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Regression Discontinuity Designs 
in Economics 

David S. Lee and Thomas Lemieux* 

This paper provides an introduction and "user guide" to Regression Discontinuity 
(RD) designs for empirical researchers. It presents the basic theory behind the research 

design, details when RD is likely to be valid or invalid given economic incentives, 

explains why it is considered a "quasi-experimental" design, and summarizes differ 
ent ways (with their advantages and disadvantages) of estimating RD designs and 
the limitations of interpreting these estimates. Concepts are discussed using examples 
drawn from the growing body of empirical research using RD. (JEL C21, C31) 

1. Introduction 

Regression 
Discontinuity (RD) designs 

were first introduced by Donald L. 
Thistlethwaite and Donald T. Campbell 
(1960) as a way of estimating treatment 
effects in a nonexperimental setting where 
treatment is determined by whether an 
observed "assignment" variable (also referred 
to in the literature as the "forcing" variable 
or the "running" variable) exceeds a known 
cutoff point. In their initial application of 
RD designs, Thistlethwaite and Campbell 

(1960) analyzed the impact of merit awards 
on future academic outcomes, using the fact 
that the allocation of these awards was based 
on an observed test score. The main idea 
behind the research design was that individ 
uals with scores just below the cutoff (who 
did not receive the award) were good com 

parisons to those just above the cutoff (who 
did receive the award). Although this evalua 
tion strategy has been around for almost fifty 
years, it did not attract much attention in 
economics until relatively recently. 

Since the late 1990s, a growing number of 
studies have relied on RD designs to estimate 

program effects in a wide variety of economic 
contexts. Like Thistlethwaite and Campbell 
(1960), early studies by Wilbert van der Klaauw 

(2002) and Joshua D. Angrist and Victor Lavy 
(1999) exploited threshold rules often used by 
educational institutions to estimate the effect 
of financial aid and class size, respectively, 
on educational outcomes. Sandra E. Black 

(1999) exploited the presence of discontinui 
ties at the geographical level (school district 

*Lee: Princeton University and NBER. Lemieux: 

University of British Columbia and NBER. We thank 
David Autor, David Card, John DiNardo, Guido Imbens, 
and Justin McCrary for suggestions for this article, as well 
as for numerous illuminating discussions on the various 

topics we cover in this review. We also thank two anony 
mous referees for their helpful suggestions and comments, 
and Damon Clark, Mike Geruso, Andrew Marder, and 
Zhuan Pei for their careful reading of earlier drafts. Diane 

Alexander, Emily Buchsbaum, Elizabeth Debraggio, 
Enkeleda Gjeci, Ashley Hodgson, Yan Lau, Pauline Leung, 
and Xiaotong Niu provided excellent research assistance. 

281 

This content downloaded from 153.90.148.35 on Thu, 28 Mar 2013 14:43:52 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


282 Journal of Economic Literature, Vol. XLVIII (June 2010) 

boundaries) to estimate the willingness to pay 
for good schools. Following these early papers 
in the area of education, the past five years 
have seen a rapidly growing literature using 
RD designs to examine a range of questions. 
Examples include the labor supply effect of 

welfare, unemployment insurance, and dis 

ability programs; the effects of Medicaid on 

health outcomes; the effect of remedial edu 
cation programs on educational achievement; 
the empirical relevance of median voter mod 

els; and the effects of unionization on wages 
and employment. 

One important impetus behind this recent 

flurry of research is a recognition, formal 
ized by Jinyong Hahn, Petra Todd, and van 

der Klaauw (2001), that RD designs require 
seemingly mild assumptions compared to 
those needed for other nonexperimental 
approaches. Another reason for the recent 
wave of research is the belief that the RD 

design is not "just another" evaluation strat 

egy, and that causal inferences from RD 

designs are potentially more credible than 
those from typical "natural experiment" 
strategies (e.g., difference-in-differences or 
instrumental variables), which have been 

heavily employed in applied research in 
recent decades. This notion has a theoreti 
cal justification: David S. Lee (2008) for 

mally shows that one need not assume the 
RD design isolates treatment variation that is 
"as good as randomized"; instead, such ran 

domized variation is a consequence of agents' 
inability to precisely control the assignment 
variable near the known cutoff. 

So while the RD approach was initially 
thought to be just another" program evalu 
ation method with relatively little general 
applicability outside of a few specific prob 
lems, recent work in economics has shown 

quite the opposite.1 In addition to providing 

a highly credible and transparent way of 

estimating program effects, RD designs can 
be used in a wide variety of contexts cover 

ing a large number of important economic 

questions. These two facts likely explain 
why the RD approach is rapidly becoming 
a major element in the toolkit of empirical 
economists. 

Despite the growing importance of RD 

designs in economics, there is no single com 

prehensive summary of what is understood 
about RD designs?when they succeed, 
when they fail, and their strengths and weak 
nesses.2 Furthermore, the "nuts and bolts" of 

implementing RD designs in practice are not 

(yet) covered in standard econometrics texts, 

making it difficult for researchers interested 
in applying the approach to do so. Broadly 
speaking, the main goal of this paper is to fill 
these gaps by providing an up-to-date over 
view of RD designs in economics and cre 

ating a guide for researchers interested in 

applying the method. 
A reading of the most recent research 

reveals a certain body of "folk wisdom" 

regarding the applicability, interpretation, 
and recommendations of practically imple 
menting RD designs. This article represents 
our attempt at summarizing what we believe 
to be the most important pieces of this wis 

dom, while also dispelling misconceptions 
that could potentially (and understandably) 
arise for those new to the RD approach. 
We will now briefly summarize the most 

important points about RD designs to set 

the stage for the rest of the paper where 
we systematically discuss identification, 

interpretation, and estimation issues. Here, 
and throughout the paper, we refer to the 

assignment variable as X. Treatment is, thus, 

1 See Thomas D. Cook (2008) for an interesting his 

tory of the RD design in education research, psychology, 
statistics, and economics. Cook argues the resurgence of 

the RD design in economics is unique as it is still rarely 
used in other disciplines. 

2 See, however, two recent overview papers by van 

der Klaauw (2008b) and Guido W. Imbens and Thomas 
Lemieux (2008) that have begun bridging this gap. 
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assigned to individuals (or "units") with a 
value of X greater than or equal to a cutoff 
value c. 

RD designs can be invalid if indi 
viduals can precisely manipulate the 

"assignment variable." 

When there is a payoff or benefit to 

receiving a treatment, it is natural for an 
economist to consider how an individual 

may behave to obtain such benefits. For 

example, if students could effectively 
"choose" their test score X through 
effort, those who chose a score c (and 
hence received the merit award) could 
be somewhat different from those who 
chose scores just below c. The impor 
tant lesson here is that the existence of 
a treatment being a discontinuous func 
tion of an assignment variable is not suf 
ficient to justify the validity of an RD 
design. Indeed, if anything, discontinu 
ous rules may generate incentives, caus 

ing behavior that would invalidate the 
RD approach. 

If individuals?even while having 
some influence?are unable to pre 

cisely manipulate the assignment 
variable, a consequence of this is that 
the variation in treatment near the 
threshold is randomized as though 
from a randomized experiment. 

This is a crucial feature of the RD 

design, since it is the reason RD designs 
are often so compelling. Intuitively, 
when individuals have imprecise con 

trol over the assignment variable, even if 
some are especially likely to have values 
of X near the cutoff, every individual will 
have approximately the same probability 
of having an X that is just above (receiv 

ing the treatment) or just below (being 
denied the treatment) the cutoff? 
similar to a coin-flip experiment. This 
result clearly differentiates the RD and 

instrumental variables (IV) approaches. 
When using IV for causal inference, one 
must assume the instrument is exog 
enously generated as if by a coin-flip. 
Such an assumption is often difficult to 

justify (except when an actual lottery 
was run, as in Angrist (1990), or if there 
were some biological process, e.g., gen 
der determination of a baby, mimicking 
a coin-flip). By contrast, the variation 
that RD designs isolate is randomized 
as a consequence of the assumption that 
individuals have imprecise control over 

the assignment variable. 

