and 

difficult series of tests for applications to structure. 

 A rather mature methodology for the scale up of metallic structures from laboratory 

test to large primary structures exists in the form of fracture mechanics as shown in figure 

1.  Either a stress intensity factor K is utilized, or the strain energy release rate G is 

utilized equivalently [5,6]  Figure 1 is a rather simplistic representation since factors such 

as material constitutive behavior, environmental effects etc. need to be introduced for 

application to primary structure.  The point, however, is that a well established 

framework and hierarchy exists for structures manufactured from homogenous, isotropic 

materials. 
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Fracture Mechanics Used With Metallic Structures 

 

Figure 1. Current Approach for Metallic Structures 

 Fracture mechanics allow a designer to determine the characteristics of a structure 

after damage occurs, and determine weather a failure will be catastrophic or not and also 

the rate at which fractures will grow.   

 One failure criterion used with composite materials is shown in figure 2.  This is the 

Tsai – Wu quadratic interaction criterion [ref].
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Tsai – Wu Quadratic Interaction Criterion 

 

 Figure 2.  The Tsai – Wu Quadratic Interaction Criterion. 
 

 The ellipse in figure two describes the failure of a certain composite material for 

combinations of σ11 and σ22 (in two dimensional strain space this surface is an ellipse, in 

three dimensional space it is a hyper ellipsoid).  If the stress state of the material is inside 

the ellipse no damage occurs.  If the stress state is outside of the ellipse, damage has 

occurred.  However, this ellipse fails to tell a designer is what the characteristics of the 

material are after damage has begun.  The post-damage characteristics can be determined 

for isotropic materials using fracture mechanics. 

 The approach for developing aircraft structures is shown in Figures 3 and 4.  Figure 3 

is the basic scaling scheme, known as the building block approach in MIL HDBK 17 [8], 

while figure 4 is a specific set of tests for the F/A 18 E/F US Navy Hornet aircraft. 

 



4 

 This approach is the common methodology for primary aircraft structures and is the 

current paradigm for ensuring safe, durable composite structures.  Estimates for the cost 

of creating such as database range from $40-80 million dollars [9]. 

Clearly this paradigm cannot be utilized for composite wind turbine blade structures, 

but an extension beyond the specific and limited testing currently employed is warranted, 

especially in light of the costs of large composite structures being considered for military 

and commercial aerospace, Navy surface ship structures, wind turbine blades, etc. 

Current Scale Up Approach For Composites 

Figure 3. MIL HDBK 17 Building Block Approach for Pri

(www.mil17.org)  

 

 

 

mary Composite Structures 

http://www.mil17.org/
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Example Elements For Aircraft

Figure 4.  F/A 18 E/F US Navy Hornet aircraft material certification tests. 
 
    

The goal of this research is to establish a new damage model for composites.  This 

model will deal with the in plane characteristics of composite materials and the damage 

modes that occur in the plane.  The intended use of this model is to parallel for 

composites what fracture mechanics addresses for metals.  The goal is to develop a 

parameter reduction scheme such that the extensive and expensive tests required for the 

approach of figures 2 and 3 may be unnecessary.  Furthermore, the application of the 

model and test data can be generic over a wide variety of structures, and not limited to a 

specific structural configuration. 

The organization of this thesis is as follows.  First, the basic concepts will be 

presented which have roots in fracture mechanics and thermodynamics [10,11].  Then a 
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preliminary study for a fracture mechanics type sample will be presented.  Finally, a more 

generic sample and testing methodology will be presented and discussed.   
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CHAPTER 2:  DISSIPATED ENERGY AS A METRIC 
 

Figure 5 is a typical load vs. displacement graph for a composite sample with 

brittle behavior (in other words no plasticity).  In this figure the test specimen response 

follows line one as the load increases.  At point two, the loading is stopped and the 

sample approximately follows line three to return to the origin, assuming that the 

nonlinearity is primarily a consequence of damage formation.  This last step is 

approximately correct as composites typically do not exhibit permanent set type behavior.  

The shaded area between lines one and three represents the dissipated energy in the 

composite sample.  We shall refer to this dissipated energy as Φ.   

 
Load vs. Displacement of Composite Sample 

 

 Figure 5.  A generic load displacement graph for a composite sample. 
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 The type of displacement and loading has been deliberately omitted from this graph.  

As energy is a scalar quantity it is independent of a coordinate system.  The amount of 

energy dissipated provides an objective measure of the amount of damage in the sample.  

The goal of this project is to create a dissipated energy density function such that: 

Φ = ∫φ(ε) dv 

where v symbolizes the volume of a structure and the dissipated energy density 

function φ is a function of the strains ε in the differential volume of the structure. 

(1) 

 This function will present several utilities to an analyst.  If a dissipated energy density 

function can be created for a certain material system it can, with the help of finite element 

analysis, be used to analyze any structure made of the same material.  A strain state can 

be created for some displaced model and the dissipated energy Φ calculated through 

integration of the dissipated energy density function φ over the structure.  If the 

dissipated energy is greater than zero the analyst now knows that this displacement 

causes damage to the structure [12]. 

 A second use of this function is in the creation of load vs. displacement relationships 

for a structure.  Armed with the stiffness of a model and the dissipated energy for a 

number of displacements calculating the load vs. displacement relationship is simple. 
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 The function will also inform the analyst of the areas of the structure that are 

incurring damage, thus allowing for alteration of the design.  The mathematical structure 

of the dissipated energy density (DED) function is discussed in the next section. 

Mathematical Structure of the DE Function 
 

 In order to provide a damage model based on the dissipated energy we propose the 

following steps:   

1) Creation of a finite element model will allow the approximate strains to be known 

through the sample.   

2) With this finite element model, a dissipated energy density function, φ(ε), can be 

created from the strains (ε) in the composite.  In this study in-plane loads and 

displacements were considered, thus we have three in-plane strains: ε11, strain in the fiber 

direction; ε22, strain transverse to the fiber direction; and ε12, the shear strain between ε11 

and ε22.   

3) Finite element modeling for these structures allows several composite plies to be 

modeled in an element.  To find the dissipated energy in a ply of the model the dissipated 

energy density function, φ(e), is multiplied by the volume of the ply.  In the case of 

planar structures the volume of the element is equal to the area of the element multiplied 

by the thickness of the ply.   
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Thus the dissipated energy in a ply element is approximately equal to: 

Φ(e,p) ≈ φ(ε)*a(e)*t(p) 

 where t(p) is the thickness of the ply and a(e) is the area of the element.   

(2) 

4) The total dissipated energy in the element of the model can now be found by          

summation over the number of plies in the element: 

Φ(e) = Σ(p) φ(ε)*a(e)*t(p) 

 where a(e) is the area of the element and t(p) is the thickness of the ply 

(3) 

5) The total dissipated energy in the model can then by found though summation over the 

number of elements in the model: 

Φ = Σ(e) Σ(p)  φ(ε)*a(e)*t(p) 

 which approximates the volume integral in equation 1. 

(4) 

 It should be noted that the strains used in equation 4 are the element midpoint strains, 

the average strain values of the element corner nodes. 
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 Note that the units on the dissipated energy density φ(ε) are energy/unit volume 

released during the fracture process. It is more general than either K, the stress intensity 

factor or G, the strain energy release rate since there is no a priori assumption of the 

direction of damage (crack) growth.  This assumption of damage direction is required for 

applications to the critical stress intensity factor KIC, or the critical strain energy release 

rate GIC types of analyses. 
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Trial Formulations 
 

 Several formulations for the dissipated energy density function were studied.  One 

method was to create a simple polynomial approximation of the form φ(ε) = 

C(1)*ε11 + C(2)*ε22 + C(3)*ε12 + C(4)*ε11^2 + C(5)*ε22^2 + C(6)*ε12^2  + ... 

(5) 

 To accurately model the dissipated energy function over a large enough strain space 

many coefficients C are needed.  This results in strains taken to high orders, which leads 

to numerical problems as well as the philosophical questions of the significance of a 

strain raised to the fourth power.  This polynomial approach did work well with the 

compact tension samples discussed in a later section. 

 Another method was the use of Lagrangian interpolation [13] functions over a strain 

domain.  To achieve the proper resolution these were fifth order interpolation functions.  

The problem with this approach is that higher order functions are poorly behaved (large 

spikes) and lead to erroneous results.   

 The final approach used is a method similar to the interpolation used in finite element 

formulation.  An eight-node element is shown in figure 6. 
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Interpolation Element 

 

Figure 6.  The eight-node interpolation element. 
 
 
 A value, C(n), of dissipated energy density is assigned for each node of the element, 

which are unknowns to be determined.  Eight linear interpolation functions, f(n), can be 

created  from the strain space coordinates of the nodes.  These functions have the 

property of having a value of one at their corresponding node and a value of zero at all 

other nodes.  Suppose the element above spans a dimension ∆ε11 in the ε11 direction, 

∆ε22 in the ε22 direction, and ∆ε12 in the ε12 direction.  If the strains at node one are 

ε11(1), ε22(1), and ε12(1) then three local coordinates (α, β and γ) that vary from zero to 

one can be assigned within the element.   
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These coordinates are: 

α = (ε11 − ε11(1))/∆ε11  (a) 

β = (ε22 − ε22(1))/∆ε22  (b) 

γ = (ε12 − ε12(1))/∆ε12  (c) 

(6) 

The eight interpolation functions are then: 

f(1) = (1-α)*(1-β)*(1-γ)  (a) 

f(2) = α*(1-β)*(1-γ)  (b) 

f(3) = (1-α)*β*(1-γ)  (c) 

f(4) = α*β*(1-γ)  (d) 

f(5) = (1-α)*(1-β)*γ  (e) 

f(6) = α*(1-β)*γ  (f) 

f(7) = (1-α)*β*γ  (g) 

f(8) = α*β*γ  (h) 

(7) 
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 The value of the dissipated energy density at any point within the element can then be 

found through summation: 

φ(ε11,ε22,ε12) =  

C(1)*f(1) + C(2)*f(2) + C(3)*f(3) + C(4)*f(4) 

+ C(5)*f(5) + C(6)*f(6) + C(7)*f(7) + C(8)*f(8) 

= C*f 

(8) 

 To increase the accuracy of the dissipated energy density function the strain space 

was initially divided into 64 of these elements, with 125 nodes.  This approach allows the 

complex behavior of the dissipated energy density to be approximated in a series of 

piecewise linear interpolation functions.  The nodes for this model are shown in figure 6.  

This type of linear interpolation is included in many introductory finite element analysis 

books including “Finite Element Analysis” by David Burnett [14]. 
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125 Node Solution Space 

 

 Figure 7.  The 125 nodes used in the dissipated energy density function. 
 
 
 With a multi-element system such as this, a mapping procedure is performed between 

the local nodes in an element (nodes one through eight in figure 5) and global nodes one 

through 125 in figure 6.  This mapping procedure is demonstrated in the two element 

dissipated energy example in the next section.   
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Deriving the C vector 
 
 

 Suppose we have a simple planar rectangular system that can be modeled with a 

single finite element.  Such a system is shown in figure 8. 

 
Planar Rectangular System 

 

Figure 8.  A planar system.  Here the unperturbed system is shown in black and      
several possible displaced shapes are shown in gray. 
 
 

 Suppose any strain state can be applied to this system and the dissipated energy in the 

system can be measured.  For the two element dissipated energy density function, we 

measure at least 12 data points.  This two element system is shown in figure 9. 
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A Two Element Interpolation System 

 

 Figure 9.  A two element system. 
 
 
 A global numbering system is imposed for the nodes of this system.  The numbered 

system is shown in figure 10. 
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Global Nodal Numbering Scheme 

 

 Figure 10.  A two element system. 
 
 
 Suppose we wish to use this two element system to create a dissipated energy density 

function correlating to a one element finite element model.  As there are 12 unknowns 

(the values of the dissipated energy function at nodes 1 through 12) we will need at least 

12 data points.  Load vs. displacement data are collected for this structure and dissipated 

energy is calculated.   
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We can then state: 

Φi = {µi}T·{C} 

where Φi is an experimentally measured dissipated energy value, µi is a vector of the 

element interpolation functions (see eqs 5 and 6) and C is a vector of the dissipated 

energy function element nodal values. 

(9) 

 This function can be created for each experimental data point where the dissipated 

energy and displacements of the sample are known.  Through vertical concatenation the 

following system of equations is created. 

{Φ} = [µ]{C} 

where Φ is a vector of the experimentally determined dissipated energy values, µ is a 

matrix of the interpolation function values for each experimental data point, and C is a 

vector of the dissipated energy function element nodal values. 

(10) 

The error in the approximation is then: 

│[µ]{C}– {Φ}│ 

(11) 
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The proper values of C can then be found by minimizing this error with the constraint 

that the values of the C coefficients are positive. 

 These calculations were performed with Matlab [15] software.  Matlab code is 

included in appendix A. 
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CHAPTER 3:  COMPACT TENSION SAMPLE STUDY INTRODUCTION 
 
 

 Compact tension samples (CTS) were used to develop the initial dissipated energy 

characterization and methodology.  A drawing of a compact tension sample is shown in 

figure 11.  The loading direction and crack opening displacement are shown in figure 12.  

 
Compact Tension Sample 

 

 Figure 11.  Compact tension sample dimensions. 
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Loading Direction For A Compact Tension Sample 

Figure 12.  Loading direction for a compact tension sample.  The crack opening 
displacement is measured between corners 1 and 2 of the sample. 
 
 

 These compact tension samples were 12.7 mm thick, with the exception of laminate 

2, which was 10.4 mm thick.  The fabric used was Knytex D155 e-glass [16].  These 

samples were manufactured Derakane vinylester resin[17].  Each compact tension sample 

was created with 28 plies, except for laminate 2 which had 24 plies.  Six different 

laminates were created.  These laminates schedules are shown in the following list; 

angles (degrees) are relative to the loading direction.

1: 9028  
2: (902/0)4s 
3: (9013/45)s 
4: (907/±45/905)s 
5: ((904/±45)2/902)s 
6:                                                    ((902/±45)3/90/45)s 
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 Load vs. displacement data were collected for each of these laminates.  This testing 

was preformed on an Instron testing machine.  Displacements changed slow enough to 

allow dynamic effects to be ignored. 
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CHAPTER 4:  FINITE ELEMENT ANALYSIS OF CTS 
 
 

 Finite element models were created in Ansys[18] for each laminate and a unit 

displacement was applied.  This allows the strain vs. displacement relationship for each 

laminate to be known.  The Ansys mesh and a displaced model are shown in figures 13 

and 14, (a complete description of the modeling process is given in chapters 8 and 9, this 

section is meant as an introduction to the dissipated energy method).  At this point the 

experimental and finite element data are read into Matlab and the problem formulated as 

in equation 5.  The C vector is then determined by minimization of the error function 

with the constraint that the values of C are positive. 
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Finite Element Model For Compact Tension Sample 

 

 Figure 13.  Finite element mesh in Ansys. 

