
These notes largely concern autocorrelation 

 

Issues Using OLS with Time Series Data 

 

Recall main points from Chapter 10: 

 

 Time series data NOT randomly sampled in same way as cross 

sectional—each obs not i.i.d 

 

Why? 

Data is a “stochastic process”—we have one realization of the process 

from a set of all possible realizations 

 

Leads to a Number of Common problems:  

 

1. Errors correlated over time—high errors today high next time 

(biased standard errors but not biased coefficients) 

 

2. Effects may take a while to appear difficult to know how 

long should wait to see effects (tax cuts—is growth in Clinton 

years due to Clinton?  Reagan?) (specification problem) 

 

 

3. Feedback effects (x y but after seeing y, policy makers adjust 

x) (specification problem—can lead to biased coeffs) 

 

4. Trending data over time data series can look like they are 

related, but really is “spurious” (biased coeffs) 

 

Related Issue:   Prediction—often want a prediction of future prices, GDP, 

etc.—Need to use properties of existing series to make that prediction 

 



Recall Chapter 10 Models 

These models dealt with problems 2 and 4 listed above 

 

1. Static model-- Change in z has an immediate effect—in same 

period—on y 

yt = 0 + 1zt + ut    t=1,2,…n 

 

2. Finite Distributed lag Model 

yt =  + 0zt + 1zt-1 + 2zt-2 + ut    t=1,2,…n 

Know number of lags 

 

3. Trending Data: 

Add a trend yt = 0 + 1t + et , t= 1,2 

Or Detrend the data 

 

 

Note that if DO NOT correctly specify the model (e.g., with lagged data), 

can generate serial correlation.  Correct specification is the first problem to 

address. 



P&R 6.2  Serial Correlation:  What is serial correlation and why is it a 

problem? 

 

 Serial correlation comes when errors from one time period are carried 

over into future time periods (problem # 1 listed above)  

 Can also occur spatially—errors in this area are correlated with errors 

in adjacent area 

 Most authors use serial and auto-correlation interchangeably.  Some 

use auto corr to refer to serial correlation within a series itsel and 

serial correlation to refer to lagged correlation between two time 

series.  I’ll use them interchangeably. 

 

Positive serial correlation often caused by 

  

--Inertia—some economic time series have “momentum” (?) 

 

--Correlation in omitted variables over time 

 

 --Correlation in measurement error component of error term 

 

 --Theoretical predictions--adaptive expectations, some partial 

adjustment process 

 

--Misspecification—e.g., omitted dynamic terms (lagged dependent or 

independent variables, trends) 

 

--Data is already interpolated (e.g., data between Census years) 

 

--Non-stationarity—will discuss later 

 

 

 



Example: AR(1) Process 

 

 

Very common form of serial correlation 

 

First Order Autoregressive process:  AR(1) 

 

True model:   yt = β0+β1x1t + β2x2t + . . . .βkXkt + t 

t = t-1 + vt   0≤||≤1  

[If had 2 lags, would be AR(2)] 

 

 vt is the idiosyncratic part of the error,  Indep of other errors 

over time, N(0, 
2

v) 

 et is NOT indep of other errors over time,  N(0, 
2
) 

 error in time t is determined by the diminishing value of error in 

previous period () + addition of random variable v, with EV(0) 

 

Implies that error in any period is reflected in all future 

periods 
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How are the errors related over time? 
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Note that  is the correlation coefficient between errors at time t and t-1.  

Also known as coefficient of autocorrelation at lag 1 

 

 

Stationarity: 

 

 

Critical that || <1—otherwise these variances and covariances are 

undefined.   

 

If || <1, we say that the series is stationary.  If =1, nonstationary. 

 

Chapter 11 in your book discusses concept of stationarity.  For now, brief 

definition.  If mean, variance, and covariance of a series are time invariant, 

series is stationary.   

 

Will discuss later tests of stationarity and what to do if data series is not 

stationary. 

 

 

Serial correlation leads to biased standard errors 

 

If y is positively serially correlated and x is positively serially correlated, 

will understate the errors 

 

 Show figure 6.1 for why 

 Note that 1
st
 case have positive error initially, second case have 

negative error initially 

 Both cases equally likely to occurunbiased 

 But OLS line fits the data points better than true line 

 

With algebra: 

 

Usual OLS Estimator  yt = β0+β1x1t + t 
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How does this compare with standard errors in OLS case? 

Depends on sign of p and type of autocorrelation in xs 

 

If x is positively correlated over time and p is positive, OLS will understate 

true errors 

 

 T, F stats all wrong 

 

 R2 wrong 

 

See Gujarati for a Monte Carlo experiment on how large these mistakes can 

be



  

Tests for Serial Correlation 

 

 

1.  Graphical method 

 

Graph (residuals) errors in the equation---very commonly done. 