RD designs can be analyzed?and 
tested?like randomized experiments. 
This is the key implication of the local 
randomization result. If variation in the 
treatment near the threshold is approxi 

mately randomized, then it follows that 
all "baseline characteristics"?all those 
variables determined prior to the realiza 
tion of the assignment variable?should 
have the same distribution just above and 

just below the cutoff. If there is a discon 

tinuity in these baseline covariates, then 
at a minimum, the underlying identify 
ing assumption of individuals' inability 
to precisely manipulate the assignment 
variable is unwarranted. Thus, the 
baseline covariates are used to test the 

validity of the RD design. By contrast, 
w7hen employing an IV or a matching/ 
regression-control strategy, assumptions 
typically need to be made about the rela 

tionship of these other covariates to the 
treatment and outcome variables.3 

Graphical presentation of an RD 

design is helpful and informative, but 
the visual presentation should not be 

3 
Typically, one assumes that, conditional on the covari 

ates, the treatment (or instrument) is essentially "as good 
as" randomly assigned. 
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tilted toward either finding an effect 
or finding no effect. 
It has become standard to summarize 
RD analyses with a simple graph show 

ing the relationship between the out 
come and assignment variables. This has 
several advantages. The presentation of 
the "raw data" enhances the transpar 
ency of the research design. A graph can 

also give the reader a sense of whether 
the "jump" in the outcome variable at 
the cutoff is unusually large compared to 
the bumps in the regression curve away 
from the cutoff. Also, a graphical analy 
sis can help identify why different func 
tional forms give different answers, and 
can help identify outliers, which can be 
a problem in any empirical analysis. The 

problem with graphical presentations, 
however, is that there is some room for 
the researcher to construct graphs mak 

ing it seem as though there are effects 
when there are none, or hiding effects 
that truly exist. We suggest later in the 

paper a number of methods to minimize 
such biases in presentation. 

Nonparametric estimation does not 

represent a "solution" to functional 
form issues raised by RD designs. It is 
therefore helpful to view it as a com 

plement to?rather than a substitute 

for?parametric estimation. 

When the analyst chooses a parametric 
functional form (say, a low-order poly 
nomial) that is incorrect, the resulting 
estimator will, in general, be biased. 

When the analyst uses a nonparametric 
procedure such as local linear regres 

sion?essentially running a regression 
using only data points "close" to the 
cutoff?there will also be bias.4 With a 

finite sample, it is impossible to know 

which case has a smaller bias with 
out knowing something about the true 
function. There will be some functions 
where a low-order polynomial is a very 

good approximation and produces little 
or no bias, and therefore it is efficient to 
use all data points?both "close to" and 
"far away" from the threshold. In other 

situations, a polynomial may be a bad 

approximation, and smaller biases will 
occur with a local linear regression. In 

practice, parametric and nonparametric 
approaches lead to the computation of 
the exact same statistic.5 For example, 
the procedure of regressing the outcome 
Y on X and a treatment dummy D can 

be viewed as a parametric regression 
(as discussed above), or as a local linear 

regression with a very large bandwidth. 

Similarly, if one wanted to exclude the 
influence of data points in the tails of the 

X distribution, one could call the exact 
same procedure "parametric" after trim 

ming the tails, or "nonparametric" by 
viewing the restriction in the range of X 
as a result of using a smaller bandwidth.6 
Our main suggestion in estimation is to 
not rely on one particular method or 

specification. In any empirical analysis, 
results that are stable across alternative 

4 Unless the underlying function is exactly linear in the 
area being examined. 

5 See section 1.2 of James L. Powell (1994), where it 
is argued that is more helpful to view models rather than 

particular statistics as "parametric" or "nonparametric." It 
is shown there how the same least squares estimator can 

simultaneously be viewed as a solution to parametric, semi 

parametric, and nonparametric problems. 
6 The main difference, then, between a parametric and 

nonparametric approach is not in the actual estimation but 
rather in the discussion of the asymptotic behavior of the 
estimator as sample sizes tend to infinity. For example, 
standard nonparametric asymptotics considers what would 

happen if the bandwidth h?the width of the "window" 
of observations used for the regression?were allowed to 

shrink as the number of observations N tended to infinity. 
It turns out that if h ?> 0 and Nh ?> oo as N ?> oo, the bias 

will tend to zero. By contrast, with a parametric approach, 
when one is not allowed to make the model more flexible 
with more data points, the bias would generally remain? 
even with infinite samples. 
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and equally plausible specifications are 

generally viewed as more reliable than 
those that are sensitive to minor changes 
in specification. RD is no exception in 
this regard. 

Goodness-of-fit and other statistical 
tests can help rule out overly restric 
tive specifications. 

Often the consequence of trying many 
different specifications is that it may 
result in a wide range of estimates. 

Although there is no simple formula 
that works in all situations and con 
texts for weeding out inappropriate 
specifications, it seems reasonable, at 
a minimum, not to rely on an estimate 

resulting from a specification that can be 

rejected by the data when tested against 
a strictly more flexible specification. 
For example, it seems wise to place less 
confidence in results from a low-order 

polynomial model when it is rejected 
in favor of a less restrictive model (e.g., 
separate means for each discrete value 
of X). Similarly, there seems little reason 
to prefer a specification that uses all the 
data if using the same specification, but 

restricting to observations closer to the 

threshold, gives a substantially (and sta 

tistically) different answer. 

Although we (and the applied literature) 
sometimes refer to the RD "method" or 

"approach," the RD design should perhaps 
be viewed as more of a description of a par 
ticular data generating process. All other 

things (topic, question, and population of 

interest) equal, we as researchers might pre 
fer data from a randomized experiment or 

from an RD design. But in reality, like the 
randomized experiment?which is also more 

appropriately viewed as a particular data 

generating process rather than a "method" of 

analysis?an RD design will simply not exist 
to answer a great number of questions. That 

said, as we show below, there has been an 

explosion of discoveries of RD designs that 
cover a wide range of interesting economic 

topics and questions. 
The rest of the paper is organized as fol 

lows. In section 2, we discuss the origins of the 
RD design and show how it has recently been 
formalized in economics using the potential 
outcome framework. We also introduce an 

important theme that we stress throughout 
the paper, namely that RD designs are partic 
ularly compelling because they are close cous 
ins of randomized experiments. This theme is 

more formally explored in section 3 where 
we discuss the conditions under which RD 

designs are "as good as a randomized experi 
ment," how RD estimates should be inter 

preted, and how they compare with other 

commonly used approaches in the program 
evaluation literature. Section 4 goes through 
the main "nuts and bolts" involved in imple 

menting RD designs and provides a "guide to 

practice" for researchers interested in using 
the design. A summary "checklist" highlight 
ing our key recommendations is provided at 
the end of this section. Implementation issues 
in several specific situations (discrete assign 

ment variable, panel data, etc.) are covered in 
section 5. Based on a survey of the recent lit 

erature, section 6 shows that RD designs have 
turned out to be much more broadly applica 
ble in economics than was originally thought. 

We conclude in section 7 by discussing recent 

progress and future prospects in using and 

interpreting RD designs in economics. 