 
Compact Tension Sample Displaced 

 

 Figure 14.  Displaced model generated in Ansys. 
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CHAPTER 5:  APPLICATIONS AND EXAMPLES 
 

Single case study 
 

 The load displacement relationship for laminate 2, (902/0)4s, is shown in figure 15. 

Load vs. Displacement For Laminate 2. 

Figure 15.  Load displacement graph for laminate two. 
 

 This data set contains 1195 data points.  The dissipated energy calculated from this 

data is shown in figure 16. 
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Dissipated Energy vs. Crack Opening Displacement 

Figure 16. Dissipated Energy vs. Crack Opening Displacement for laminate 2. 
 

 The first question to answer about this approach is whether or not this method works 

for a single laminate.  The following results were found for laminate two, using only data 

from laminate 2 to formulate the problem.   

 The approximate and experimental dissipated energy are shown in figure 17.  

Agreement between the two is good.  In each case the approximate dissipated energy 

function is the smoother line.  

 

 



29 

Dissipated Energy vs. Displacement For Laminate 2 

 

Figure 17.  Approximate and experimental dissipated energy. 
 

 From this dissipated energy curve and the stiffness of the finite element model the 

following load vs. displacement relationship can also be calculated.  The approximate and 

experimental loads are shown in figure 18. 
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Load vs. Crack Opening Displacement For Laminate 2 

 

Figure 18.  Approximate and experimental loads for laminate two. 
 
 
 In any case with displacements in one direction the load function can be accurately 

reconstructed if the dissipated energy function is known.

Compiled Case Study 
 

 The next test for this approach is to perform a compiled fit.  In other words, use all of 

the available data to arrive at the C vector.  The following results are for a compiled study 

of laminates 1 through 6.  All of the individual systems of equations (equation 4) were 

vertically concatenated and solved for one C vector.  The resulting dissipated energy 

predictions are shown in figures 19 through 24. 
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Dissipated Energy For Laminate 2 

 

 Figure 19.  Experimental and approximate dissipated energy for laminate 2. 
 

Dissipated Energy For Laminate 4 

 

Figure 20.  Experimental and approximate dissipated energy for laminate 4. 
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Dissipated Energy For Laminate 5 

 

Figure 21.  Experimental and approximate dissipated energy for laminate 5. 
 

Dissipated Energy For Laminate 6 

 

 Figure 22.  Experimental and approximate dissipated energy for laminate 6. 
 

 Results from this compiled study are good.  The approximate dissipated energy 

curves for the previous four laminates are very good and lend confidence to this method. 
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 Laminates one and three represent special cases.  These laminates consist of 100% 

and 93% 90 degree fibers respectively.  As these fibers are oriented in the direction of 

crack growth only resin needs to fracture of the crack to extend.  The other four cases had 

fibers oriented in other directions, thus requiring fibers to break and debond for crack 

extension to occur which is more common in structural applications.  As these 

phenomena are quite different results for laminates one and three are not as good as the 

others.  These results are shown in figures 23 and 24. 

Dissipated Energy For Laminate 1 

 

 Figure 23.  Experimental and approximate dissipated energy for laminate 1. 
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Dissipated Energy For Laminate 3 

 

 Figure 24 Experimental and approximate dissipated energy for laminate 3. 
 

 It should be noted that these special cases can be modeled accurately using traditional 

fracture mechanics for self similar crack growth through resin [19].  This could be used in 

conjunction with the dissipated energy function to arrive at a more accurate prediction of 

behavior. 
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Fully Predicted Dissipated Energy 
 
 

 The next analysis performed is to compile 5 of the data sets and calculate a C vector, 

and use this C vector to predict the dissipated energy of the 6th data set.  A compiled 

study of the first 5 data sets was performed to find the C vector.  This vector was then 

used with the Φ function (calculated fully from the finite element data of laminate 6) to 

arrive at an approximate dissipated energy function.  The results of this exercise are 

shown in figure 25.

 
Predicted Dissipated Energy vs. Crack Opening Displacement Laminate 9 

Figure 25.  Fully predicted dissipated energy function for laminate 9. 
 

 These results are very exciting.  They lend confidence to the hypothesis that the 

dissipated energy function is a material property of the plies.  At this point a summary of 

the procedure is warranted.  1) Samples are made and testing is performed to acquire load 
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vs. displacement data.  2) A finite element model is developed and element strains are 

resolved into ply principle axes.  3) the dissipated energy function is created using 

equation 11.  4) a finite element model is created for a CTS sample not used in the data 

set to derive the dissipated energy function.  5)  the dissipated energy function is applied 

to the finite element model and the approximate dissipated energy is calculated. 

 It is very encouraging to see that a designer could simply calculate ply principle 

strains to utilize the dissipated energy function and determine: 

1) if energy has been dissipated for a certain loading case 

2) the locations in the structure where energy is being dissipated 

3) the magnitude of energy dissipated in the structure. 

 

Conclusions from CTS Study 
 
 

 Through preliminary work with compact tension samples, we have shown that the 

dissipated energy density function has promise as a material property as a function of 

principal strains in the material. The potential of this technique could mitigate the 

extensive testing necessary under the current paradigm for ensuring the durability and 

damage tolerance of a composite structure as illustrated in figure 3.  

 In this study, the laminate schedule of the compact tension samples was varied with 

the aim of creating every possible combination of principal strains within the sample.  

While effective, this approach is time consuming, and does not bound the breadth of 
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potential loadings of a composite.  Another approach would be to use a single laminate 

and instead, apply a mixture of displacements to a sample that would allow the full strain 

space of the material to be explored, producing a full dissipated energy density function 

for the breadth of loading in a complex structure. 

 Such a machine has been developed at Montana State University.  The Montana State 

University in-plane loader (IPL) was inspired by NRL’s in-plane loader [12], though 

much different in design. It utilizes an external loading frame, with off-the-shelf actuators 

controlled by National Instruments’ Labview programs [20].  This testing machine is 

capable of independently applying any combination of two orthogonal displacements and 

a rotation to a sample.   
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CHAPTER 6:  STUDY WITH THE IN PLANE LOADER 
 

In Plane Loader 

 

 Figure 26.  View of the In Plane Loader from above. 
 

 The IPL or In Plane Loader is shown in figure 25.  This testing machine can provide 

any combination of tensile, shearing, or rotational displacement in the plane.  The large 

frame of the machine is securely anchored to the table, the smaller frame rolls on casters 

on a steel plate.  This machine was designed originally as an ME 404 senior design 

project by Eric Booth, Marc Schaff, and Kim Higgins[21].  Construction of the machine 

was then completed by Will Ritter, Jeremy Kingma, Sarah Grochowski, Eric Booth, and 
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Bryan Bundy.  This machine was built with off the shelf components whenever possible.  

All of the machining was completed at MSU, the majority of which was performed by 

students in the student machine shop.  Additional machining was performed by the CIM 

lab and the college of Engineering Tech Services at MSU.  The three displacements the 

IPL can provide are shown in the figure in figure 27. 

 
IPL Displacements 

 

 Figure 27.  An IPL coupon and the three displacements the IPL can provide. 
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CHAPTER 7:  IPL COUPON DESCRIPTION 
 

 A coupon different from the CTS was used with the IPL.  This coupon and its 

dimensions are shown in figure 28. 

 
IPL Coupon 

 

 Figure 28.  The IPL coupon and its dimensions (cm). 
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 The notch was used to create a stress concentration in the sample far from the grips.  

Without this notch all of the failures could occur at the grips, providing data that is 

difficult to interpret.  It is important to emphasize that these samples are not fracture 

mechanics samples, per se.  They are analyzed via finite element analysis to develop the 

dissipated energy function φ in equation one. 

 These samples were created using resin transfer molding[1].  In this process dry 

fibrous reinforcements are placed in a mold and then resin is injected into the mold 

cavity.  This process is advantageous as it produces composites with consistent thickness 

and high quality surface finishes.  The samples used for the initial round of testing have a 

[0,± 45]s laminate schedule.  In other words the laminate consists of six plies with the 

following angular orientations: 0/+45/-45/-45/+45/0.  This can be expressed more 

compactly using the [0,± 45]s style notation.  In this notation the s stands for symmetric 

as the laminate is symmetric about the -45 degree plies.  These angular orientations are 

shown in figure 29. 
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IPL Coupon Ply Angles 

 

 Figure 29.  Fabric orientations for IPL coupon. 
 

 A coupon in the grips of the IPL is shown in figure 30. 
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Coupon Mounted In IPL 

 

 Figure 30.  A coupon in the grips of the IPL. 
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CHAPTER 8:  FINITE ELEMENT ANALYSIS OF IPL COUPON 
 

 Finite element analysis for this specimen was performed using the Ansys 6.1 finite 

element package.  Code used with Ansys is attached in appendix B.  Shell 91 elements 

were used.  These elements are designed to be used with composite structures and have a 

number of features to make working with composites easier.  To create this finite element 

model first the points of interest from the sample were created.  These points were then 

joined by lines, and then the lines joined into areas.  The areas used are shown in figure 

31. 

 
Areas Used In Ansys 

 

  Figure 31.  Areas used in creation of the finite element model. 
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 The shapes of these areas were chosen to make the meshing of the model easier.  

Each area used in this model has four sides.  When using a mapped mesh (Ansys help) 

this allows the same number of elements to be assigned to each edge of the area.  

Consequently, the model can be built without triangular elements, and lead to more 

accurate results.  If a mapped mesh cannot be used it is said to be a “free” mesh.  An 

example of a mapped and free mesh from the Ansys help guide is shown in figure 32. 

 
Mapped vs. Free Mesh 

 

Figure 32.  The mesh on the right is a “free” mesh while the mesh on the left is a 
“mapped” mesh 
 

 Mapped meshing was used to control the size and distribution of elements.  A 

mapped mesh of the IPL sample is shown in figure 33. 
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IPL Mapped Mesh 

 

 Figure 33.  Mapped mesh of IPL sample. 
 
 
 The resolution of this mesh is controlled by a setting the number of elements that are 

on an edge of the areas.  The mesh above was created using 20 elements along the left 

edge of the sample.   Ansys can also show the orientation of the plies used in the model.  

The plies in this model are shown in figure 34. 
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Ansys Ply Orientation 

 

 Figure 34.  Plies used in the IPL model. 
 
 
 Meshes with 10, 20, 50 and 100 elements along the left edge are shown in figure 35.  

Using a mapped mesh system like this one allows the resolution of the mesh to be 

adjusted very easily. 
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IPL Meshes of Increasing Resolution 

 

 Figure 35.  Four mapped meshes of increasing resolution. 
 

 At this point a convergence study is necessary to determine when the mesh is 

converged, or when the resolution of the model is high enough to provide accurate 

results.  The convergence study was performed in the three displacement directions 

(extension, shearing, and rotation) independently.  For each of the three modes the model 

was displaced some amount and the resolution of the model increased.  The three in-

plane strains were then found at a query point.  When the change between strain values is 
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negligible for an increasing resolution the model is said to be converged.  The model 

displaced in the extension direction (Y) is shown in figure 36. 

 
Extension of IPL Coupon 

 

 Figure 36.  X direction strain of extended sample. 
 
 
 For each of the finite element models the grips were simulated by constraining the 

nodes on the top and bottom edge of the model in three dimensions.  In each case the top 

edge was fixed and the bottom edge displaced depending on the desired deformation (as 
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this is how the machine moves when you are standing in front of it).  A picture of the 

constrained model is shown in figure 36. 

 
Constrained IPL Model 

 

 Figure 37.  The applied finite element constraints. 
 

 The triangles in figure 37 represent a displacement (a displacement of zero in the case 

of the fixed grip) applied to a node.  The query point used for the convergence study was 

chosen along the edge of the notch on the border of two of the areas used in mesh 

creation.  The query point was chosen at the stress concentration notch as these areas 
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require the highest element resolution for convergence.  The point was chosen at the 

boundary of two areas to guarantee that there would be a node at the point of interest and 

therefore strains would be available at that point.  The chosen query point is shown in 

figure 38. 

 
Strain Query Point 

 

 Figure 38.  The strain query point for the strain convergence study. 
 

 Figures 36, 40 and 42 show that this query point is in an area of high strain.  The 

model was extended ten percent of the gage section length (the gauge section is 2.54 cm) 

for the extension convergence study.  The in-plane strains were then determined for 
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models containing ten to eighty elements on the left edge.  Data from this study are 

shown in Table 1. 

 
Strain Data For Extension 

Edge elements x strain y strain shear strain
10 -4.52E-02 8.71E-02 -0.253
20 -3.37E-02 7.15E-02 -0.286
30 -2.86E-02 6.53E-02 -0.297
40 -2.49E-02 6.10E-02 -0.303
50 -2.36E-02 5.95E-02 -0.305
60 -2.28E-02 5.85E-02 -0.306
70 -2.22E-02 5.78E-02 -0.307
80 -2.17E-02 5.73E-02 -0.307  

 Table 1.  Strain convergence data for extension. 
 

 A plot of these strains vs. edge element number is shown in figure 39. 

 
Strain vs. Edge Elements For Extension 
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 Figure 39.  Strain vs. edge element number for extension. 
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 From the tabular and graphic data, it can be seen that the model is asymptotically 

converging.  The strains appear satisfactorily converged with 60 edge elements.  As this 

is the convergence at the stress concentration the remainder of the model should have 

converged with a lower resolution of elements.   

 The model deformed due to a shearing (X) deformation is shown in figure 40. 

Shearing of IPL Model 

 

 Figure 40.  The model experiencing shear deformation. 
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 Data from this convergence study are shown in table 2. 

Strain Data For Shearing 

Edge elements x strain y strain shear strain
10 3.77E-03 -3.40E-02 0.164
20 1.01E-02 -3.82E-02 0.193
30 1.24E-02 -3.95E-02 0.204
40 1.36E-02 -3.99E-02 0.212
50 1.38E-02 -3.99E-02 0.214
60 1.40E-02 -3.98E-02 0.216
70 1.40E-02 -3.98E-02 0.217
80 1.40E-02 -3.97E-02 0.218  

 Table 2.  Strain data for shear deformation.  
 