 

Can also plot residuals against lagged residuals—see Gujarati fig 12.9 

 

 

2. Durbin Watson Test  Oldest test for serial correlation 

P&R goes through extension when have lagged y’s in model—see 6.2.3 for 

details 

 

Null hypothesis:  No serial correlation =0 

Alternative:  0 (two tailed) 

  >0 (one tailed) 

 

Test statistic: 

Step 1:   Run  OLS model yt = β0+β1x1t + β2x2t + . . . .βkXkt + t 

Step 2:  Calculate predicted residuals 

Step 3:  Form test statistic 
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Assumptions: 

1. Regression includes intercept term 

2. Xs are fixed in repeated sampling—non-stochastic (problematic in 

time series context) 

3. Can only be used for 1
st
 order autoregression processes 

4. Errors are normally distributed 

5. No lagged dependent variables—not applicable in those models 

6. No missing obs 

 

 

 



 

 

This statistic ranges from 0 to 4 

 t̂ are close to each other Positive serial correlationDW will be 

close to zero (below 2) 

 No serial correlation DW will be close to 2 

 Negative serial correlation DW will be large (above 2) 

 

Exact interpretation difficult because sequence of predicted error terms 

depends on x’s as well if x’s are serially correlated, correlation of 

predicted errors may be related to this and not serial correlation of s 

 2 critical values dL and dU 

--see book for chart 

 
STATA: estat dwstat 

 



3. Breusch-Godfrey test 

This is yet another example of an LM test 

 

Null hypothesis: Errors are serially independent up to order p 

 

One X: 

 

Step 1:   Run  OLS model yt = β0+β1x1t + t 

(Regression run under the null) 

 

Step 2:  Calculate predicted residuals 

 

Step 3:  Run auxiliary regression  

ttt vX  1
ˆ21ˆ   

   

Step 4:  T-test on ̂  

 
STATA: estat bgodfrey, lags(**) 

 
Multiple X, multiple lags 

 

Step 1:   Run  OLS model yt = β0+β1x1t + β2x2t + . . . .βkXkt + t 

(Regression run under the null) 

 

Step 2:  Calculate predicted residuals 

 

Step 3:  Run auxiliary regression  

tptttt vpXs    ˆ....ˆˆ21ˆ
1211  

  with higher order lags—Bruesch-Godfrey test 

 

Step 4:  (n-p)R
2 
~ χ

2
(p) 

 

 

BP test is more general than DW test—cam include laggesd Ys, moving 

average models 

 

Do need to know p—order or the lag.  Will talk some about this choice later. 

 

 

 



 Correcting for Serial Correlation 

 

1.  Check—is it model misspecification? 

--trend variable? 

--quadratics? 

--lagged variables? 

 

2. Use GLS estimator—see below 

 

3. Use Newey –West standard errors—like robust standard errors 

 

 

GLS Estimators: 

Correction1: Known :  Adjust OLS regression to get efficient parameter 

estimates 

 Want to transform the model so that errors are independent  

t = t-1 + vt   want to get rid of t-1 part 

 

 How?  Linear model holds for all time periods. 

yt-1 = β0+β1x1t-1 + β2x2t-1 + . . . .βkXkt-1 + t-1 

 

1. Multiply above by   

2. Subtract from base model: 

 

y*t = β0(1-) + β1x*1t + β2x*2t + . . . .βkX*kt + vt 

Where y*t = yt - yt-1 , same for xs 

 

Note that this is like a first difference, only are subtracting part and 

not whole of yt-1Generalized differences 

 

 Now error has a mean =0 and a constant variance 

 

  Apply OLS to this transformed model efficient estimates 

 

This is the BLUE estimator 

 

 PROBLEM: don’t know  

 



Correction2: Don’t Know --Cochrane-Orcutt 

 

Idea: start with a guess of  and iterate to make better and better guesses 

 

Step 1: Run ols on original model 

yt = β0+β1x1t + β2x2t + . . . .βkXkt + t 

 

Step 2: Obtain predicted residuals and run following regression 

ttt v 1
ˆˆ   

 

Step 3:  Obtain predicted value of .  Transform data using 

generalized differencing transformation 1
* ˆ

 ttt yyy  , same for X* 

 

Step 4: Rerun regression using transformed data 
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Step 5: Form new estimated residuals using newly estimated betas and 

ORIGINAL data (not transformed data) 
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Iterate until new estimates of  are “close” to old estimates (differ by 

.01 or .005) 

 

 

Correction3: Don’t Know --Hildreth-Lu (less popular) 

 

Numerical minimization method 

Minimize sum of squared residuals for various guesses of  for 

 

y*t = β0(1-) + β1x*1t + β2x*2t + . . . .βkX*kt + vt 

 

Choose range of potential  (e.g., 0, .1, .2, .3, . . . ., 1.0), identify  best 

one (e.g., .3), pick other numbers close by (e.g., .25, .26, . . . , .35), 

iterate 

 

 



Correction 4: First difference Model 

 

 lies between 0 and 1.  Could run a first differenced model as the other 

extreme.  This is the appropriate correction when series is non-stationary—

talk about next time. 

 

 

Recall: Correcting for Serial Correlation 

 

1.  Check—is it model misspecification? 

--trend variable? 

--quadratics? 

--lagged variables? 

 

2. Use GLS estimator—see below 

 

3. Use Newey –West standard errors—like robust standard errors 

 

 

Newey –West standard errors 

 

Extension of White standard errors for heteroskedasticity 

Only valid in large samples 

 

 

Final Notes: 

 

Should you use OLS or FGLS or Newey-West errors? 

 

OLS: 

--unbiased 

--consistent 

--asymptotically normal 

--t,F, r2 not appropriate 

 

FGLS/Newey West 

--efficient 

--small sample properties not well documented—not unbiased 

--in small samples, then, might be worse 



--Griliches and Rao rule of thumb—is sample is small (<20, iffy 20-50) and 

<.3, OLS better than FGLS 