2. Origins and Background 

In this section, we set the stage for the rest 
of the paper by discussing the origins and the 
basic structure of the RD design, beginning 
with the classic work of Thistlethwaite and 

Campbell (1960) and moving to the recent 

interpretation of the design using modern 
tools of program evaluation in economics 

(potential outcomes framework). One of 
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the main virtues of the RD approach is that 
it can be naturally presented using simple 
graphs, which greatly enhances its credibility 
and transparency. In light of this, the major 
ity of concepts introduced in this section are 

represented in graphical terms to help cap 
ture the intuition behind the RD design. 

2.1 Origins 

The RD design was first introduced by 
Thistlethwaite and Campbell (1960) in their 
study of the impact of merit awards on the 
future academic outcomes (career aspira 
tions, enrollment in postgraduate programs, 
etc.) of students. Their study exploited the 
fact that these awards were allocated on the 
basis of an observed test score. Students with 
test scores X, greater than or equal to a cut 
off value c, received the award, while those 
with scores below the cutoff were denied the 
award. This generated a sharp discontinuity 
in the "treatment" (receiving the award) as 
a function of the test score. Let the receipt 
of treatment be denoted by the dummy vari 
able D G {0,1}, so that we have D = 1 if 
X>candD= 0ifX< c. 

At the same time, there appears to be no 

reason, other than the merit award, for future 
academic outcomes, Y, to be a discontinuous 
function of the test score. This simple rea 

soning suggests attributing the discontinu 
ous jump in Y at c to the causal effect of the 
merit award. Assuming that the relationship 
between Y and X is otherwise linear, a sim 

ple way of estimating the treatment effect r 

is by fitting the linear regression 

(1) Y = a + Dr + X(3 + e, 

where e is the usual error term that can be 
viewed as a purely random error generat 
ing variation in the value of Y around the 

regression line a + Dr + X/3. This case is 

depicted in figure 1, which shows both the 
true underlying function and numerous real 
izations of s. 

Thistlethwaite and Campbell (1960) pro 
vide some graphical intuition for why the 
coefficient r could be viewed as an estimate 
of the causal effect of the award. We illustrate 
their basic argument in figure 1. Consider an 

individual whose score X is exactly c. To get 
the causal effect for a person scoring c, we 

need guesses for what her Y would be with 
and without receiving the treatment. 

If it is "reasonable" to assume that all 
factors (other than the award) are evolving 
"smoothly" with respect to X, then B' would 
be a reasonable guess for the value of Y of 
an individual scoring c (and hence receiving 
the treatment). Similarly A" would be a rea 

sonable guess for that same individual in the 
counterfactual state of not having received 
the treatment. It follows that B' ? A" would 
be the causal estimate. This illustrates the 
intuition that the RD estimates should use 

observations "close" to the cutoff (e.g., in this 
case at points c' and c "). 

There is, however, a limitation to the intu 
ition that "the closer to c you examine, the 
better." In practice, 

one cannot 
"only" 

use 

data close to the cutoff. The narrower the 
area that is examined, the less data there are. 
In this example, examining data any closer 
than c' and c" will yield no observations at all! 

Thus, in order to produce a reasonable guess 
for the treated and untreated states at X = c 

with finite data, one has no choice but to use 

data away from the discontinuity.7 Indeed, 
if the underlying function is truly linear, we 

know that the best linear unbiased estima 
tor of r is the coefficient on D from OLS 
estimation (using all of the observations) of 

equation (1). 
This simple heuristic presentation illus 

trates two important features of the RD 

7 
Interestingly, the very first application of the RD 

design by Thistlethwaite and Campbell (1960) was based 
on discrete data (interval data for test scores). As a result, 
their paper clearly points out that the RD design is funda 

mentally based on an extrapolation approach. 
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c" c c' 

Assignment variable (X) 

Figure 1. Simple Linear RD Setup 

design. First, in order for this approach to 

work, "all other factors" determining Y must 
be evolving "smoothly" with respect to X. If 
the other variables also jump at c, then the 

gap r will potentially be biased for the treat 
ment effect of interest. Second, since an RD 
estimate requires data away from the cut 

off, the estimate will be dependent on the 
chosen functional form. In this example, if 
the slope (3 were (erroneously) restricted to 

equal zero, it is clear the resulting OLS coef 
ficient on D would be a biased estimate of 
the true discontinuity gap. 

2.2 RD Designs and the Potential Outcomes 
Framework 

While the RD design was being imported 
into applied economic research by studies 
such as van der Klaauw (2002), Black (1999), 
and Angrist and Lavy (1999), the identifica 
tion issues discussed above were formalized 

in the theoretical work of Hahn, Todd, and 
van der Klaauw (2001), who described the 
RD evaluation strategy using the language 
of the treatment effects literature. Hahn, 
Todd, and van der Klaauw (2001) noted the 

key assumption of a valid RD design was that 
"all other factors" were "continuous" with 

respect to X, and suggested a nonparamet 
ric procedure for estimating r that did not 
assume underlying linearity, as we have in 
the simple example above. 

The necessity of the continuity assump 
tion is seen more formally using the "poten 
tial outcomes framework" of the treatment 
effects literature with the aid of a graph. It is 

typically imagined that, for each individual i, 
there exists a pair of "potential" outcomes: 

Yf(l) for what would occur if the unit were 

exposed to the treatment and Yf(0) if not 

exposed. The causal effect of the treatment is 

represented by the difference Yf(l) 
? 

Yf(0). 
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4.00 -i-1-1 
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^2,50" b' r_t? 

0.00_,-,-,-,-,-, 
0 0.5 1 1.5 2 2.5 3 Aa 3.5 4 

Assignment variable (X) 

Figure 2. Nonlinear RD 

The fundamental problem of causal infer 
ence is that we cannot observe the pair Yf(0) 
and Yf(l) simultaneously. We therefore typi 

cally focus on average effects of the treat 

ment, that is, averages of Yf(l) 
? 

Y^O) over 

(sub-populations, rather than on unit-level 
effects. 

In the RD setting, we can imagine there 
are two underlying relationships between 

average outcomes and X, represented by 
E[Yf(l)|X] and E[Yf(0)|X], as in figure 2. 
But by definition of the RD design, all indi 
viduals to the right of the cutoff (c = 2 in 
this example) are exposed to treatment and 
all those to the left are denied treatment. 

Therefore, we only observe E[Yf(l) |X] to 
the right of the cutoff and E[Yf(0)|X] to 
the left of the cutoff as indicated in the 

figure. 
It is easy to see that with what is observ 

able, we could try to estimate the quantity 

B ? A ? 
]imE[Yi\Xi 

= c + e] 

- 
limEtYJX, 

= c+e], 

which would equal 

E[Yl(l)-Yl(0)\X=c]. 

This is the "average treatment effect" at the 

cutoff c. 

This inference is possible because of 
the continuity of the underlying functions 

E[Y,(1)|X] and E[Y,(0)|X].8 In essence, 

8 The continuity of both functions is not the minimum 

that is required, as pointed out in Hahn, Todd, and van der 
Klaauw (2001). For example, identification is still possible 
even if only ?[^(0) \X] is continuous, and only continuous 
at c. Nevertheless, it may seem more natural to assume that 
the conditional expectations are continuous for all values 
of X, since cases where continuity holds at the cutoff point 
but not at other values of X seem peculiar. 
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this continuity condition enables us to use 
the average outcome of those right below 
the cutoff (who are denied the treat 

ment) as a valid counterfactual for those 

right above the cutoff (who received the 

treatment). 

Although the potential outcome frame 
work is very useful for understanding how 
RD designs work in a framework applied 
economists are used to dealing with, it also 
introduces some difficulties in terms of 

interpretation. First, while the continuity 
assumption sounds generally plausible, it is 
not completely clear what it means from an 

economic point of view. The problem is that 
since continuity is not required in the more 

traditional applications used in econom 
ics (e.g., matching on observables), it is not 

obvious what assumptions about the behav 
ior of economic agents are required to get 
continuity. 