 A plot of this data is shown in figure 41. 

 
Strain vs. Edge Elements For Shearing 
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 Figure 41.  Strain data for shear convergence. 
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 Again with this deformation the model seems satisfactorily converged with 60 edge 

elements. 

 The model undergoing rotation is shown in figure 42. 

 
Rotation of IPL Model 

 

 Figure 42.  The model undergoing rotation. 
 

 Data from this convergence study are shown in table 3. 
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Strain Data for Rotation 

Edge elements x strain y strain shear strain
10 -1.44E-03 3.92E-03 -1.30E-02
20 -1.37E-03 3.60E-03 -1.58E-02
30 -1.31E-03 3.46E-03 -1.67E-02
40 -1.25E-03 3.35E-03 -1.73E-02
50 -1.23E-03 3.31E-03 -1.74E-02
60 -1.21E-03 3.28E-03 -1.75E-02
70 -1.20E-03 3.26E-03 -1.76E-02
80 -1.19E-03 3.25E-03 -1.76E-02  

 Table 3.  Data from the rotation convergence study. 
 

 A plot of this data is shown in figure 43. 
 
 

Strain vs. Edge Elements For Rotation 
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 Figure 43.  Strains for rotation convergence study. 
 

 This model as well seems reasonably converged with 60 edge elements.  As this 

amount works well for each of the three models it was used for the remainder of the 
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study.  There is an interest in limiting the number of elements as this allows Ansys and 

later Matlab to run at a faster rate. 

 These are the only three models that need be created for the initial dissipated energy 

study using the IPL.  The strain field at an arbitrary displacement in the IPL can be 

created using the principle of superposition.  This is shown in figure 44. 

 
Principle of Superposition 

 

Figure 44.  Here an arbitrary displacement is composed of the three orthogonal 
displacements provided by the IPL. 
 

 The principle of superposition allows an arbitrary displacement (fig 44(a)) to be 

expressed as a scaled combination of the three in-plane displacements (fig 44 b,c and d).  
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In this case the scale factors are α1,2 and 3.  Similarly, the strains in any element the 

arbitrarily displaced model (fig xx (a)) can be found by using the same scale factors on 

the strains of the corresponding elements in the models of the orthogonal displacements.  

Explicitly: 

e11a = α1∗e11x + α2∗e11y + α3∗e11r  

e22a = α1∗e22x + α2∗e22y + α3∗e22r  

e12a = α1∗e12x + α2∗e12y + α3∗e12r  

(6) 

where a denotes the arbitrary displacement, x denotes the strains from the model with 

only x displacement, y denotes the strains from the model with only y displacement, 

and r denotes the model with only rotational displacement. 

 This property is important for this study as only three strain fields need be imported 

in Matlab for performing the least squares fit for any displacement.  If this were not the 

case a separate finite element model would have to be created for each displacement 

created in the IPL. 
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CHAPTER 9:  IPL EXPERIMENTAL METHODS 
 

 The IPL’s motion is governed by three non-orthogonal actuators shown in figure 45. 

 
Actuator Detail 

 

 Figure 45.  The three actuators that control the IPL. 
 

 The non-orthogonality of the actuators allows any unique combination of 

displacements to be created.  This non-orthogonality also means that control of the 

machine is non-linear and coupled for any of the orthogonal displacements u, v, and ω.  

The dimensions of the machine and the location of the actuator pivots must be known 

very well as the motion of the machine has to be controlled very precisely to provide 
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useful data.  In order to accomplish the measurement a digitization arm was used.  This is 

shown in figure 46. 

 
Digitization of IPL 

 

 Figure 46.  Using a digitization arm to measure the IPL. 
 

 This digitization machine was used in conjunction with Rhino software [22] and 

Pro/E [23] to create a model of the IPL.  This software was extremely useful for 

performing the various measurements for a desired testing scenario.  It will be used in the 

future for configuring different gauge lengths.  Dimensions from digitization are attached 

in appendix C. 
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 The Pro/E model can also be used to determine a number of displacements and to 

create a material test.  The tests used in this study contained 100 displacement points, 

using the Pro/E model to create these would be too time consuming.  A program was 

created in Maple mathematics software [24] to batch a number of displacement positions.  

This program also accomplishes the task of determining the angles of the actuators with 

respect to the grips at each displacement point.  This is necessary to resolve the loads 

measured with the load cells into the x and y forces and the moment at the center of the 

gauge length.  This code is attached in appendix D. 

 Seven load paths were used in the IPL data sets.  These paths are: 

1. Pure x displacement (u) 

2. Pure y displacement (v) 

3. Pure rotation (ω) 

4. Combination of x and y displacement (u + v) 

5. Combination of x displacement and rotation (u + ω) 

6. Combination of y displacement and rotation (v + ω) 

7. Combination of all three displacements (u + v + ω) 
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IPL Software and Control 
 

 The motion of the IPL is controlled is controlled by National Instrument’s Labview 

software and a PCI board.  This board is capable of controlling four stepper axes.  

Conveniently this board also has four 12 bit digital inputs.  These inputs are used to 

acquire the data from the load cells.  These pancake load cells are in line with each 

actuator.  A load cell and actuator combination is shown in Figure 47. 

 
Actuator and Load Cell Detail 

 

 Figure 47.  One of the IPL’s load cells. 
 

 The PCI inputs read a voltage from -10 to 10 volts.  Being 12 bit inputs the -10 to 10 

voltage range is divided into 2^12 = 4096 levels.  This is convenient as the actuators are 

capable of producing forces of ± 2000 lb, therefore the resolution of the loads is about 

one pound. 

 The load cells used with the IPL produce a voltage of 15 millivolts per 1000 pounds 

of load.  In order for these load cells to work with the PCI board an amplifier was 

designed and built [25].  This amplifier is shown in figure 48. 
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Load Cell Amplifier 

 

 Figure 48.  Circuit created to amplify load cell signals. 
 

 This amplifier brings the load cell signals up to the -10 to 10 voltage range.  The 

software that controls the IPL was derived from sample software available from National 

Instrument’s website.  This proved to be a very useful resource, as their library is quite 

complete.  Separate files that they had to move actuators simultaneously as well as read 

from the digital input channels were combined along with other codes to arrive at the 

testing software.  The main functions of the testing software are as follows. 

• Send the successive actuator positions, monitor the current actuator positions 
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• Set the actuator speeds and accelerations 

• Read the voltages from the load cells  

• Resolve the loads into x, y and moment components and display graphically 

• Calculate the dissipated energy during the test and display graphically 

• Assemble all of the test data into one file and save it to a specified location 

 The interface for the testing software is shown in figure 49. 

 
IPL Control Panel 

 

 Figure 49.  The IPL testing interface written in labview. 
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 Labview code used to control the IPL is attached in appendix E.  

 In each case the samples were loaded into the IPL using a gauge block to ensure that 

the sample was aligned in the same spot on the grips.  A clamped sample is shown in 

figure 50. 

 
Clamp Detail 

 

  Figure 50.  A sample clamped in the IPL. 
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IPL Testing Images 
 

 Progressive images from the IPL tests are shown in the following figures.  A pure x 

displacement test is shown in figure 51. 

 
X Displacement (u) 

 

 Figure 51.  Progressive pictures from an x displacement test. 
 

 Note the evolution of damage from the notch of the specimen to the edge of the grip 

region.  At the end of this sequence the sample has experienced extensive damage beyond 

a useful limit for structural applications. 

 A pure y displacement test is shown in figure 52. 
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Y Displacement (v) 

 

 Figure 52.  A pure y displacement test. 
 

 Note the relatively symmetric damage development.  Also note the rather small 

displacement compared to figure 52. This is a consequence of this test being controlled 

by fiber damage rather than resin damage, which dominates the x direction test.  This 

contrast between fiber and resin failures will be discussed in a later section. 

 A pure rotation test is shown in figure 53. 

 



68 

Rotation (ω) 

 

 Figure 53.  Progressive pictures of a rotation test. 
 

 Note the relatively large displacement when compared to the y displacement test. 

 Test six is an example of one of the mixed modes.  This test is shown in figure 54.  

Test six is a combination of y displacement and rotation. 
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Test 6 (v + ω) 

 

Figure 54.  Progressive pictures from test 6, a combination of y displacement and 
rotation. 
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IPL Experimental Data 
 

 In each test case, three samples were tested at minimum and the two tests with the 

most agreement were kept.  At this point we refer back to figure 5.  This figure is shown 

again for reference. 

 
Load vs. Displacement of Composite Sample 

 

 Figure 5.  A generic load vs. displacement graph and its dissipated energy. 
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 For each test with the IPL three of these graphs can be created for the three 

orthogonal displacements.  The total dissipated energy can be found by simply adding 

these three dissipated energy components together.   

 The total dissipated energies for each of the seven tests are shown in figure 55. 

 
Dissipated Energies For Tests 1 Through 7 
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 Figure 55.  Total dissipated energy plots for IPL tests. 
 

 These seven tests proved to be reproducible.  At this point the displacements and 

dissipated energies are exported from Excel.  Matlab is then employed to calculate the 

strain fields for each displacement point, using the principle of superposition and the 

finite element models for each of the pure displacement modes.  With the strain fields 

now known for each experimental displacement point the dissipated energy density 

function can be formulated and the coefficients found.  This process is again performed 

in Matlab.  Matlab code is attached in appendix A. 
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CHAPTER 10:  RE-EVALUATING THE ENERGY CRITERIA 
 

 Dissipated energies were reasonably close to each other when working with the CTS 

samples.  Dissipated energies with the IPL samples varied over a large range.  These are 

shown in figure 56. 

 
Dissipated Energies For IPL Tests 
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 Figure 56.  Dissipated energies for all IPL tests. 
 

 Test 7 dissipates thirty times the energy of test 1.  As could be expected, results using 

the same DED approach as the CTS samples were poor over the entire load range.  Due 

to the disparity of dissipated energies, some kind of normalization is required to allow for 

a more accurate model to be created.  A finite element model will be able to calculate the 
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theoretical strain energy for a given displacement, thus the theoretical (and also 

recoverable) strain energy is a convenient value for normalization. 

 On further discussion the significance of the experimental dissipated energy 

normalized by the theoretical recoverable energy is unclear.  It makes more sense to 

normalize the loss of recoverable energy by the theoretical recoverable energy.  This 

method will hereafter be referred to as NDRE or the normalized difference in recoverable 

energy.  NDRE is discussed in the following chapter. 
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CHAPTER 11:  DERIVATION OF NDRE 
 

 In this chapter a new metric, normalized difference in recoverable energy, is 

discussed.  An arbitrary test is shown in figure 57. 

 
Arbitrary Load vs. Displacement 
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 Figure 57.  An arbitrary test. 
 

 In figure 57 it can be seen that up to point 25 the theoretical and experimental loads 

are the same.  After this point there is a departure in the values of the loads.  The 

recoverable energies are shown for point 30 in figure 58. 
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Recoverable Energies For Point 30 

 

 Figure 58.  Recoverable energies for point 30. 
 

 In figure 58 the red area represents the recoverable energy after damage has 

developed; the same as line 3 in figure 4.  The blue area in figure B is the theoretical 

recoverable energy, based on a linear-elastic undamaged sample.  The green area in 

figure C is the difference between these recoverable energies.  The energies for points 35 

and 40 are shown in figures 59 and 60. 
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Recoverable Energies For Point 35 

 

 Figure 59.  Energies for point 35. 
 

 Further extension results in a new set of curves.  This is shown for point 40 in figure 

60.
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Recoverable Energies For Point 40 

 

 Figure 60.  Energies for point 40. 

 
 A plot of the energies for all data points are shown in the following figure.  It should 

be noted that the dissipated energy function can easily be recreated from the above 

energy curves. 
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Energies vs. Displacement For Arbitrary Test 
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 Figure 61.  Energies for the arbitrary test. 
 

 Dividing the difference in recoverable energy by the theoretical recoverable energy 

allows for a convenient measure of the health of the system based on elastic analyses.  

This metric varies from 0 to 1 and measures how much of the available energy in a 

system has been absorbed by the damage process.  This normalized difference in 

recoverable energy is shown in figure 62. 
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Normalized Difference in Recoverable Energy 
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 Figure 62.  Normalized difference in recoverable energy. 
 

 At the end of the test above the designer can say “damage to the specimen has 

absorbed 50% of the available energy”.   
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Mathematical Formulation of NDRE 
 

 A change in the problem formulation must be performed as the normalized difference 

in recoverable energy or NDRE is independent of the volume of the test coupon.  The 

total dissipated energy in a finite element model was formulated by summing over the 

number of plies and elements in the model the product of the dissipated energy density 

function and the volume of the element.  This was stated in equation 3. 

Φ = Σ(p) Σ(e)  φ(ε)*a(e)*t(p) 

where a(e) is the area of the element, t(p) is the thickness of the element and φ(ε) is 

the dissipated energy density function.  For NDRE the formulation is as follows in 

equation 6. 

Ω = Σ(p) Σ(e)  (ψ(ε)* a(e)*t(p)) / v 

where Ω is the measured NDRE, ψ(ε) is the difference in recoverable energy fraction 

and v is the volume of the coupon. 

(6) 

The function ψ(ε) states “A differential volume of material subjected to the strain state ε 

will absorb a fraction ψ(ε) of the available energy through damage”.  A procedure and 

system of equations similar to that used in the DED approach can be used to determine 

the nodal values of the NDRE function (equations 8 through 11).  
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 Applying the NDRE criteria to the experimental data from the IPL is shown in figure 

63.  This data has much less test to test variance than the dissipated energy shown in 

figure 56. 
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 Figure 63.  NDRE for each of the IPL tests. 
 

 Modeling the NDRE function ψ(ε) requires less mathematical flexibility than 

modeling the dissipated energy density function φ(ε). 
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NDRE RESULTS 
 

 Results from fitting the function ψ(ε) to the seven IPL tests are shown in figure 64.  

Experimental data is shown in green while the NDRE function is shown in blue. 
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 Figure 64.  Experimental and theoretical NDRE. 
 

 These results have a varying degree of success.  Surely, the derived function gives a 

qualitative impression of the health of a system, and in better cases, a quantitative 

impression as well.  These results are much better than any results using the DED 

approach with the IPL data.
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Examination of Test 3 (ω) 
 

Results from test 3 are the most accurate.  This test shown by itself in figure 65. 
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 Figure 65.  The experimental and approximate NDRE for test 3.

 Tabular data of the experimental and approximate NDRE is shown in table 4.
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NDRE Data For Test 3 

Rotation (Rad) Approximate NDRE Experimental NDRE
0.000 0 0

~ ~ ~
0.025 0.000 0.000
0.027 0.001 0.000
0.028 0.001 0.000
0.029 0.001 0.000
0.030 0.001 0.000
0.031 0.001 0.000
0.032 0.002 0.000
0.033 0.002 0.000
0.035 0.003 0.000
0.036 0.003 0.000
0.037 0.004 0.000
0.038 0.004 0.002
0.039 0.005 0.006
0.040 0.006 0.012
0.041 0.008 0.014  

 Table 4.  Tabular NDRE data for test 3. 
 

 There are several ways to determine when the approximation indicates that initial 

failure occurs.  The approximate NDRE becomes nonzero at a rotation of .027 radians.  

The experimental NDRE becomes nonzero at a displacement at .038 radians.  This 

corresponds to a prediction error of 29%, this error is a conservative one.  Each 

approximation in figure 64 predicts the onset of damage conservatively.  Mathematically 

speaking, the approximate NDRE is obliged to be a smooth function whereas the 

experimental NDRE curves often have a “sharp” start.  With further experience working 

with this criterion the analyst may decide to ignore approximate NDRE values below 

some negligible value.  For example, the analyst could chose to ignore approximate 

NDRE values below .5%.  In this case the approximate NDRE would predict the onset of 

damage at .039 radians, where it occurs experimentally. 
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 The moment vs. rotation relationship for test 3 is shown in figure 66.
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Figure 66.  Moment vs. Rotation for test 3.  Here the experimental data is shown in 
blue and the theoretical (if no damage were to occur) moment is shown in black. 

 

 The theoretical moment shown in figure 66 was determined from the stiffness of the 

finite element model.  The experimental and approximate recoverable energies are shown 

in figure 67.  The theoretical recoverable energy (TRE) was calculated using the stiffness 

from the finite element model as well.  This is an important point.  The analyst needs 

only the stiffness from the FEA model and the NDRE curve for each of these analyses.  

The approximate recoverable energy (ARE) is found with equation 7. 
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ARE(i) = (1 – NDRE(i))*TRE(i) 

where ARE is the approximate recoverable energy, NDRE is the normalized 

difference in recoverable energy and TRE is the theoretical recoverable energy. 

(7) 
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 Figure 67.  Approximate and experimental energies for test 3.   
 

 The approximate moment (AM) vs. rotation relationship can be created from the 

approximate recoverable energy with equation 8. 
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AM(i) = 2*ARE(i)/R(i) 

where AM is the approximate moment, ARE is the approximate recoverable energy, 

and R is the rotation. 

(8) 

 The moment vs. rotation relationships are shown in figure 68.
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 Figure 68.  Approximate and experimental moment vs. rotation for test 3. 
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 These results are good.  The moment can be accurately predicted while damage is 

occurring using only the NDRE function and the stiffness from the finite element model.  

The calculations to perform there analyses are also very simple. 

Examination of Test 4 (u + v) 
  

 A separate NDRE function was calculated for tests one through four.  This increases 

the accuracy of the approximation for each of these tests.  Results for test four are shown 

in figure 69. 
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 Figure 69.  Experimental and Approximate NDRE for test 4. 
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 Test 4 applies a displacement that is a combination of x and y displacements.  The net 

displacement in figure 70 is the vector sum of the applied displacements u and v.  Tabular 

data from this test are shown in table 6. 

NDRE Data For Test 4 
 

Net Displacement Approximate NDRE Experimental NDRE
0 0

~ ~ ~
0.040471396 0.0018293 0

~ ~ ~
0.034396426 0.00044897 0
0.03540809 0.00056279 0

0.036421151 0.00065853 0
~ ~ ~

0.057687219 0.0113 0
0.058699325 0.012687 0.0017914

~ ~ ~
0.095164312 0.14205 0.14319

0

  

 Table 5.  Tabular data for test 4. 

 
 If levels of NDRE below .5% are ignored as in the previous examination of test 3, the 

approximation predicts the onset of damage at a displacement of .035 inches, while 

experimentally it occurs at a displacement of .059 inches.  The approximate NDRE curve 

is much smoother than the experimental NDRE curve.  Several methods to increase the 

sharpness of the approximate NDRE function are proposed in the following sections. 

 The approximate and experimental energies are shown in figure 70.
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Approximate and Experimental Energies For Test 4 
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 Figure 70.  Approximate and experimental energies for test 4. 

 
 These results are good.  The approximate and experimental energy curves are almost 

indiscernible.  Equation 8 can now be used with the approximate recoverable energy and 

the net displacement to calculate the approximate net force.  The experimental and 

approximate net forces are shown in figure 71. 
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Approximate and Experimental Net Forces For Test 4 
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 Figure 71.  Approximate and Experimental net forces for test 4. 

 
 These results are very encouraging.  If the NDRE can be modeled to a high level of 

accuracy so, in turn, can the loads.  Several factors that control the quality of the energy 

fits are discussed in the next section. 
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CHAPTER 12:  FACTORS THAT CONTROL FIT QUALITY 
 

 There are a number of factors that control the quality of the data fit.  These factors 

apply to fitting data using the NDRE approach as well as the DED approach.   

Number of Interpolation Nodes 
 

 The number of interpolation nodes used in the function has a large impact on the 

quality of the fit, the accuracy of modeling anything should increase with the number of 

variables.  The NDRE function used in figure 64 contains 216 nodal values; six nodal 

divisions in the e11 direction, six nodal divisions in the e22 direction and six nodal 

divisions in the e12 direction.  This NDRE function provides a more accurate solution 

than one with 125 nodal values.  The disadvantage of increasing the number of nodes is 

that the computation time increases exponentially with the number of nodes.  A 216 node 

solution requires about 1.5 hours of computation on a 2.4 GHz computer.  Moving to a 7 

node solution requires about 2.4 hours of computation, with a negligible increase in 

accuracy.   

Interpolation Node Spacing 
 

 An advantage exists for solutions with an even number of interpolation node 

divisions.  For these solutions there is an element centered on the origin in strain space.  

The dimensions of the solution in strain space can be adjusted so the central element 

spans ± 2 percent in each of the strain axes, where most fiberglass materials begin to fail.  

The value of NDRE can be set to zero within this element, increasing the accuracy of the 
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solution.  For solutions with odd numbers of element divisions there are four elements at 

the center of strain space.  This means that either all the nodes of these four elements 

have zero valued coefficients (27 nodes, which can be a significant number of the nodes 

in the solution) or that the NDRE increases linearly from the origin of strain space, which 

is incorrect.   

 Another issue is the dimensions in strain space of the solution.  In the real world, the 

material undergoing a test reaches strains that cause damage and then the material softens 

or comes apart, causing the strain field to increase in adjacent areas and damage new 

materials.  Material that exceeds strains of about two percent will absorb a finite amount 

of energy through damage.  With the linear finite element model, this damage process 

does not occur.  Rather, the strains increase linearly to whatever the applied displacement 

requires.  The approximation in this case is that material can continue to absorb energy at 

strain states that don’t correspond to their physical behavior.  As damage occurs the 

linear finite element model becomes a worse and worse approximation.  It has been found 

in this study that a strain space of ± 10 percent has led to the highest quality fits.  If the 

strain state of a finite element model is outside of this range it is given the value of 

NDRE of the node with the closest strain state.  This approximates the physical 

phenomena that a structure can only contain a finite amount of energy. 

Strain Space Uniqueness 
 

 An investigation into the uniqueness of the strain states was performed.  In one 

experiment an artificial strain state was created using a random distribution from -10 to 
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10 percent for strain fields for tests one through three (the three orthogonal 

displacements) and then superimposed for the remaining tests.  Results of fitting these 

artificial homogenous strain states are shown in figure 72. 
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Figure 72.  Results of fitting a homogenous random strain field to the experimental 
NDRE data. 
 

 As could be expected, these homogenous strain fields lead to somewhat homogenous 

results.  The flexibility of the solution is decreased as these strain fields all overlap. 

 The experimental strain fields for the 0 degree fibers in the first the three tests are 

shown in figure 73. 
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Strain Fields For IPL Tests 

 

 Figure 73.  Strains from the three orthogonal tests: 

(A) e11 for x displacement test  (B) e22 for x displacement test  (C) e12 for x 
displacement test 

(D) e11 for y displacement test  (E) e22 for y displacement test  (F) e12 for y 
displacement test 

 (G) e11 for rotation test  (H) e22 for rotation test  (I) e12 for rotation test 

 The units in this figure are percent strain. 
 

 From examination of figure 73 it can be seen that there are portions where these strain 

fields overlap.  Strain fields in figure 73 are for the 0 degree or longitudinal plies of the 

IPL sample.  These IPL samples also had fibers running ± 45 degrees to these 

longitudinal fibers as well.  The strain fields for these plies are like those in figure 73, 
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although rotated.  Including these plies in the derivation of the energy functions decreases 

the uniqueness of the strain fields of each test and thus may make determining the proper 

nodal values more difficult for the MATLAB optimization.  This is certainly not to say 

that NDRE cannot be used to model the behavior of these samples but rather the inverse, 

this coupon and testing procedure may not be the best for deriving the nodal values of the 

NDRE function.  It may be easier mathematically to determine the nodal values for an 

experimental approach with the following characteristics. 

1) Fibers running in only one direction. 

2) A different geometry where the strain fields are more uniform, such as 

a “dogbone” shape commonly used in material testing [1]. 

3) A set of displacement tests that lead to a uniform strain fields: i.e. a 

test for positive e11, a test for negative e11, a test with positive e11 and 

positive e22 etc.   

4) A high number of these tests to explore the whole strain space. 

 This approach may also make it easier to address the issues outlined in the next 

section.  With highly individualized tests as listed above an energy function can be 

defined that is smooth is some regions and a step function in others. 

Fiber failure vs. Resin failure 
 

 One problem with the energy methods is that they do not necessarily describe fiber 

failures well.  A fiber load vs. displacement relationship can be idealized in the figure 74. 
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Load vs. Displacement For Fiber Failure 
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Figure 74.  An idealized load vs. displacement graph for a fiber. 

 

 Stiff, high performance fibers are typically brittle materials.  They load elastically 

until some critical load, when they fail catastrophically.  Theoretical and experimental 

energies for this fiber failure are shown in figure 75. 
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Theoretical and Experimental Energies For Fiber Failure 
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 Figure 75.  Theoretical and experimental recoverable energies for fiber failure. 
 

 The NDRE for the fiber failure test is shown in figure 76. 
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NDRE vs. Displacement For Fiber Failure 
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 Figure 76.  NDRE for fiber failure test. 
 

 In the case of a fiber breakage test the NDRE function becomes a binary function, 

almost like a switch indicator.  It is difficult to model this phenomenon with the given 

interpolative approach.  With the interpolative approach the function will want to 

transition smoothly between values of zero and one, rather than just jump between.  

Types of failures where damage to resin is predominantly absorbing the available energy 

have are more easily modeled as these are less catastrophic.  A future approach could be 

to have a way to switch between different methods of modeling these phenomena, 

whether the method of damage is predominantly fibrous damage or resin damage to 

increase the accuracy of the approximation.  
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CHAPTER 13:  CONCLUSIONS 
 

 Work documented in this paper has been on the theoretical development of the energy 

methods and their application and on the physical development of the IPL testing 

machine.  These areas will be discussed separately below. 

 It has been shown that energy methods can be applied to studying the failure of 

composite materials.  It has been shown that a dissipated energy density criteria was 

successful when modeling the behavior of compact tensions samples.  This approach 

worked the best for compact tension samples that have less than 90% of the fibers in 

parallel to the crack path.  This approach could be modified to include another method 

when more than 90% of the fibers are parallel to the crack path. 

 Dissipated energy density proved to not work as well with multi-axial displacements 

in the in plane loader.  Another criterion, normalized difference in recoverable energy 

was developed and provided better results with IPL data.  A normalized technique is 

needed because of the large differences in the amount of energy that damage absorbs with 

the different loading paths that the IPL can provide. 

 These energy techniques have demonstrated their ability to indicate the onset of 

damage as well as the ability to create load vs. displacement relationships for composite 

samples.   
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 This paper has outlined the basic framework for an analytical approach that couples 

the laboratory and the design studio.  Based on these results a possible design algorithm 

is as follows.   

1)  Designers are presented with a project and perform analysis to determine the required 

constitutive properties for a composite structure.  This analysis could be done through 

analytical or numerical methods.  The separate laminates in this design are then 

identified.   

2)  Coupons of the design lamina are created and tested in an IPL to determine an energy 

function.  This function accurately describes how energy is absorbed through damage for 

any in-plane strain state. 

3)  The energy function is applied to a finite element model of the structure for any 

number of design displacements. 

4)  The analyst can then determine if a given design displacement a) creates a strain state 

that will cause damage to the structure to occur b) where this damage to the structure 

occurs and c) the amount of energy absorbed and the resulting load vs. displacement 

relationship after damage has occurred. 

5)  The structure can then be redesigned to avoid unwanted characteristics. 
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Work on the IPL began four years ago.  It started as a ME 404 design project and was 

then completed by a number of undergraduate and graduate students.  The timely 

completion and use of the IPL shows the high caliber of the MSU engineering students.   

 The IPL was designed and built entirely on the MSU campus with some of the 

machining performed by the CIM lab and technical services and the remaining machining 

performed by students in the student machine shop.  The availability of the student 

machine shop has been integral to the completion of this project and has been extremely 

educational to the student engineers involved.  It has shown the difference between 

designs that get the job done and designs that get the job done and are easy to 

manufacture. 

 The IPL was built with off the shelf components whenever possible.  This has 

reduced the cost and time needed to complete the IPL as well as increased the 

reproducibility of the machine.  It has also demonstrated that electric actuators perform 

this type of testing well while reducing the complexity and danger of the machine. 

 This project has demonstrated that multi-axial testing machines can be built at a cost 

competitive with the cost of a uni-axial testing machine, while providing much more 

utility.  It has also been shown that data acquisition and control of this machine is a 

tractable problem for engineers. 
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CHAPTER 14:  FUTURE WORK 
 

IPL Mechanical Structure 
 

 One problem discovered with the IPL is with the problem of bearing backlash.  

Backlash is the amount that the bearing will displace perpendicular to the load.  While a 

small amount of backlash with bearings is usually tolerable in mechanism testing 

machines require very accurate displacements to provide useful data.  Load vs. 