Second, RD designs are a fairly pecu 
liar application of a "selection on observ 
ables" model. Indeed, the view in James J. 
Heckman, Robert J. Lalonde, and Jeffrey A. 
Smith (1999) was that "[Regression discon 

tinuity estimators constitute a special case 

of selection on observables," and that the 
RD estimator is "a limit form of matching 
at one point." In general, we need two cru 

cial conditions for a matching/selection on 

observables approach to work. First, treat 
ment must be randomly assigned conditional 
on observables (the ignorability or uncon 

foundedness assumption). In practice, this is 

typically viewed as a strong, and not particu 
larly credible, assumption. For instance, in a 

standard regression framework this amounts 
to assuming that all relevant factors are con 

trolled for, and that no omitted variables are 

correlated with the treatment dummy. In an 

RD design, however, this crucial assumption 
is trivially satisfied. When X > c, the treat 

ment dummy D is always equal to 1. When 
X < c, D is always equal to 0. Conditional 
on X, there is no variation left in D, so it 

cannot, therefore, be correlated with any 
other factor.9 

At the same time, the other standard 

assumption of overlap is violated since, 

strictly speaking, it is not possible to 

observe units with either D = 0 or D = 1 
for a given value of the assignment variable 
X. This is the reason the continuity assump 
tion is required?to compensate for the 
failure of the overlap condition. So while 
we cannot observe treatment and non 
treatment for the same value of X, we can 

observe the two outcomes for values of X 
around the cutoff point that are arbitrarily 
close to each other. 

2.3 RD Design as a Local Randomized 

Experiment 

When looking at RD designs in this way, 
one could get the impression that they 
require some assumptions to be satisfied, 

while other methods such as matching on 

observables and IV methods simply require 
other assumptions.10 From this point of 

view, it would seem that the assumptions 
for the RD design are just as arbitrary as 

those used for other methods. As we discuss 

throughout the paper, however, we do not 
believe this way of looking at RD designs 
does justice to their important advantages 
over most other existing methods. This 

point becomes much clearer once we com 

pare the RD design to the "gold standard" 
of program evaluation methods, random 
ized experiments. We will show that the 
RD design is a much closer cousin of ran 

domized experiments than other competing 
methods. 

9 In technical terms, the treatment dummy D follows a 

degenerate (concentrated at D = 0 or D = 1), but nonethe 
less random distribution conditional on X. Ignorability is 
thus trivially satisfied. 

10 For instance, in the survey of Angrist and Alan B. 

Krueger (1999), RD is viewed as an IV estimator, thus hav 

ing essentially the same potential drawbacks and pitfalls. 
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Figure 3. Randomized Experiment 
as a RD Design 

In a randomized experiment, units are 

typically divided into treatment and control 

groups on the basis of a randomly gener 
ated number, v. For example, if v follows a 
uniform distribution over the range [0,4], 
units with v > 2 are given the treatment 

while units with v < 2 are denied treat 
ment. So the randomized experiment can 

be thought of as an RD design where the 

assignment variable is X = v and the cutoff 
is c = 2. Figure 3 shows this special case in 

the potential outcomes framework, just as in 

the more general RD design case of figure 
2. The difference is that because the assign 
ment variable X is now completely random, 
it is independent of the potential outcomes 

Y,(0) and Y,(l), and the curves E[Y,(1)|X] 
and ?[Yf(0) |X] are flat. Since the curves are 

flat, it trivially follows that they are also con 
tinuous at the cutoff point X = c. In other 

words, continuity is a direct consequence of 
randomization. 

The fact that the curves E[Y<(1)| X] and 
E[Yf(0)|X] are flat in a randomized experi 
ment implies that, as is well known, the aver 

age treatment effect can be computed as 

the difference in the mean value of Y on the 

right and left hand side of the cutoff. One 
could also use an RD approach by running 
regressions of Y on X, but this would be less 
efficient since we know that if randomization 
were successful, then X is an irrelevant vari 
able in this regression. 

But now imagine that, for ethical reasons, 

people are compensated for having received 
a "bad draw" by getting a monetary compen 
sation inversely proportional to the random 
number X. For example, the treatment could 
be job search assistance for the unemployed, 
and the outcome whether one found a job 
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within a month of receiving the treatment. 
If people with a larger monetary compen 
sation can afford to take more time looking 
for a job, the potential outcome curves will 
no longer be flat and will slope upward. The 
reason is that having a higher random num 

ber, i.e., a lower monetary compensation, 
increases the probability of finding a job. So 
in this "smoothly contaminated" randomized 

experiment, the potential outcome curves 

will instead look like the classical RD design 
case depicted in figure 2. 

Unlike a classical randomized experi 
ment, in this contaminated experiment 
a simple comparison of means no longer 
yields a consistent estimate of the treatment 

effect. By focusing right around the thresh 

old, however, an RD approach would still 

yield a consistent estimate of the treatment 

effect associated with job search assistance. 
The reason is that since people just above 
or below the cutoff receive (essentially) the 
same monetary compensation, we still have 

locally a randomized experiment around the 
cutoff point. Furthermore, as in a random 
ized experiment, it is possible to test whether 
randomization "worked" by comparing the 
local values of baseline covariates on the two 

sides of the cutoff value. 
Of course, this particular example is 

highly artificial. Since we know the monetary 
compensation is a continuous function of 

X, we also know the continuity assumption 

required for the RD estimates of the treat 
ment effect to be consistent is also satisfied. 
The important result, due to Lee (2008), 
that we will show in the next section is that 
the conditions under which we locally have 
a randomized experiment (and continuity) 

right around the cutoff point are remark 

ably weak. Furthermore, in addition to 

being weak, the conditions for local random 
ization are testable in the same way global 
randomization is testable in a randomized 

experiment by looking at whether baseline 
covariates are balanced. It is in this sense 

that the RD design is more closely related 
to randomized experiments than to other 

popular program evaluation methods such 
as matching on observables, difference-in 

differences, and IV. 

3. Identification and Interpretation 

This section discusses a number of issues 
of identification and interpretation that arise 
when considering an RD design. Specifically, 
the applied researcher may be interested 
in knowing the answers to the following 
questions: 

1. How do I know whether an RD design 
is appropriate for my context? When 
are the identification assumptions plau 
sible or implausible? 

2. Is there any way I can test those 

assumptions? 

3. To what extent are results from RD 

designs generalizable? 

On the surface, the answers to these 

questions seem straightforward: (1) "An 
RD design will be appropriate if it is plau 
sible that all other unobservable factors are 

"continuously" related to the assignment 
variable," (2) "No, the continuity assump 
tion is necessary, so there are no tests for 
the validity of the design," and (3) "The RD 
estimate of the treatment effect is only appli 
cable to the subpopulation of individuals at 

the discontinuity threshold, and uninforma 
tive about the effect anywhere else." These 
answers suggest that the RD design is no 
more compelling than, say, an instrumen 

tal variables approach, for which the analo 

gous answers would be (1) "The instrument 
must be uncorrelated with the error in the 
outcome equation," (2) "The identification 

assumption is ultimately untestable," and (3) 
"The estimated treatment effect is applicable 
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to the subpopulation whose treatment was 

affected by the instrument." After all, who's 
to say whether one untestable design is more 

"compelling" or "credible" than another 
untestable design? And it would seem that 

having a treatment effect for a vanishingly 
small subpopulation (those at the threshold, 
in the limit) is hardly more (and probably 

much less) useful than that for a population 
"affected by the instrument." 