Displacement data from the three actuators in an IPL test are shown in figure 77.  In these 

figures it can be seen that loads are nearly zero up to a certain displacement where they 

begin to pick up.  If there were no backlash in the system the loads should begin to 

increase linearly from zero displacement.  This backlash displacement was removed 

mathematically in this study in order for the energies to be calculated.  In an 

industrialized approach for developing the goals set forth in chapter one, it is convenient 

to use only actuator displacements for data collection.  Resolving this backlash is also 

important for cyclical loading studies.  Corrected data are shown in figure 78.  Bearings 

with less backlash are available commercially and should be used with the IPL. 

 

 



106 

Load vs. Displacement Data For IPL Actuators 

 

Figure 77.  IPL raw actuator data. 
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Backlash Corrected Load vs. Displacement Data For IPL Actuators 

 

 Figure 78.  Actuator data with backlash removed. 
 

Interpolation Mesh Shape 
 

 For the DED and NDRE functions in this paper an evenly spaced rectangular 

interpolation mesh was always used.  The Tsai Wu quadratic interaction criterion 

discussed in chapter one demonstrates that composites typically have a failure surface 

that can be described as a hyper-ellipsoid.  An example of this failure surface in three 

strain dimensions is shown in figure 79.  
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Tsai – Wu Failure Surface 

 

Figure 79.  Tsai - Wu failure surface for composites. 
 

 One possible method for increasing the accuracy of the energy functions would be to 

switch to a different mesh in interpolation space.  The central nodes in interpolation space 

could be moved to the edge of the failure ellipsoid.  This would allow the function to very 

accurately describe the region of strain space where there will be no damage, i.e. NDRE 

and DED have a value of zero.  The nodes outside of this surface would then be used to 

describe the NDRE and DED functions where their value is greater than zero. 

Nonlinear Finite Element Modeling 
 

 As stated earlier, these energy methods are based on linear finite element modeling.  

The strain fields certainly change in a nonlinear fashion as damage is occurring within the 

coupons.  The energy functions could be defined more accurately if the strains used to 

define them were also more accurate.  This would also allow the energy functions to be 

defined over a smaller strain space, allowing for higher resolution at lower strains. 

 At some point with an accurate, nonlinear constitutive model, energy methods are a 

natural consequence.  However, due to the complexity of fiber vs. resin damage this 
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constitutive model has not been successfully developed over the entire strain space and 

may be path dependant.  The use of these energy methods represents an approximation to 

this nonlinear constitutive model that is a tractable problem and requires only simple 

finite element analysis methods. 

 
IPL Specimens and Loading paths 

 

 There are many issues to be addressed with the IPL specimens and loading paths.  

The ratio of plies to coupon thickness could be explored to ensure that the energy 

functions derived are macroscopic properties.  In the work performed at NRL the 

coupons used had 20 or more plies where our samples had only six.  Also NRL samples 

had two ply angles while ours have three.  An important distinction between the NRL 

testing and that performed here is that the NRL samples are primarily controlled by 

matrix damage formation and not by fiber damage.  A study is called for here to 

determine the effects of these parameters.  Loading paths could be investigated as well to 

determine which paths provide the most unique strain fields for deriving the nodal values 

of the energy functions.

Extension to Structural Configurations 

 Armed with the database for a given material it is now necessary to extend this to 

other structural configurations to determine damage evolution and load vs. displacement 

response.  These test cases will provide designer confidence in the application of 

unfamiliar material properties to primary composite structures.
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%The purpose of this program (readnfit) is to read in discrete data sets of an arbitrary 
%number of points and create data sets with the same number of points through 
%interpolation.  Thus if data set a has 44 points and data set b has 68 points this program 
%can return a data sets based on a and b with 100 data points each. 

cd C:\IPL 
clear 

%Set the on and off point for each test 
on(1) = 1; 
off(1) = 89; 
on(2) = 1; 
off(2) = 70; 
on(3) =1; 
off(3) = 73; 
on(4) = 1; 
off(4) = 44; 
on(5) = 1; 
off(5) = 42; 
on(6) = 1; 
off(6) = 52; 
on(7) = 1; 
off(7) = 20; 

%Set the number of data points in the sets to be produced 
npoints = 100; 

for i=1:7; 
    clear A de dx dy dr t t1 t2  
    clear t3 de1 dx1 dy1 dr1 A1 x file 

    %open each dissipated energy file and find the number of data points 
    file = cat(2,'DER',num2str(i),'.txt'); 
    [dep,dxp,dyp,drp] = textread(file,'%f %f %f %f'); 
    de = dep(1:off(i)); 
    dx = dxp(1:off(i)); 
    dy = dyp(1:off(i)); 
    dr = drp(1:off(i));  

    t = linspace(1,off(i),off(i)); 
    t1 = linspace(1,off(i),npoints); 

    %Create data sets with (npoints) data points.  Int is a user defined function, it is      
    %attached after this program 
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    dx1 = int(dx,npoints); 
    dy1 = int(dy,npoints); 
    dr1 = int(dr,npoints);     
    de1 = int(de,npoints); 

    %Create plots 
    figure(1); 
    plot(t,dx,t1,dx1); 
    title('DX') 
    figure(2) 
    plot(t,dy,t1,dy1); 
    title('DY') 
    figure(3) 
    plot(t,dr,t1,dr1); 
    title('DR') 
    figure(4) 
    plot(t,de,t1,de1); 
    title(i) 
    pause     

    %Write the data to a file 
    out = cat(2,dx1',dy1',dr1',de1'); 
    size(out) 
    file = cat(2,'data',num2str(i),'_',num2str(npoints),'r','.txt'); 
    dlmwrite(file,out,'\t'); 
    dirt = cat(2,'C:\IPL\test',num2str(i)); 
    cd(dirt) 
    dlmwrite('data.txt',out,'\t'); 
    cd C:\IPL 
end 

 
%This function (int) interpolates a data set to return another data set with (npts) points 

function bafv = int(ba,npts) 

%Find the length of the source data 
dimba = length(ba); 

%Find the index vector for the source data 
band = linspace(1,dimba,dimba); 

%Find the index vector for the interpolate values 
baf =  linspace(1,dimba,npts); 
lowend = 0; 
highend = 0; 
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j = 1; 
low = 1; 
high = 1; 

for i = 1:npts 
    if i == j 
        low = high; 
    end 

    while baf(i) > j 
        high = inc(high); 
        j = inc(j); 
    end 

    while low + 1 < baf(i) 
        low = inc(low); 
    end 

    if high == low 
        bafv(i) = ba(j); 
    else 
        dv = (ba(high) - ba(low))/(high - low); 
        bafv(i) = ba(low) + dv*(baf(i) - low); 
    end     
end 
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%This program (phi_b) creates the coefficient matrix (referred to as µ above) from the 
%IPL data 

clear 
 
%Save the current directory 
dir_prev = pwd; 

%Define the number of data points in each data set 
pts = 100; 

%Set the thickness of each element. Areas in mm^2, thickness in mm, volume in mm^3 
thick = 3.2/2; 

%Pick which tests will have a coefficient matrix made from them 
i = 1; 
lamsipl(i) = 1; 
i = inc(i); 
lamsipl(i) = 2; 
i = inc(i); 
lamsipl(i) = 3; 
i = inc(i); 
lamsipl(i) = 4; 
i = inc(i); 
lamsipl(i) = 5; 
i = inc(i); 
lamsipl(i) = 6; 
i = inc(i); 
lamsipl(i) = 7; 
sets = length(lamsipl); 

%(expdata) is a user defined function, it is included after this program.  It’s purpose is to 
%load the needed data into memory.  These data include the strain fields from the FEA 
%models and the experimental data. 
expdata(lamsipl,sets); 
load expdata.mat 

%Set the range of elements used.  A fraction of the elements may be used for faster runs 
%and debugging. 
estart = 1; 
estop = nelements; 

%Define the total area and volume of the FEA model 
atotal = sum(ars); 
v = atotal*thick*6; 
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%Set the number of nodes in the solution space and the range of strains that it covers 
e11max = .10; 
e22max = .10; 
e12max = .10; 
nnum = 6; 

%(elstart) is a user defined function, it is included after this program.  Its purpose is to 
%define the locations of each node in solution space, determine which nodes define an 
%element and the ranges in strain space covered by each element 
[elinfo,ninfo] = elstart(-e11max,e11max,-e22max,e22max,-e12max,e12max,nnum); 

%(nedger) is a user defined function, it is included after this program.  Its purpose is to 
%determine which nodes are lying on the edge of the solution space.  This is used for 
%elements whose strains are outside of the defined strain space.  They contribute to the 
%coefficient of the closest edge node to them. 
[nedge] = nedger(ninfo,e11max,e22max,e12max); 

%Loop through each model in the set 
for i = 1:sets 
    sam = i; 
    lam = cat(2,'test',num2str(lamsipl(i))); 

    %switch directories to get the data 
    d_string = cat(2,'C:\IPL\',lam) 
    cd(d_string); 

    %Define the strain amplification factors for superposition of element strains 
    ax = alphax(startpoint(i):offpoint(i)); 
    ay = alphay(startpoint(i):offpoint(i)); 
    ar = alphar(startpoint(i):offpoint(i)); 
    slvD = de(startpoint(i):offpoint(i)); 

    %Initialize the coefficient matrix 
    mat = 1; 
    if mat == 1 
        phi_prime = zeros(pts,nnum*nnum*nnum); 
    end 

    %Define the coefficient matrix for this problem 
    rep = 0; 
    jcnt = 0; 
    for j = 1:100 

    %(inc) is a user defined function, it is included after this program.  It simply adds 1 to  
    %the variable it is given 
        jcnt = inc(jcnt); 
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    if jcnt == 10 
            j 
            jcnt = 0; 
        end 
        n = (sam-1)*100 + j; 
        for e = estart:estop 

            %Find the strains for each element through superposition 
            e4511 = ax(j)*ex4511(e) + ay(j)*ey4511(e) + ar(j)*er4511(e);  
            e4522 = ax(j)*ex4522(e) + ay(j)*ey4522(e) + ar(j)*er4522(e);  
            e4512 = ax(j)*ex4512(e) + ay(j)*ey4512(e) + ar(j)*er4512(e); 
 
            em4511 = ax(j)*exm4511(e) + ay(j)*eym4511(e) + ar(j)*erm4511(e);  
            em4522 = ax(j)*exm4522(e) + ay(j)*eym4522(e) + ar(j)*erm4522(e);  
            em4512 = ax(j)*exm4512(e) + ay(j)*eym4512(e) + ar(j)*erm4512(e);  

            e9011 = ax(j)*ex9011(e) + ay(j)*ey9011(e) + ar(j)*er9011(e);  
            e9022 = ax(j)*ex9022(e) + ay(j)*ey9022(e) + ar(j)*er9022(e);  
            e9012 = ax(j)*ex9012(e) + ay(j)*ey9012(e) + ar(j)*er9012(e); 
 
            %(elfind) is a user defined function, it is included after this program.  Its purpose      
            %is to determine which solution element the FEA strain coordinate (exx11,     
            %exx22, exx12) lies in. 

            el90 = elfind(e9011,e9022,e9012,elinfo); 
            el45 = elfind(e4511,e4522,e4512,elinfo); 
            elm45 = elfind(em4511,em4522,em4512,elinfo); 

            %(bint) is a user defined function, it is included after this program.  Its purpose is              
            %to determine the values added to the nodal coefficients. 
            %(bintwo) is a user defined function, it is included after this program.  Its purpose       
            %is to determine the values added to the nodal coefficients for elements whose              
            %strain coordinate lies outside the solution space. 
            %(adds) is a user defined function, it is included after this program.  Its purpose is      
            %to add the second number to the first number. 
 
            if el45 ~= 0 
                f45 = bint(elinfo(el45,:),e4511,e4522,e4512); 
                for i = 1:8 
                    phi_prime(j,elinfo(el45,i)) =    
                    adds(phi_prime(j,elinfo(el45,i)),2*thick*ars(e)*f45(i)/v); 
                end 
            else 
                c45 = bintwo(nedge,ninfo,e4511,e4522,e4512); 
                phi_prime(j,c45) = adds(phi_prime(j,c45),2*thick*ars(e)/v); 
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            end       
            if elm45 ~= 0 
                fm45 = bint(elinfo(elm45,:),em4511,em4522,em4512); 
                for i = 1:8 
                    phi_prime(j,elinfo(elm45,i)) =  
                    adds(phi_prime(j,elinfo(elm45,i)),2*thick*ars(e)*fm45(i)/v); 
                end 
            else 
                cm45 = bintwo(nedge,ninfo,em4511,em4522,em4512); 
                phi_prime(j,cm45) = adds(phi_prime(j,cm45),2*thick*ars(e)/v); 
            end 
 
            if el90 ~= 0  
                f90 = bint(elinfo(el90,:),e9011,e9022,e9012); 
                for k = 1:8 
                    phi_prime(j,elinfo(el90,k)) =  
                    adds(phi_prime(j,elinfo(el90,k)),2*thick*ars(e)*f90(k)/v); 
                end 
            else 
                c90 = bintwo(nedge,ninfo,e9011,e9022,e9012); 
                phi_prime(j,c90) = adds(phi_prime(j,c90),2*thick*ars(e)/v); 
            end 
        end 
    end     

    %Save the coefficient matrix and the experimental data 
    pwd 
    phi_p = phi_prime; 
    save phirn18.mat phi_p 
    slvDt = slvD; 
    save slvDrn18.mat slvDt     
end 

%Return to the previous directory and beep to alert the user 
cd(dir_prev); 
beep 
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%This function (expdata) gathers the necessary data to create the coefficient matrix and 
%solve for the C vector 

function expdata(lams,sets) 
clear de 
cd C:\IPL 

%Remember the current directory 
pdr = pwd; 
 
%Read the experimental data for each model 
for i = 1:sets 
    switch i  
        case 1 
            dr = cat(2,'C:\IPL\Test',num2str(lams(i))) 
            cd(dr); 
            [xd(:,i),yd(:,i),rt(:,i),dt(:,i)] = textread('data.txt','%f %f %f %f'); 
        case 2 
            dr = cat(2,'C:\IPL\Test',num2str(lams(i))); 
            cd(dr); 
            [xd(:,i),yd(:,i),rt(:,i),dt(:,i)] = textread('data.txt','%f %f %f %f'); 
        case 3 
            dr = cat(2,'C:\IPL\Test',num2str(lams(i))); 
            cd(dr); 
            [xd(:,i),yd(:,i),rt(:,i),dt(:,i)] = textread('data.txt','%f %f %f %f'); 
        case 4 
            dr = cat(2,'C:\IPL\Test',num2str(lams(i))); 
            cd(dr); 
            [xd(:,i),yd(:,i),rt(:,i),dt(:,i)] = textread('data.txt','%f %f %f %f'); 
        case 5 
            dr = cat(2,'C:\IPL\Test',num2str(lams(i))); 
            cd(dr); 
            [xd(:,i),yd(:,i),rt(:,i),dt(:,i)] = textread('data.txt','%f %f %f %f'); 
        case 6 
            dr = cat(2,'C:\IPL\Test',num2str(lams(i))); 
            cd(dr); 
            [xd(:,i),yd(:,i),rt(:,i),dt(:,i)] = textread('data.txt','%f %f %f %f'); 
        case 7 
            dr = cat(2,'C:\IPL\Test',num2str(lams(i))); 
            cd(dr); 
            [xd(:,i),yd(:,i),rt(:,i),dt(:,i)] = textread('data.txt','%f %f %f %f'); 
    end 

    %Vertically concatenate the experimental data sets 
    offpoint(i) = i*size(xd(:,i),1) 
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    if i == 1 
        xdisp = xd(:,i); 
        ydisp = yd(:,i); 
        rot = rt(:,i); 
        de = dt(:,i); 
        startpoint(i) = 1 
    else 
        xdt = xdisp; 
        ydt = ydisp; 
        rtt = rot; 
        dtt = de; 
        x = xd(:,i); 
        y = yd(:,i); 
        r = rt(:,i); 
        d = dt(:,i); 
        xdisp = cat(1,xdt,x); 
        ydisp = cat(1,ydt,y); 
        rot = cat(1,rtt,r); 
        de = cat(1,dtt,d); 
        startpoint(i) = offpoint(i-1) + 1 
    end 
end 

npoints = length(de); 

%Create the amplification factors, these numbers come from the displacements used in 
%the FEA model 
for i = 1:npoints 
    alphax(i) = xdisp(i)/.1; 
    alphay(i) = ydisp(i)/.1016; 
    alphar(i) = rot(i)/(.04433); 
end 

%Create plots of the amplification factors 
plots = 1 
if plots == 1 
    figure(1) 
    plot(alphax) 
    title('alphax') 
    figure(2) 
    plot(alphay) 
    title('alphay') 
    figure(3) 
    plot(alphar) 
    title('alphar') 
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    figure(4) 
    plot(dt) 
    title('xd') 
end 
 
%The next section loads the strains from the FEA models 
cd C:\IPL\strains 

%Read in the strains from Ansys 
[ex4511] = textread('ex4511.txt','%f'); 
[ex4522] = textread('ex4522.txt','%f'); 
[ex4512] = textread('ex4512.txt','%f'); 

[exm4511] = textread('exm4511.txt','%f'); 
[exm4522] = textread('exm4522.txt','%f'); 
[exm4512] = textread('exm4512.txt','%f'); 

[ex9011] = textread('ex9011.txt','%f'); 
[ex9022] = textread('ex9022.txt','%f'); 
[ex9012] = textread('ex9012.txt','%f'); 

 

[ey4511] = textread('ey4511.txt','%f'); 
[ey4522] = textread('ey4522.txt','%f'); 
[ey4512] = textread('ey4512.txt','%f'); 
[eym4511] = textread('eym4511.txt','%f'); 
[eym4522] = textread('eym4522.txt','%f'); 
[eym4512] = textread('eym4512.txt','%f'); 
[ey9011] = textread('ey9011.txt','%f'); 
[ey9022] = textread('ey9022.txt','%f'); 
[ey9012] = textread('ey9012.txt','%f'); 

eymass = 
cat(1,ey4511,ey4522,ey4512,eym4511,eym4522,eym4512,ey9011,ey9022,ey9012); 
eymax = max(eymass); 
eymin = min(eymass); 
aymax = max(alphay); 
eymaxt = eymax*aymax; 
eymint = eymin*aymax; 

[er4511] = textread('er4511.txt','%f'); 
[er4522] = textread('er4522.txt','%f'); 
[er4512] = textread('er4512.txt','%f'); 
[erm4511] = textread('erm4511.txt','%f'); 
[erm4522] = textread('erm4522.txt','%f'); 
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[erm4512] = textread('erm4512.txt','%f'); 
[er9011] = textread('er9011.txt','%f'); 
[er9022] = textread('er9022.txt','%f'); 
[er9012] = textread('er9012.txt','%f'); 

ermass = 
cat(1,er4511,er4522,er4512,erm4511,erm4522,erm4512,er9011,er9022,er9012); 
ermax = max(ermass); 
ermin = min(ermass); 
armax = max(alphar); 
ermaxt = ermax*armax; 
ermint = ermin*armax; 

%read in the areas from Ansys 
[ars] = textread('areas.txt','%f'); 
nelements = length(er9012); 
cd(pdr) 

%Save these data to a file 
save expdata.mat 
 
 
%This function (elstart) initializes the solution element mesh and finds all the necessary  
%info about each element 

function [elinfo,ninfo] = elstart(xmin,xmax,ymin,ymax,zmin,zmax,nnum) 

%Define the ranges in strain space 
xrange = xmax - xmin; 
yrange = ymax - ymin; 
zrange = zmax - zmin; 

%Define the number of element divisions 
elnum = nnum - 1; 
n = 1; 
rcnt = 1; 
ccnt = 1; 
lcnt = 1; 

for i = 1:(elnum)*(elnum)*(elnum) 
    %Number the corner nodes 
    n = ((lcnt -1)*(elnum + 1)*(elnum + 1) + (ccnt - 1)*(elnum + 1) + rcnt); 
    elinfo(i,1) = n; 
    elinfo(i,2) = n + 1; 
    elinfo(i,3) = n + nnum; 
    elinfo(i,4) = n + nnum + 1; 
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    elinfo(i,5) = n + nnum*nnum; 
    elinfo(i,6) = n + nnum*nnum + 1; 
    elinfo(i,7) = n + nnum*nnum + nnum; 
    elinfo(i,8) = n + nnum*nnum + nnum + 1;     
 
    %Define the upper and lower strain bounds for each element 
    elinfo(i,9) = xmin + (xrange)*(rcnt - 1)/elnum; 
    elinfo(i,10) = xmin + (xrange)*(rcnt)/elnum;     
    elinfo(i,11) = ymin + (yrange)*(ccnt - 1)/elnum; 
    elinfo(i,12) = ymin + (yrange)*(ccnt)/elnum; 
    elinfo(i,13) = zmin + (zrange)*(lcnt - 1)/elnum; 
    elinfo(i,14) = zmin + (zrange)*(lcnt)/elnum; 

    rcnt = inc(rcnt); 
    if rcnt == elnum + 1 
        rcnt = 1; 
        ccnt = inc(ccnt); 
        if ccnt == elnum + 1 
            ccnt = 1; 
            lcnt = inc(lcnt); 
        end 
    end 
end 

rcnt = 1; 
ccnt = 1; 
lcnt = 1; 

for i = 1:(nnum)*(nnum)*(nnum) 

    %Number the corner nodes 
    n = ((lcnt -1)*(nnum)*(nnum) + (ccnt - 1)*(nnum) + rcnt); 
    ninfo(i,1) = n;     
    ninfo(i,2) = xmin + (xrange)*(rcnt - 1)/elnum;   
    ninfo(i,3) = ymin + (yrange)*(ccnt - 1)/elnum; 
    ninfo(i,4) = zmin + (zrange)*(lcnt - 1)/elnum; 
    rcnt = inc(rcnt); 

    if rcnt == nnum + 1 
        rcnt = 1; 
        ccnt = inc(ccnt); 
        if ccnt == nnum + 1 
            ccnt = 1; 
            lcnt = inc(lcnt); 
        end 
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    end 
end     
 
 
%This function (nedger) finds the nodes that are one the edges of the solution strain field 
function [nedge] = nedger(ninfo,e11max,e22max,e12max) 
nnodes = size(ninfo,1); 

j = 1; 
for i = 1:nnodes 

    if (ninfo(i,2) == e11max)|(ninfo(i,2) == -e11max)|(ninfo(i,3) == e22max)|(ninfo(i,3)    
    == -e22max)|(ninfo(i,4) == e12max)|(ninfo(i,4) == -e12max) 
        nedge(j) = i; 
        j = inc(j); 
    end 
end 
 
 
%This function (inc) adds 1 to the given variable a 
function x = inc(a) 
x = a + 1; 

 
%This function (elfind) determines the element containing the strain coordinate 
%(e11,e22,e12) 
function [el] = elfind(e11,e22,e12,elinfo) 
el = 0; 
nelements = size(elinfo,1); 
for i = 1:nelements 
    if (e11<=elinfo(i,10))&(e11>=elinfo(i,9)) 
    &(e22<=elinfo(i,12))&(e22>=elinfo(i,11)) 
    &(e12<=elinfo(i,14))&(e12>=elinfo(i,13)) 
        el = i; 
    end 
end 
 
 
%This function (bint) calculates the 8 linear interpolation functions for a solution space 
%element 
 
function [f] = bint(elinfo,e11,e22,e12) 
 

 



129 

%Define the local element coordinates 
x = (e11 - elinfo(9))/(elinfo(10) - elinfo(9)); 
y = (e22 - elinfo(11))/(elinfo(12) - elinfo(11)); 
z = (e12 - elinfo(13))/(elinfo(14) - elinfo(13)); 

%Define the interpolation functions 
f(1) = (1-x)*(1-y)*(1-z); 
f(2) = x*(1-y)*(1-z); 
f(3) = (1-x)*y*(1-z); 
f(4) = x*y*(1-z); 
f(5) = (1-x)*(1-y)*z; 
f(6) = x*(1-y)*z; 
f(7) = (1-x)*y*z; 
f(8) = x*y*z; 
 
 
%This function (bintwo) finds the edge node closest to the strain coordinate 
%(e11,e22,e12) 
function c = bintwo(nedge,ninfo,e11,e22,e12) 

nnodes = size(nedge,2); 
dmin = 1E6; 
for i = 1:nnodes 
    d1 = e11 - ninfo(nedge(i),2); 
    d2 = e22 - ninfo(nedge(i),3); 
    d3 = e12 - ninfo(nedge(i),4); 
    d = sqrt(d1^2 + d2^2 + d3^2); 
    if d < dmin 
        dmin = d; 
        c = nedge(i); 
    end 
end 
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%This program (solver) combines the coefficient matrices and experimental data and 
%solves for the C vector 

clear 

%The following section determines which data sets are included 
i = 1; 
%lams(i) = 1; 
%i = inc(i); 
%lams(i) = 2; 
%i = inc(i); 
%lams(i) = 4; 
%i = inc(i); 
%lams(i) = 6; 
%i = inc(i); 
%lams(i) = 7; 
%i = inc(i); 
%lams(i) = 8; 
%i = inc(i); 
%lams(i) = 9; 
%i = inc(i); 
%lams above 9 are for the IPL tests 
%test 1 
lams(i) = 10; 
i = inc(i); 
%test 2 
lams(i) = 11; 
i = inc(i); 
%test 3 
lams(i) = 12; 
i = inc(i); 
%test 4 
lams(i) = 13; 
i = inc(i); 
%test 5 
lams(i) = 14; 
i = inc(i); 
%test 6 
lams(i) = 15; 
i = inc(i); 
%test7 
lams(i) = 16; 

%Find the number of cases to be used 
sets = length(lams); 
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%Save the present working directory 
dir_prev = pwd; 
 
%Create the combined phi,slvD and slvcod 
for i= 1:sets 
    %switch directories to get the data, different files for CTS data 
    lam = cat(2,'lam',num2str(lams(i))); 
    if lams(i) > 9 
        lam = cat(2,'test',num2str(lams(i) - 9)); 
    end 
    d_string = cat(2,'C:\IPL\',lam) 
    cd(d_string); 
    load phirn14.mat 
    load slvDrn14.mat 

    if lams(i) < 10 
        load slvcod6.mat 
    end 

    %Concatenate the coefficient matrices and experimental data 
    if i == 1 
        phi_prime = phi_p; 
        slvD = slvDt; 
        if lams(i) < 10 
            slvcod = codt; 
        end 
    else 
        phi_primet = cat(1,phi_prime,phi_p); 
        phi_prime = phi_primet; 
        slvDt = cat(1,slvD,slvDt); 
        slvD = slvDt; 
        if lams(i) < 10 
            slvcodt = cat(1,slvcod,codt); 
            slvcod = slvcodt; 
        end 
    end 
end 

%Create a directory for the solution 
solname = 'solIPLrn18m7'; 
mkdir(solname); 
cd(solname); 

 



132 

%Determine the number of data points and variables to solve for 
[tot_points,max_combs] = size(phi_prime); 

dir_prev = pwd; 

%Find the columns that have a coefficient of zero and remove them from the system of 
%equations.  Also remove the nodes from the central element from the system of 
%equations.  This is done so the NDRE or DED for small strains has a value of zero. 
j = 1; 
l = 1; 
for i = 1:max_combs 
    s = sum(phi_prime(:,i)); 
    switch i 
        case 87 
            s = 0; 
        case 88 
            s = 0; 
        case 93  
            s = 0; 
        case 94 
            s = 0; 
        case 123 
            s = 0; 
        case 124 
            s = 0; 
        case 129 
            s = 0; 
        case 130 
            s = 0; 
    end 

    if s == 0 
        zerocol(j) = i; 
        j = inc(j); 
    else 
        col(l) = i; 
        l = inc(l); 
    end 
end 
ncol = l-1; 
zerocol(j) = 0; 

%Maker the initial guess at the C vector.  It can be set to values determined from a  
%previous solve or to a user defined function. 
mode = 0 
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if mode == 1 
    amp = 40E13; 
    e11max = .15; 
    e22max = .15; 
    e12max = .15; 
    nnum = 6; 
    [elinfo,ninfo] = elstart(-e11max,e11max,-e22max,e22max,-e12max,e12max,nnum); 
 
    %(Cfaker) is a user defined function, it is attached after this program.  Its purpose is to     
    %define initial nodal values proportional to their distance from the origin. 
    Cfake = Cfaker(ninfo,amp); 
else 
    cd C:\IPL\test7\solIPLrn14 
    load C.mat 
    Cfake = C; 
    %Cfake = 1000*ones(216,1); 
end 

%Create a coefficient matrix without columns set above 

for i = 1:ncol 
    if i == 1 
        phi(:,1) = phi_prime(:,col(1)); 
        g(1) = Cfake(col(1)); 
        %g(1) = 1.9E3; 
    else 
        phi_prev = phi; 
        phi_next = phi_prime(:,col(i)); 
        phi = [phi_prev,phi_next]; 
        g(i) = Cfake(col(i)); 
    end 
end 
 