As we describe below, however, a closer 
examination of the RD design reveals quite 
different answers to the above three questions: 

1. "When there is a continuously distrib 
uted stochastic error component to the 

assignment variable?which can occur 

when optimizing agents do not have 

precise control over the assignment 
variable?then the variation in the 
treatment will be as good as random 
ized in a neighborhood around the dis 

continuity threshold." 

2. "Yes. As in a randomized experiment, 
the distribution of observed baseline 
covariates should not change discon 

tinuously at the threshold." 

3. "The RD estimand can be interpreted 
as a weighted average treatment effect, 
where the weights are the relative ex 

ante probability that the value of an 

individuals assignment variable will be 
in the neighborhood of the threshold." 

Thus, in many contexts, the RD design 
may have more in common with random 
ized experiments (or circumstances when an 

instrument is truly randomized)?in terms 

of their "internal validity" and how to imple 
ment them in practice?than with regression 
control or matching methods, instrumental 

variables, or panel data approaches. We will 
return to this point after first discussing the 
above three issues in greater detail. 

3.1 Valid or Invalid RD? 

Are individuals able to influence the 

assignment variable, and if so, what is the 
nature of this control? This is probably the 
most important question to ask when assess 

ing whether a particular application should 
be analyzed as an RD design. If individuals 
have a great deal of control over the assign 
ment variable and if there is a perceived 
benefit to a treatment, one would certainly 
expect individuals on one side of the thresh 
old to be systematically different from those 
on the other side. 

Consider the test-taking RD example. 
Suppose there are two types of students: A 
and R. Suppose type A students are more 

able than R types, and that A types are also 

keenly aware that passing the relevant thresh 
old (50 percent) will give them a scholarship 
benefit, while R types are completely igno 
rant of the scholarship and the rule. Now 

suppose that 50 percent of the questions are 

trivial to answer correctly but, due to ran 
dom chance, students will sometimes make 
careless errors when they initially answer the 
test questions, but would certainly correct 
the errors if they checked their work. In this 

scenario, only type A students will make sure 
to check their answers before turning in the 

exam, thereby assuring themselves of a pass 

ing score. Thus, while we would expect those 
who barely passed the exam to be a mixture 

of type A and type R students, those who 

barely failed would exclusively be type R 

students. In this example, it is clear that the 

marginal failing students do not represent a 

valid counterfactual for the marginal passing 
students. Analyzing this scenario within an 

RD framework would be inappropriate. 
On the other hand, consider the same sce 

nario, except assume that questions on the 
exam are not trivial; there are no guaran 
teed passes, no matter how many times the 
students check their answers before turn 

ing in the exam. In this case, it seems more 
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plausible that, among those scoring near the 

threshold, it is a matter of "luck" as to which 
side of the threshold they land. Type A stu 
dents can exert more effort?because they 
know a scholarship is at stake?but they do 
not know the exact score they will obtain. In 
this scenario, it would be reasonable to argue 
that those who marginally failed and passed 

would be otherwise comparable, and that an 
RD analysis would be appropriate and would 

yield credible estimates of the impact of the 

scholarship. 
These two examples make it clear that one 

must have some knowledge about the mech 
anism generating the assignment variable 

beyond knowing that, if it crosses the thresh 

old, the treatment is "turned on." It is "folk 
wisdom" in the literature to judge whether 
the RD is appropriate based on whether 
individuals could manipulate the assignment 
variable and precisely "sort" around the dis 

continuity threshold. The key word here is 

"precise" rather than "manipulate." After 

all, in both examples above, individuals do 
exert some control over the test score. And 

indeed, in virtually every known application 
of the RD design, it is easy to tell a plausi 
ble story that the assignment variable is to 
some degree influenced by someone. But 
individuals will not always be able to have 

precise control over the assignment variable. 
It should perhaps seem obvious that it is nec 

essary to rule out precise sorting to justify 
the use of an RD design. After all, individ 
ual self-selection into treatment or control 

regimes is exactly why simple comparison of 
means is unlikely to yield valid causal infer 
ences. Precise sorting around the threshold 
is self-selection. 
What is not obvious, however, is that, 

when one formalizes the notion of having 
imprecise control over the assignment vari 

able, there is a striking consequence: the 
variation in the treatment in a neighborhood 
of the threshold is "as good as randomized." 

We explain this below. 

3.1.1 Randomized Experiments from 
Nonrandom Selection 

To see how the inability to precisely con 
trol the assignment variable leads to a source 
of randomized variation in the treatment, 
consider a simplified formulation of the RD 

design:11 

(2) Y = Dt + WSx + U 

D = l[X>c] 

X = 
W62 + V, 

where Y is the outcome of interest, D is the 

binary treatment indicator, and W is the 
vector of all predetermined and observable 
characteristics of the individual that might 
impact the outcome and/or the assignment 
variable X. 

This model looks like a standard endog 
enous dummy variable set-up, except that 
we observe the assignment variable, X. This 
allows us to relax most of the other assump 
tions usually made in this type of model. 

First, we allow W to be endogenously deter 
mined as long as it is determined prior to 
V. Second, we take no stance as to whether 
some elements of S1 or 62 are zero (exclusion 
restrictions). Third, we make no assump 
tions about the correlations between W, 17, 
and V.12 

In this model, individual heterogeneity in 
the outcome is completely described by the 

pair of random variables (W, U); anyone with 
the same values of (W, U) will have one of 
two values for the outcome, depending on 

whether they receive treatment. Note that, 

11 We use a simple linear endogenous dummy variable 

setup to describe the results in this section, but all of the 
results could be stated within the standard potential out 
comes framework, as in Lee (2008). 

12 This is much less restrictive than textbook descrip 
tions of endogenous dummy variable systems. It is typically 
assumed that (U, V) is independent of W. 
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Figure 4. Density of Assignment Variable Conditional on W = w, U = u 

since RD designs are implemented by run 

ning regressions of Y on X, equation (2) looks 

peculiar since X is not included with W and 
U on the right hand side of the equation. We 
could add a function of X to the outcome 

equation, but this would not make a differ 
ence since we have not made any assump 
tions about the joint distribution of W, (7, and 
V. For example, our setup allows for the case 
where U = XS3 + U\ which yields the out 
come equation Y = Dr + W8{ + X63 + Uf. 
For the sake of simplicity, we work with the 

simple case where X is not included on the 

right hand side of the equation.13 

Now consider the distribution of X, condi 
tional on a particular pair of values W = w, 
U = u. It is equivalent (up to a translational 

shift) to the distribution of V conditional on 
W = w, U = u. If an individual has complete 
and exact control over X, we would model it 
as having a degenerate distribution, condi 
tional on W = w, U = u. That is, in repeated 
trials, this individual would choose the same 
score. This is depicted in figure 4 as the thick 
line. 

If there is some room for error but indi 
viduals can nevertheless have precise control 
about whether they will fail to receive the 

13 When RD designs are implemented in practice, the 
estimated effect of X on Y can either reflect a true causal 
effect of X on Y or a spurious correlation between X and the 

unobservable term U. Since it is not possible to distinguish 
between these two effects in practice, we simplify the 

setup by implicitly assuming that X only comes into equa 
tion (2) indirectly through its (spurious) correlation with U. 
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treatment, then we would expect the density 
of X to be zero just below the threshold, but 

positive just above the threshold, as depicted 
in figure 4 as the truncated distribution. This 

density would be one way to model the first 

example described above for the type A stu 

dents. Since type A students know about the 

scholarship, they will double-check their 
answers and make sure they answer the easy 

questions, which comprise 50 percent of the 
test. How high they score above the pass 

ing threshold will be determined by some 

randomness. 