%create the constraints on the coeffiecients 
%x_l ensures that the coefficients are greater than zero 
x_l = zeros(ncol,1); 
gmax = g*1000000; 
 
%Create an index for plotting 
ip = linspace(1,tot_points,tot_points); 
fake = phi*g'; 
 
%Create a plot of the initial guess for the C vector 
figure(1) 
plot(ip,fake,ip,slvD); 
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title('Seed'); 
pause 

%Use Matlab's lsqlin to solve for the C vector 
maxi = input('Maximum number of iterations? '); 
opt = optimset('MaxIter',maxi,'TolFun',2E-40000); 
%x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options,p1,p2,...) 
[Cs,buh,muh,fuh] = lsqlin(phi,slvD,[],[],[],[],x_l,[],g,opt); 
C = Cs; 
size(C); 

%Create the dissipated energy approximation and plot 
dap = phi*C; 
figure(2) 
plot(ip,dap,ip,slvD); 
title('opto'); 

%Find the rms error between the data and the approximation 
for i = 1:tot_points 
    errs(i) = (sqrt((dap(i) - slvD(i))^2)); 
end 

err = sum(errs) 

%Assign the average value of the populated rows in the C vector to the 
%unpopulated values 
j = 1; 
k = 1; 
Cvg = sum(C)/size(C,1); 
for i = 1:max_combs 
    if zerocol(j) == i 
        Ctot(i,1) = 0; 
        j = inc(j); 
    else 
        Ctot(i,1) = C(k,1); 
        k = inc(k); 
    end 
end 

%Save the C vector 
C = Ctot; 
size(Ctot) 

%Save the C vector and beep 
save C.mat C 
cd(dir_prev); 
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%This function (Cfaker) creates initial guess for the C vector based on the distance a 
%node is from the origin. 
function Cfake = Cfaker(ninfo,amp); 

nnodes = size(ninfo,1) 
nxpamp = 1; 
nxnamp = 1; 
nypamp = 1; 
nynamp = 1; 
nzpamp = 1; 
nznamp = 1; 

for i = 1:nnodes 
    if ninfo(i,2) > 0 
        nxp = ninfo(i,2); 
        nxn = 0; 
    else 
        nxp = 0; 
        nxn = ninfo(i,2); 
    end 
    if ninfo(i,3) > 0 
        nyp = ninfo(i,3); 
        nyn = 0; 
    else 
        nyp = 0; 
        nyn = ninfo(i,3); 
    end 
    if ninfo(i,4) > 0 
        nzp = ninfo(i,4); 
        nzn = 0; 
    else 
        nzp = 0; 
        nzn = ninfo(i,4); 
    end 

    %Calculate the distance from the origin to the node 
    d = sqrt(nxpamp*nxp^2 + nxnamp*nxn^2 + nypamp*nyp^2 + nynamp*nyn^2 +  
          nzpamp*nzp^2 + nznamp*nzn^2); 

    if d <= .03 
        Cfake(i) = 0; 
    else 
        Cfake(i) = amp*(d)^(12); 
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    end 
end 
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/COM *** Perform IPL Study *** 
/COM Filename: /usr/people/wjritter/SAMPLE_FEA/coupon.sub 
/COM ***                              IPL Sample                             *** 
/COM This file creates the FEA model for the IPL 

/COM create the coupon geometry and material model 
/FILNAME,IPL60x254 
filename = 'mesh_10esr' 

/PREP7 
n_div = 60                                                  ! Number of element divisions on the left edge 

/COM IPL_geom is a user defined function, it is attached after this program.  The 
/COMpurpose of this function is to create the mesh for the IPL sample  
/INP,IPL_geom,sub 
 
/COM create the displacements 
x_disp = 2.54 
y_disp = 0 
rot = 0 

/COM IPL_disp is a user defined function, it is attached after this program.  The  
/COM purpose of this function is to impose displacements and constraints on the model 
/INP,IPL_disp,sub 

/COM solve the model 
/SOL 
allsel,all 
SOLVE 

!/POST1 
/COM IPL_strn is a user defined function.  Its purpose is to output the strain fields of the 
/COM model to be used by MATLAB 

!/INP,IPL_strn,txt 
save 
!FINISH 
!/CLEAR 

 
/COM *** Create the coupon mesh *** 
/COM ***                               IPL_geom                              *** 
/COM This file creates the mesh for an IPL coupon 
/COM *** Geometric Parameters of composite plate (mm) *** 
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length = 25.4/1000                     ! Length of test section 
width = 24.68/1000                    ! Width of test section 
depth = 11.78/1000                    ! Depth of cut 
d_cut = 6.35/1000                      ! Diameter of cut 

/COM *** Create the material and element types 
/COM IPL_mat is a user defined function, it is attached after this function.  Its purpose is 
/COM to define the material properties of the composite sample 
/INP,IPL_mat,sub 
 
square_frac = .7                         ! Determines the size of the corner areas 
x_cent = width - depth + d_cut/2! Center of curvature of notch 
y_cent = length/2 
hyp = (x_cent*x_cent + y_cent*y_cent)**(1/2) 
yp = (y_cent*d_cut)/(2*hyp) 
xp = (x_cent*d_cut)/(2*hyp) 
corner = (square_frac*((x_cent**2 + y_cent**2)**(1/2) - d_cut/2))/(2**(1/2)) 
mid_curve = ((x_cent**2 + y_cent**2)**(1/2) - d_cut/2)/(2**(1/2)) 
inv_corner = (mid_curve - corner)*(2**(1/2)) 
x_6 = width - depth - inv_corner 
rad_out = x_cent - x_6 
y_12 = length/2 - d_cut/2 - inv_corner 
x_11 = x_cent – xp 
y_11 = y_cent - yp 

! *** Create Keypoints *** 
k,1,0,0,0 
k,2,0,corner,0 
k,3,corner,corner,0 
k,4,corner,0,0 
k,5,0,length - corner,0 
k,6,corner,length - corner,0 
k,7,0,length,0 
k,8,corner,length,0 
k,9,x_cent,y_cent - rad_out,0 
k,10,x_cent,0,0 
k,11,x_11,y_11,0 
k,12,x_cent,length/2 - d_cut/2,0 
k,13,x_cent - xp,y_cent + yp,0 
k,14,x_cent,y_cent + rad_out,0 
k,15,x_cent,y_cent + d_cut/2,0 
k,16,x_cent,length,0 
k,17,width,y_cent - rad_out,0 
k,18,width,0,0 
k,19,width,y_cent - d_cut/2,0 
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k,20,width,y_cent + rad_out,0 
k,21,width,y_cent + d_cut/2,0 
k,22,width,length,0 
k,23,x_cent,Y_cent,0 

! *** Create Lines *** 
L,1,2   ! 1 
L,2,3   ! 2 
L,3,4   ! 3 
L,4,1   ! 4 
L,2,5   ! 5 
L,5,6   ! 6 
LARC,3,6,23,rad_out                                                             ! 7 
L,5,7   ! 8 
L,7,8   ! 9 
L,8,6   ! 10 
LARC,9,3,23,rad_out                                                    ! 11 
L,9,10   ! 12 
L,10,4   ! 13 
L,3,11   ! 14 
LARC,12,11,23,d_cut/2                                                         ! 15 
L,9,12   ! 16 
L,6,13   ! 17 
LARC,11,13,23,d_cut/2                                                         ! 18 
LARC,6,14,23,rad_out                                                           ! 19 
L,14,15   ! 20 
LARC,13,15,23,d_cut/2                                                         ! 21 
L,8,16   ! 22 
L,14,16   ! 23 
L,9,17   ! 24 
L,17,18   ! 25 
L,10,18   ! 26 
L,12,19   ! 27 
L,19,17   ! 28 
L,14,20   ! 29 
L,20,21   ! 30 
L,15,21   ! 31 
L,16,22   ! 32 
L,22,20   ! 33 

! *** Find the length of each line, these lengths are used to ensure that lines on opposite  
! sides of an area have the same number of elements *** 
*DIM,long,,33 
KDIST,1,2 
long(1) = _RETURN 

 



141 

KDIST,2,3 
long(2) = long(1) 
long(3) = long(1) 
long(4) = long(1) 
long(5) = _RETURN 
KDIST,5,6  
long(6) = _RETURN  
long(7) = long(5) 
KDIST,5,7 
long(8) = long(1) 
long(9) = long(1) 
long(10) = long(1) 
KDIST,4,10 
long(11) = _RETURN 
long(12) = long(3)   
long(13) = long(11) 
KDIST,3,11  
long(14) = _RETURN  
long(15) = long(11) 
long(16) = long(14) 
long(17) = long(14) 
long(18) = long(7) 
long(19) = long(11) 
long(20) = long(14)  
long(21) = long(15) 
long(22) = long(21)  
long(23) = long(12) 
KDIST,9,17  
long(24) = _RETURN  
long(25) = long(12) 
long(26) = long(24)  
long(27) = long(24)  
long(28) = long(16)  
long(29) = long(27)  
long(30) = long(20)  
long(31) = long(27)  
long(32) = long(31) 
long(33) = long(23) 

! *** Create the element sizes on each line *** 
*DO,i,1,33 
    LESIZE,i,,,n_div*long(i)/length 
*ENDDO 
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! *** Create areas *** 
AL,1,2,3,4  ! 1 
AL,5,6,7,2  ! 2 
AL,6,8,9,10  ! 3 
AL,13,3,11,12  ! 4 
AL,11,14,15,16  ! 5 
AL,7,17,18,14  ! 6 
AL,17,19,20,21  ! 7 
AL,10,22,23,19  ! 8 
AL,26,12,24,25  ! 9 
AL,24,16,27,28  ! 10 
AL,31,20,29,30  ! 11 
AL,29,23,32,33  ! 12 
ANORM,1 

! *** Mesh the areas *** 
AMAP,1,1,2,3,4 
AMAP,2,2,3,6,5 
AMAP,3,5,6,8,7 
AMAP,4,4,10,9,3 
AMAP,5,3,11,12,9 
AMAP,6,3,6,13,11 
AMAP,7,6,14,15,13 
AMAP,8,6,8,16,14 
AMAP,9,10,9,17,18 
AMAP,10,9,12,19,17 
AMAP,11,14,20,21,15 
AMAP,12,14,16,22,20 

NUMMRG,NODE,,,,LOW 

! *** Count the number of elements and nodes 
*GET,NELEMENTS,ELEM,,COUNT        ! Finds the number of elements 
*GET,NNODES,NODE,,COUNT           ! Finds the number of nodes 
!ENORM,nelements                   ! Reorient all of the elements to the same direction 

! *** Keep track of the node numbers for each element, and get the area 
*DIM,num_nod,,NELEMENTS,4              
*DIM,area,,NELEMENTS 
*DO,i,1,NELEMENTS 
    *GET,num_nod(i,1),ELEM,i,NODE,1   
    *GET,num_nod(i,2),ELEM,i,NODE,2        
    *GET,num_nod(i,3),ELEM,i,NODE,3     
    *GET,num_nod(i,4),ELEM,i,NODE,4 
    *GET,area(i),ELEM,i,AREA 
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*ENDDO     
SAVE 
 
 
/COM *** Create the material and elements *** 
/COM ***                                  IPL_mat                                *** 
/COM This file creates the material and element type 

/COM *** Reference Parameters *** 
ET_LAYER1 = 1                     ! Reference Element type # for Beam 
MP_LAYER1 = 1                     ! Reference Material type # for layer 
MP_LAYER2 = 2 
MP_GRIP = 3 

R_LAYER1 = 1                      ! Reference # for Set of PLATE Real constants 
R_LAYER2 = 2 

THICKNESS1 = 3.27/6000            ! Thickness of layer 1 

! *** Set the angular orientation of each ply *** 
*DIM,theta,,6 
theta(1) = 0 + 90 
theta(2) = 45 + 90 
theta(3) = -45 + 90 
theta(4) = -45 + 90 
theta(5) = 45 + 90 
theta(6) = 0 + 90 

NLAYERS = 6 
!*DO,i,1,NLAYERS 
!    theta(i) = 90 
!*ENDDO 

/COM *** Elements for layer 1 *** 
ET,ET_LAYER1,SHEll91,NLAYERS,1,0,0,1,0        ! Element Type, Ref#, name of El.  
KEYOPT,ET_LAYER1,8,1 
type,NL,1 

/COM *** Material Properties for unbroken layer *** 
E_AXIAL = 10.47E9          ! Axial modulus  
!E_axial = 38.68E9 
E_TRANSVERSE = 38.68E9     ! Transverse modulus 
!E_TRANSVERSE = 10.47E9 
PR_IN_PLANE = .3           ! Inplane poisson's ratio 
PR_TRANSVERSE = .3         ! Transverse poisson's ratio 
GAMMA = 4.36E9             ! Shear Modulus 
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mp,ex,MP_LAYER1,E_AXIAL  ! Mat. Prop, Young's Mod., Mat#, Magnitude of EX 
mp,ey,MP_LAYER1,E_TRANSVERSE  ! Mat. Prop, Young's Mod., Mat#, Magnitude  
! of EY 
mp,ez,MP_LAYER1,E_TRANSVERSE  ! Mat. Prop, Young's Mod., Mat#, Magnitude  
!of EZ 
mp,prxy,MP_LAYER1,PR_IN_PLANE ! Mat. Prop, Poisson's Ratio, Mat#, Mag. 
mp,pryz,MP_LAYER1,PR_TRANSVERSE   ! Mat. Prop, Poisson's Ratio, Mat#, Mag.   
mp,prxz,MP_LAYER1,PR_TRANSVERSE   ! Mat. Prop, Poisson's Ratio, Mat#, Mag.  
mp,gxy,MP_LAYER1,GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 
mp,gyz,MP_LAYER1,GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 
mp,gxz,MP_LAYER1,GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 

mp,ex,MP_LAYER2,E_TRANSVERSE   ! Mat. Prop, Young's Mod., Mat#, Magnitude  
! of EX 
mp,ey,MP_LAYER2,E_AXIAL  ! Mat. Prop, Young's Mod., Mat#, Magnitude of EY 
mp,ez,MP_LAYER2,E_TRANSVERSE  ! Mat. Prop, Young's Mod., Mat#, Magnitude  
! of EZ 
mp,prxy,MP_LAYER2,PR_IN_PLANE ! Mat. Prop, Poisson's Ratio, Mat#, Mag. 
mp,pryz,MP_LAYER2,PR_TRANSVERSE   ! Mat. Prop, Poisson's Ratio, Mat#, Mag.   
mp,prxz,MP_LAYER2,PR_TRANSVERSE   ! Mat. Prop, Poisson's Ratio, Mat#, Mag.  
mp,gxy,MP_LAYER2,GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 
mp,gyz,MP_LAYER2,GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 
mp,gxz,MP_LAYER2,GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 

maggrp = 10 
mp,ex,MP_GRIP,maggrp*E_AXIAL  ! Mat. Prop, Young's Mod., Mat#, Magnitude of  
! EX 
mp,ey,MP_GRIP,maggrp*E_TRANSVERSE  ! Mat. Prop, Young's Mod., Mat#,  
! Magnitude of EY 
mp,ez,MP_GRIP,maggrp*E_TRANSVERSE  ! Mat. Prop, Young's Mod., Mat#,  
! Magnitude of EZ 
mp,prxy,MP_GRIP,PR_IN_PLANE        ! Mat. Prop, Poisson's Ratio, Mat#, Mag. 
mp,pryz,MP_GRIP,PR_TRANSVERSE          ! Mat. Prop, Poisson's Ratio, Mat#, Mag.   
mp,prxz,MP_GRIP,PR_TRANSVERSE          ! Mat. Prop, Poisson's Ratio, Mat#, Mag.  
mp,gxy,MP_GRIP,maggrp*GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 
mp,gyz,MP_GRIP,maggrp*GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 
mp,gxz,MP_GRIP,maggrp*GAMMA            ! Mat. Prop, Shear Modulus, Mat#, Mag. 