Finally, if there is stochastic error in the 

assignment variable and individuals do not 

have precise control over the assignment 
variable, we would expect the density of X 

(and hence V), conditional on W ? w, U = u 

to be continuous at the discontinuity thresh 

old, as shown in figure 4 as the untruncated 

distribution.14 It is important to emphasize 
that, in this final scenario, the individual still 

has control over X: through her efforts, she 
can choose to shift the distribution to the 

right. This is the density for someone with 
W = wy U ? u, but may well be different? 
with a different mean, variance, or shape of 
the density?for other individuals, with dif 
ferent levels of ability, who make different 

choices. We are assuming, however, that all 

individuals are unable to precisely control 
the score just around the threshold. 

Definition: We say individuals have 

imprecise control over X when conditional 

onW = w and U = u, the density of V (and 
hence X) is continuous. 

When individuals have imprecise con 

trol over X this leads to the striking implica 
tion that variation in treatment status will be 

randomized in a neighborhood of the thresh 
old. To see this, note that by Bayes' Rule, we 

have 

(3) ?r[W=w,U=u\X=x] 

= 
f(x\W=w,U=u) 

^W=w U = 
u]^ 

fw 

where /( ) and/(-|-) are marginal and 

conditional densities for X. So when 

f(x\W=w, U ? u) is continuous in x, the 

right hand side will be continuous in x, which 

therefore means that the distribution of W, U 

conditional on X will be continuous in x.15 
That is, all observed and unobserved prede 
termined characteristics will have identical 

distributions on either side of x = c, in the 

limit, as we examine smaller and smaller 

neighborhoods of the threshold. 
In sum, 

Local Randomization: If individuals have 

imprecise control over X as defined above, 
then Pr[W = w,U = 

u\X 
= x]is continu 

ous in x: the treatment is "as good as" ran 

domly assigned around the cutoff. 

In other words, the behavioral assumption 
that individuals do not precisely manipulate 

X around the threshold has the prediction 
that treatment is locally randomized. 

This is perhaps why RD designs can be 
so compelling. A deeper investigation into 

the real-world details of how X (and hence 

D) is determined can help assess whether it 

is plausible that individuals have precise or 

imprecise control over X. By contrast, with 

14 For example, this would be plausible when X is a 

test score modeled as a sum of Bernoulli random vari 

ables, which is approximately normal by the central limit 

theorem. 

15 Since the potential outcomes Y(0) and Y(l) are func 

tions of W and U, it follows that the distribution of Y(0) 
and Y(l) conditional on X is also continuous in x when indi 

viduals have imprecise control over X. This implies that 

the conditions usually invoked for consistently estimating 
the treatment effect (the conditional means ?[Y(0) |X 

= x] 
and E[Y(1) | X = x] being continuous in x) are also satisfied. 

See Lee (2008) for more detail. 
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most nonexperimental evaluation contexts, 

learning about how the treatment variable is 
determined will rarely lead one to conclude 
that it is "as good as" randomly assigned. 

3.2 Consequences of Local Random 

Assignment 

There are three practical implications of 
the above local random assignment result. 

3.2.1 Identification of the Treatment Effect 

First and foremost, it means that the dis 

continuity gap at the cutoff identifies the 
treatment effect of interest. Specifically, we 

have 

hmE[Y|X = c+ e] 

? 
limE[Y|X = c+ e] 

? r + lim ̂2(w5l + u) 
?i? w,u 

x ?r[W=w7U=u\X=c+ e] 

? lim ̂2(wSi + u) 
?T0 WJU 

x Fr[W=w,U=u\X=c+e] 

? 
% 

where the last line follows from the continu 

ity of Pr[ W =w,U=u\X=x]. 
As we mentioned earlier, nothing changes 

if we augment the model by adding a direct 

impact of X itself in the outcome equation, 
as long as the effect of X on Y does not jump 
at the cutoff. For example, in the example of 
Thistlethwaite and Campbell (1960), we can 

allow higher test scores to improve future 
academic outcomes (perhaps by raising the 

probability of admission to higher quality 
schools) as long as that probability does not 

jump at precisely the same cutoff used to 
award scholarships. 

3.2.2 Testing the Validity of the RD Design 

An almost equally important implication of 
the above local random assignment result is 
that it makes it possible to empirically assess 
the prediction that Pr[W = w,U = 

u\X= x] 
is continuous in x. Although it is impossible 
to test this directly?since U is unobserved? 
it is nevertheless possible to assess whether 

Pr[W 
? w | X = x] is continuous in x at the 

threshold. A discontinuity would indicate a 

failure of the identifying assumption. 
This is akin to the tests performed to 

empirically assess whether the randomiza 
tion was carried out properly in randomized 

experiments. It is standard in these analyses 
to demonstrate that treatment and control 

groups are similar in their observed base 
line covariates. It is similarly impossible to 
test whether unobserved characteristics are 

balanced in the experimental context, so the 
most favorable statement that can be made 
about the experiment is that the data "failed 
to reject" the assumption of randomization. 

Performing this kind of test is arguably 
more important in the RD design than in 
the experimental context. After all, the true 
nature of individuals' control over the assign 
ment variable?and whether it is precise or 

imprecise?may well be somewhat debat 
able even after a great deal of investigation 
into the exact treatment-assignment mecha 
nism (which itself is always advisable to do). 

Imprecision of control will often be nothing 
more than a conjecture, but thankfully it has 
testable predictions. 

There is a complementary, and arguably 
more direct and intuitive test of the impre 
cision of control over the assignment vari 
able: examination of the density of X itself, 
as suggested in Justin McCrary (2008). If the 
density of X for each individual is continu 

ous, then the marginal density of X over the 

population should be continuous as well. A 

jump in the density at the threshold is proba 
bly the most direct evidence of some degree 
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of sorting around the threshold, and should 

provoke serious skepticism about the appro 
priateness of the RD design.16 Furthermore, 
one advantage of the test is that it can always 
be performed in a RD setting, while testing 
whether the covariates W are balanced at the 
threshold depends on the availability of data 
on these covariates. 

This test is also a partial one. Whether each 
individuals ex ante density of X is continuous 
is fundamentally untestable since, for each 

individual, we only observe one realization of 
X. Thus, in principle, at the threshold some 

individuals' densities may jump up while oth 
ers may sharply fall, so that in the aggregate, 
positives and negatives offset each other 

making the density appear continuous. In 
recent applications of RD such occurrences 
seem far-fetched. Even if this were the case, 
one would certainly expect to see, after strat 

ifying by different values of the observable 

characteristics, some discontinuities in the 

density of X. These discontinuities could be 
detected by performing the local randomiza 
tion test described above. 

3.2.3 Irrelevance of Including Baseline 
Covariates 

A consequence of a randomized experi 
ment is that the assignment to treatment is, 

by construction, independent of the base 
line covariates. As such, it is not necessary to 
include them to obtain consistent estimates 
of the treatment effect. In practice, however, 

researchers will include them in regressions, 
because doing so can reduce the sampling 
variability in the estimator. Arguably the 

greatest potential for this occurs when one 

of the baseline covariates is a pre-random 
assignment observation on the dependent 
variable, which may likely be highly corre 

lated with the post-assignment outcome vari 
able of interest. 

The local random assignment result allows 
us to apply these ideas to the RD context. For 

example, if the lagged value of the depen 
dent variable was determined prior to the 
realization of X, then the local randomization 
result will imply that that lagged dependent 
variable will have a continuous relationship 
with X. Thus, performing an RD analysis on 
Y minus its lagged value should also yield the 
treatment effect of interest. The hope, how 

ever, is that the differenced outcome mea 
sure will have a sufficiently lower variance 
than the level of the outcome, so as to lower 
the variance in the RD estimator. 

More formally, we have 

limE[Y-W7r|X=c+?:] 

- lim E[Y 
- 

Wtt\X= c+ e] 

= r + lim ̂2(w(6i 
? tt) + u) 

?i? w,u 

x ?r[W=w,U=u\X=c+ e] 

? lim ̂2(w(Si 
? 

tt) + u) 
w,u 

x ?r[W=w,U = 
u\X=c+ e] 

= 
t, 

where .Wit is any linear function, and W can 

include a lagged dependent variable, for 

example. We return to how to implement 
this in practice in section 4.4. 

16 Another possible source of discontinuity in the 

density of the assignment variable X is selective attrition. 
For example, John DiNardo and Lee (2004) look at the 
effect of unionization on wages several years after a union 

representation vote was taken. In principle, if firms that 
were unionized because of a majority vote are more likely 
to close down, then conditional on firm survival at a later 

date, there will be a discontinuity in X (the vote share) that 
could threaten the validity of the RD design for estimat 

ing the effect of unionization on wages (conditional on 

survival). In that setting, testing for a discontinuity in the 

density (conditional on survival) is similar to testing for 
selective attrition (linked to treatment status) in a standard 
randomized experiment. 
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3.3 Generalizability: The RD Gap as a 

Weighted Average Treatment Effect 

In the presence of heterogeneous treat 
ment effects, the discontinuity gap in an 
RD design can be interpreted as a weighted 
average treatment effect across all individu 
als. This is somewhat contrary to the temp 
tation to conclude that the RD design only 
delivers a credible treatment effect for the 

subpopulation of individuals at the threshold 
and says nothing about the treatment effect 

"away from the threshold." Depending on 
the context, this may be an overly simplistic 
and pessimistic assessment. 

Consider the scholarship test example 
again, and define the "treatment" as "receiv 

ing a scholarship by scoring 50 percent or 

greater on the scholarship exam." Recall 
that the pair W, U characterizes individual 

heterogeneity. We now let r(w,u) denote 
the treatment effect for an individual with 

W=w and U = u, so that the outcome 

equation in (2) is instead given by 

Y = Dr( W, 17) + W5l + U. 

This is essentially a model of completely 
unrestricted heterogeneity in the treatment 
effect. Following the same line of argument 
as above, we obtain 

(5) lim?[Y|X=c + ?] 
- 

KmE[Y\X=c+e] 40 

= 
Y,r(w,u)Fr[W=w,U=u\X=c] 
w,u 

^ f(c\W=w,U = u) = 

5T(w'M)?m? 
x Pr[W = w, U = u], 

where the second line follows from equation 
(3). 

The discontinuity gap then, is a par 
ticular kind of average treatment effect 
across all individuals. If not for the term 

f(c\ W= w, U= u)/f(c), it would be the 
average treatment effect for the entire 

population. The presence of the ratio 

f(c | W = w, U = u)/f(c) implies the discon 
tinuity is instead a weighted average treat 

ment effect where the weights are directly 
proportional to the ex ante likelihood that an 
individuals realization of X will be close to 
the threshold. All individuals could get some 

weight, and the similarity of the weights 
across individuals is ultimately untestable, 
since again we only observe one realization 
of X per person and do not know anything 
about the ex ante probability distribution of 
X for any one individual. The weights may be 

relatively similar across individuals, in which 
case the RD gap would be closer to the 
overall average .treatment effect; but, if the 

weights are highly varied and also related to 
the magnitude of the treatment effect, then 
the RD gap would be very different from 
the overall average treatment effect. While 
it is not possible to know how close the RD 

gap is from the overall average treatment 

effect, it remains the case that the treat 
ment effect estimated using a RD design is 

averaged over a larger population than one 
would have anticipated from a purely "cut 
off" interpretation. 

Of course, we do not observe the density of 
the assignment variable at the individual level 
so we therefore do not know the weight for 
each individual. Indeed, if the signal to noise 
ratio of the test is extremely high, someone 

who scores a 90 percent may have almost a 
zero chance of scoring near the threshold, 

implying that the RD gap is almost entirely 
dominated by those who score near 50 per 
cent. But if the reliability is lower, then the 
RD gap applies to a relatively broader sub 

population. It remains to be seen whether 
or not and how information on the reliabil 

ity, or a second test measurement, or other 

This content downloaded from 153.90.148.35 on Thu, 28 Mar 2013 14:43:52 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Lee and Lemieux: Regression Discontinuity Designs in Economics 299 

covariates that can predict the assignment 
could be used in conjunction with the RD 

gap to learn about average treatment effects 
for the overall population. The understanding 
of the RD gap as a weighted average treat 
ment effect serves to highlight that RD causal 
evidence is not somehow fundamentally dis 
connected from the average treatment effect 
that is often of interest to researchers. 

It is important to emphasize that the RD 

gap is not informative about the treatment 
if it were defined as "receipt of a scholar 

ship that is awarded by scoring 90 percent 
or higher on the scholarship exam." This is 
not so much a "drawback" of the RD design 
as a limitation shared with even a carefully 
controlled randomized experiment. For 

example, if we randomly assigned financial 
aid awards to low-achieving students, what 
ever treatment effect we estimate may not 
be informative about the effect of financial 
aid for high-achieving students. 

In some contexts, the treatment effect 

"away from the discontinuity threshold" may 
not make much practical sense. Consider the 
RD analysis of incumbency in congressional 
elections of Lee (2008). When the treatment 
is "being the incumbent party," it is implic 
itly understood that incumbency entails win 

ning the previous election by obtaining at 
least 50 percent of the vote.17 In the election 

context, the treatment "being the incum 
bent party by virtue of winning an election, 

whereby 90 percent of the vote is required 
to win" simply does not apply to any real-life 
situation. Thus, in this context, it is awkward 
to interpret the RD gap as "the effect of 

incumbency that exists at 50 percent vote 

share threshold" (as if there is an effect at 
a 90 percent threshold). Instead it is more 

natural to interpret the RD gap as estimat 

ing a weighted average treatment effect of 

incumbency across all districts, where more 

weight is given to those districts in which a 

close election race was expected. 

3.4 Variations on the Regression 
Discontinuity Design 

To this point, we have focused exclu 

sively on the "classic" RD design introduced 

by Thistlethwaite and Campbell (1960), 
whereby there is a single binary treatment 
and the assignment variable perfectly pre 
dicts treatment receipt. We now discuss two 
variants of this base case: (1) when there is 
so-called "imperfect compliance" of the rule 
and (2) when the treatment of interest is a 
continuous variable. 

In both cases, the notion that the RD 

design generates local variation in treatment 
that is "as good as randomly assigned" is 

helpful because we can apply known results 
for randomized instruments to the RD 

design, as we do below. The notion is also 

helpful for addressing other data problems, 
such as differential attrition or sample selec 

tion, whereby the treatment affects whether 
or not you observe the outcome of interest. 
The local random assignment result means 

that, in principle, one could extend the ideas 
of Joel L. Horowitz and Charles F. Manski 

(2000) or Lee (2009), for example, to provide 
bounds on the treatment effect, accounting 
for possible sample selection bias. 

3.4.1. Imperfect Compliance: The 

"Fuzzy" RD 

In many settings of economic interest, 
treatment is determined partly by whether 
the assignment variable crosses a cutoff point. 
This situation is very important in practice for 
a variety of reasons, including cases of imper 
fect take-up by program participants or when 
factors other than the threshold rule affect 
the probability of program participation. 
Starting with William M. K. Trochim (1984), 
this setting has been referred to as a "fuzzy" 
RD design. In the case we have discussed 
so far?the "sharp" RD design?the 

17 For this example, consider the simplified case of a 

two-party system. 
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probability of treatment jumps from 0 to 1 
when X crosses the threshold c. The fuzzy 
RD design allows for a smaller jump in the 

probability of assignment to the treatment at 
the threshold and only requires 

lim Pr(D= l\X=c + e) 
eiO 

^ limPr(D= l\X=c+e). 