! *** Input for Shell91 real constants ***  
! NL,LSYM,,,,ADMSUA,,,,,,,MAT,THETA,TK(i),TK(j),TK(k),TK(l) 
! NL = number of layers.  LSYM is layer symmetry = 1 (true) 0 (false).   
! ADMSUA = added mass per unit area 
! MAT = material reference number.  Theta = angle orientation.  Tk(i) =  
! thickness of node i 
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r,1,NLAYERS,0,,,, 
rmore,0,,,,,,, 
*DO,i,1,NLAYERS 
    rmore,MP_LAYER1,theta(i),THICKNESS1,,,, 
 !*IF,theta(i),EQ,90,THEN 
    !    rmore,MP_LAYER2,0,THICKNESS1,,,, 
    !*ELSE 
    !    rmore,MP_LAYER1,theta(i),THICKNESS1,,,,  
    !*ENDIF 
*ENDDO 

MAT,LAYER1 
REAL,1 
TYPE,1 
ESYS,0 
 
 
/COM Filename: /usr/people/wjritter/SAMPLE_FEA/1_21_03 
/COM ***                            IPL_disp                                 *** 
/COM This program creates the desired upper and lower jaw displacements 
/COM *** Rotate into the IPL coordinate system 
LOCAL,11,0,0,length,0,0,180,0 
/COM *** Create the lower jaw displacement *** 
nsel,s,loc,y,0                    ! Select all the bottom nodes and fix them 
d,all,UX,0 
d,all,UY,0 
d,all,UZ,0 
 
/COM *** Create the upper jaw displacement *** 
*IF,rot,gt,0,then 
    rot1 = rot 
    rot = -rot 
    nsel,s,loc,y,length 
    d,all,UZ,0 
    x_mid = width/2 
    y_mid = length/2 
    nsel,s,loc,y,length 
    *GET,num_nodes,node,0,count  ! Get the number of selected nodes 
    *GET,node_min,node,0,NUM,MIN! Get the smallest node number 
    nod = node_min 
    Pi = 3*acos(1/2) 
    conv = Pi/180 
    c = cos(rot*conv) 
    s = sin(rot*conv) 
    *DO,i,1,num_nodes 
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 *GET,nod_x,NODE,nod,LOC,x! Get the node's x location 
 *GET,nod_y,NODE,nod,LOC,y! Get the node's y location 
 r_x = nod_x - x_mid  ! Get the node's distance vector  
 r_y = nod_y - y_mid  ! components from the midpoint 
 r_x_prime = r_x*c + r_y*s! Find the rotated components 
 r_y_prime = r_y*c - r_x*s 
 del_x = -r_x + r_x_prime  ! Find the displacements 
 del_y = r_y - r_y_prime 
 d,nod,UX,del_x + x_disp   ! Apply the displacements 
 d,nod,UY,del_y - y_disp 
 *GET,next,NODE,nod,NXTH  ! Get the next node 
 nod = next 
    *ENDDO 
*ELSEIF,y_disp,gt,0,then 
    nsel,s,loc,y,length 
    d,all,UY,-y_disp 
    d,all,UZ,0 
    *IF,x_disp,eq,0,then 
 d,all,UX,0 
    *ENDIF 
*ELSEIF,x_disp,gt,0,then 
    nsel,s,loc,y,length 
    d,all,UX,x_disp 
    d,all,UZ,0 
    *IF,y_disp,eq,0,then 
        d,all,UY,0 
    *ENDIF 
*ENDIF 

! *** Increase the stiffness of the elements on the grip edges to reduce their strains 
!nsel,s,loc,y,length 
!esln,s,0 
!mpchg,MP_GRIP,all 
!nsel,s,loc,y,0 
!esln,s,0 
!mpchg,MP_GRIP,all 

! *** Remove the displacements on the corner nodes to reduce the stress *** 
!NSEL,S,LOC,X,width,2*width 
!DDELE,ALL,UX 
!DDELE,ALL,UY 
!NSEL,S,LOC,X,-width,width 
!DDELE,ALL,UX 
!DDELE,ALL,UY 
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/COM ***                            IPL_strn                                 *** 
/COM This program outputs the strains at the query point.  Used in convergence study 
nodx = width – depth 
nody = length/2 
KSEL,S,KP,,11 
NSLK,S 
*GET,nodefr,NODE,0,NUM,MIN 
*GET,strnfrx,NODE,nodefr,EPTO,X 
*GET,strnfry,NODE,nodefr,EPTO,Y 
*GET,strnfrxy,NODE,nodefr,EPTO,XY 
*CFOPEN,check,txt,,APPEND 
*DIM,jobstat,string,128 
jobstat(1) = 'Jobname: ' 
*VWRITE,filename 
%s 
*VWRITE,strnfrx 
%g 
*VWRITE,strnfry 
%g 
*VWRITE,strnfrxy 
%g 
 
 
/COM ***                         Strainout 
/COM *** This program outputs the average strains in each element, to be used by  
/COM MATLAB *** 

CSYS,1 
NSEL,S,EPTO,EQV,0,2E31 
NSEL,A,EPTO,EQV,-2E31,0 

! Go through all elements 
*DIM,stx,,nelements 
*DIM,sty,,nelements 
*DIM,stxy,,nelements 

! Find the max and min strains 
stxmin = 0 
stxmax = 0 
stymin = 0 
stymax = 0 
stxymin = 0 
stxymax = 0 
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*DO,i,1,NELEMENTS  
    ! Find the nodes at each corner  
    *GET,node1,ELEM,i,NODE,1 
    *GET,node2,ELEM,i,NODE,2 
    *GET,node3,ELEM,i,NODE,3 
    *GET,node4,ELEM,i,NODE,4 

    ! Get the strains at each of these nodes 
    *GET,stx1,NODE,node1,EPEL,X 
    *GET,stx2,NODE,node2,EPEL,X 
    *GET,stx3,NODE,node3,EPEL,X 
    *GET,stx4,NODE,node4,EPEL,X 
 
    *GET,sty1,NODE,node1,EPEL,Y 
    *GET,sty2,NODE,node2,EPEL,Y 
    *GET,sty3,NODE,node3,EPEL,Y 
    *GET,sty4,NODE,node4,EPEL,Y 

    *GET,stxy1,NODE,node1,EPEL,XY 
    *GET,stxy2,NODE,node2,EPEL,XY 
    *GET,stxy3,NODE,node3,EPEL,XY 
    *GET,stxy4,NODE,node4,EPEL,XY 

    !Average the four corner node strains 
    stx(i) = (stx1 + stx2 + stx3 + stx4) / 4 
    sty(i) = (sty1 + sty2 + sty3 + sty4) / 4 
    stxy(i) = (stxy1 + stxy2 + stxy3 + stxy4) / 4 

    *IF,stx(i),lt,stxmin,then 
        stxmin = stx(i) 
    *ENDIF 

    *IF,sty(i),lt,stymin,then 
        stymin = sty(i) 
    *ENDIF 

    *IF,stxy(i),lt,stxymin,then 
        stxymin = stxy(i) 
    *ENDIF 

    *IF,stx(i),gt,stxmax,then 
        stxmax = stx(i) 
    *ENDIF 
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    *IF,sty(i),gt,stymax,then 
        stymax = sty(i) 
    *ENDIF 

    *IF,stxy(i),gt,stxymax,then 
        stxymax = stxy(i) 
    *ENDIF 

*ENDDO 
*CFOPEN,strainyx,out 
*DO,i,1,NELEMENTS 
    stemp = stx(i) 
*VWRITE,stemp 
%g 
*ENDDO 
*CFCLOS 

*CFOPEN,strainyy,out 
*DO,i,1,NELEMENTS 
    stemp = sty(i) 
*VWRITE,stemp 
%g 
*ENDDO 
*CFCLOS 

*CFOPEN,strainyxy,out 
*DO,i,1,NELEMENTS 
    stemp = stxy(i) 
*VWRITE,stemp 
%g 
*ENDDO 
*CFCLOS 

*CFOPEN,strminimax,out 
*VWRITE,stxmin 
%g 
*VWRITE,stxmax 
%g 
*VWRITE,stymin 
%g 
*VWRITE,stymax 
%g 
*VWRITE,stxymin 
%g 
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*VWRITE,stxymax 
%g 
*CFCLOS 
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APPENDIX C 

DIMENSIONS FROM DIGITIZATION 
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 Dimensions from digitization of the IPL.  Dimensions shown are in mm.  The IPL 
was digitized with a gauge length of one inch, zero x displacement and zero rotation. 
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APPENDIX D 

MAPLE CODE 
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This program (dcm) finds the actuator lengths and angles for a desired array of 
deformations. 
> restart:with(linalg): 

Enter the coordinates of the pivot points: 

> p1:=[-40.1084,-.4288]: p2:=[-11.9890,-12.2342]: p3:=[15.9810,-12.3611]:   
> p4:=[-19.9685,12.4717]: p5:=[-14.9695,12.4959]: p6:=[18.1170,12.6797]: 

Create the axis vectors 

> a1:=p4-p1: a2:=p5-p2: a3:=p6-p3: 

Find the length of each vector 

> a10:=norm(a1,frobenius): a20:=norm(a2,frobenius): a30:=norm(a3,frobenius): 

Create the displacement vectors 

> npoints:=101: 
> dxmin:=0; dxmax:=.2: 
> dymin:=0; dymax:=.12: 
> drmin:=0; drmax:=9: 
> dx:=array(1..npoints): 
> dy:=array(1..npoints): 
> dr:=array(1..npoints): 
> for i to npoints do dx[i]:=dxmin + (i-1)*(dxmax - dxmin)/(npoints - 1) od: 
> for i to npoints do dy[i]:=dymin + (i-1)*(dymax - dymin)/(npoints - 1) od: 
> for i to npoints do dr[i]:=drmin + (i-1)*(drmax - drmin)/(npoints - 1) od: 

Create the vector of axis lengths for a set of displacements.  Also determine the actuator 
angles for each displacement. Export this data to a file. 

> datout:=array(1..npoints,1..12): 
> for i to npoints do 
>     p4ta:=[dx[i],dy[i]]+p4: p5ta:=[dx[i],dy[i]]+p5: p6ta:=[dx[i],dy[i]]+p6: 
>     r4:=norm(p4ta,frobenius): r5:=norm(p5ta,frobenius): r6:=norm(p6ta,frobenius):  
>     a4:=(angle(p4ta,[0,1])): a5:=(angle(p5ta,[0,1])): a6:=(angle(p6ta,[0,1])): 
>     a4t:=evalf(a4+dr[i]*(Pi/180)): a5t:=evalf(a5+dr[i]*(Pi/180)):  
>     a6t:=evalf(a6-dr[i]*(Pi/180)): 
>     p4t:=[-r4*sin(a4t),r4*cos(a4t)]: p5t:=[-r5*sin(a5t),r5*cos(a5t)]:  
>     p6t:=[r6*sin(a6t),r6*cos(a6t)]: 
>     a1t:=p4t-p1: a2t:=p5t-p2: a3t:=p6t-p3: 
>     a1:=norm(a1t,frobenius): a2:=norm(a2t,frobenius): a3:=norm(a3t,frobenius): 
>     da1:=a1-a10: da2:=a2-a20: da3:=a3-a30: 
>     st1:=round(50000*da1): st2:=round(50000*da2): st3:=round(50000*da3): 
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>     aa1:=evalf(angle(a1t,[1,0])): aa2:=evalf(angle(a2t,[1,0])):  
>     aa3:=evalf(angle(a3t,[1,0])): 
>     c1:=cos(aa1): s1:=sin(aa1): c2:=cos(aa2): s2:=sin(aa2): c3:=cos(aa3): s3:=sin(aa3): 
>     datout[i,1]:=st1: datout[i,2]:=st2: datout[i,3]:=st3:  
>     datout[i,4]:=dx[i]: datout[i,5]:=dy[i]: datout[i,6]:=dr[i]: 
>     datout[i,7]:=c1: datout[i,8]:=s1: datout[i,9]:=c2: 
>     datout[i,10]:=s2: datout[i,11]:=c3: datout[i,12]:=s3:   
> od:  
> fd:=fopen(dat,WRITE,TEXT): 
> writedata(fd,datout): 
> fclose(fd): 

 



156 

 

 

 

 

 

 

 

 

APPENDIX E 

LABVIEW CODE 
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 The initialize program is used to get the IPL ready to move.  This program has to be 
run before any testing is done. 
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        The following interface and code are for running a test in the IPL.  All subVI’s will 
be documented after this program. 
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        The following subVI is shown as UMI loads on the test VI above.  It reads the 
voltages from the load cells and converts them into load values.  The interface is shown 
first and the block diagram is shown second. 
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 The program go home is used to make the IPL return to the home position, a gauge 
length of 1 inch. 
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 Load res off is used to resolve the loads into the x, y and r components. 
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 The energy program was used to calculate the dissipated energy in each dimension as 
the test was running. 
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