Since the probability of treatment jumps 
by less than one at the threshold, the jump in 
the relationship between Y and X can no lon 

ger be interpreted as an average treatment 
effect. As in an instrumental variable setting 
however, the treatment effect can be recov 

ered by dividing the jump in the relationship 
between Y and X at c by the fraction induced 
to take-up the treatment at the threshold? 
in other words, the discontinuity jump in the 
relation between D and X. In this setting, the 
treatment effect can be written as 

_ lim?i0?[Y\X=c + e]-limeT0E[Y|X 
= c + e] 

Tp 
~ 

\im?l0E[D\X=c + e]-limeT0E[D \X=c + e] 
' 

where the subscript "F" refers to the fuzzy 
RD design. 

There is a close analogy between how the 
treatment effect is defined in the fuzzy RD 

design and in the well-known "Wald" formu 
lation of the treatment effect in an instru 

mental variables setting. Hahn, Todd and 
van der Klaauw (2001) were the first to show 
this important connection and to suggest 
estimating the treatment effect using two 

stage least-squares (TSLS) in this setting. 
We discuss estimation of fuzzy RD designs in 

greater detail in section 4.3.3. 

Hahn, Todd and van der Klaauw (2001) 
furthermore pointed out that the interpreta 
tion of this ratio as a causal effect requires 
the same assumptions as in Imbens and 

Angrist (1994). That is, one must assume 

"monotonicity" (i.e., X crossing the cutoff 
cannot simultaneously cause some units to 
take up and others to reject the treatment) 

and "excludability" (i.e., X crossing the cutoff 
cannot impact Y except through impacting 
receipt of treatment). When these assump 
tions are made, it follows that18 

rF = E[Y(1) 
- 

Y(0) |unit is complier, X = c], 

where "compliers" are units that receive the 
treatment when they satisfy the cutoff rule 

(X* > c), but would not otherwise receive it. 
In summary, if there is local random 

assignment (e.g., due to the plausibility of 
individuals' imprecise control over X), then 

we can simply apply all of what is known 
about the assumptions and interpretability 
of instrumental variables. The difference 
between the "sharp" and "fuzzy" RD design 
is exactly parallel to the difference between 
the randomized experiment with perfect 
compliance and the case of imperfect com 

pliance, when only the "intent to treat" is 

randomized. 
For example, in the case of imperfect 

compliance, even if a proposed binary instru 
ment Z is randomized, it is necessary to rule 
out the possibility that Z affects the outcome, 
outside of its influence through treatment 

receipt, D. Only then will the instrumental 
variables estimand?the ratio of the reduced 
form effects of Z on Y and of Z on D?be 

properly interpreted as a causal effect of D 
on Y. Similarly, supposing that individuals do 
not have precise control over X, it is neces 

sary to assume that whether X crosses the 
threshold c (the instrument) has no impact 
on y except by influencing D. Only then will 
the ratio of the two RD gaps in Y and D be 

properly interpreted as a causal effect of D 
on Y. 

In the same way that it is important to 

verify a strong first-stage relationship in an 

IV design, it is equally important to verify 

18 See Imbens and Lemieux (2008) for a more formal 

exposition. 
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that a discontinuity exists in the relationship 
between D and X in a fuzzy RD design. 

Furthermore, in this binary-treatment 
binary-instrument context with unrestricted 

heterogeneity in treatment effects, the IV 
estimand is interpreted as the average treat 
ment effect "for the subpopulation affected 

by the instrument," (or LATE). Analogously, 
the ratio of the RD gaps in Y and D (the 
"fuzzy design" estimand) can be interpreted 
as a weighted LATE, where the weights 
reflect the ex ante likelihood the individual s 

X is near the threshold. In both cases, the 
exclusion restriction and monotonicity con 

dition must hold. 

3.4.2 Continuous Endogenous Regressor 

In a context where the "treatment" is a 

continuous variable?call it T?and there 
is a randomized binary instrument (that can 

additionally be excluded from the outcome 

equation), an IV approach is an obvious way 
of obtaining an estimate of the impact of T 
on Y. The IV estimand is the reduced-form 

impact of Z on Y divided by the first-stage 
impact of Z on T. 

The same is true for an RD design when 
the regressor of interest is continuous. Again, 
the causal impact of interest will still be the 
ratio of the two RD gaps (i.e., the disconti 
nuities in Y and T). 

To see this more formally, consider the 
model 

(6) Y = T7 + WS1 + C/x 

T = D<f> + W7 + U2 

D = 1[X > c] 

X = 
WS2 + V, 

which is the same set-up as before, except 
with the added second equation, allowing 
for imperfect compliance or other factors 

(observables W or unobservables U2) to 

impact the continuous regressor of interest 
T. If 7 = 0 and U2 = 0, then the model col 

lapses to a "sharp" RD design (with a con 
tinuous regressor). 

Note that we make no additional assump 
tions about U2 (in terms of its correlation 

with W or V). We do continue to assume 

imprecise control over X (conditional on W 
and Ui, the density of X is continuous).19 

Given the discussion so far, it is easy to 

show that 

(7) lim?[Y|X-c + e] 

- 
lim?[Y|X=c+?] 40 

= 
llimE[T|X=c+s] 140 
- 

limE[T|X = c+ 
e]j7. 

The left hand side is simply the "reduced 
form" discontinuity in the relation between 

y and X. The term preceding 7 on the right 
hand side is the "first-stage" discontinuity in 
the relation between T and X, which is also 
estimable from the data. Thus, analogous 
to the exactly identified instrumental vari 
able case, the ratio of the two discontinuities 

yields the parameter 7 : the effect of T on Y. 

Again, because of the added notion of imper 
fect compliance, it is important to assume 

that D (X crossing the threshold) does not 

directly enter the outcome equation. 
In some situations, more might be known 

about the rule determining T. For exam 

ple, in Angrist and Lavy (1999) and Miguel 
Urquiola and Eric A. Verhoogen (2009), 
class size is an increasing function of total 
school enrollment, except for discontinui 
ties at various enrollment thresholds. But 

19 
Although it would be unnecessary to do so for the 

identification of 7, it would probably be more accurate to 

describe the situation of imprecise control with the conti 

nuity of the density of X conditional on the three variables 

(W, U1,U2). This is because U2 is now another variable 

characterizing heterogeneity in individuals. 
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additional information about characteristics 
such as the slope and intercept of the under 

lying function (apart from the magnitude of 
the discontinuity) generally adds nothing to 
the identification strategy. 

To see this, change the second equation in 

(6) to T = Dcf) + g(X) where g(-) is any con 
tinuous function in the assignment variable. 

Equation (7) will remain the same and, thus, 

knowledge of the function g(-) is irrelevant 
for identification.20 

There is also no need for additional theo 
retical results in the case when there is indi 
vidual-level heterogeneity in the causal effect 
of the continuous regressor T. The local ran 

dom assignment result allows us to borrow 
from the existing IV literature and interpret 
the ratio of the RD gaps as in Angrist and 

Krueger (1999), except that we need to add 
the note that all averages are weighted by the 
ex ante relative likelihood that the individu 
al s X will land near the threshold. 

3.5 Summary: A Comparison of RD and 
Other Evaluation Strategies 

We conclude this section by compar 
ing the RD design with other evaluation 

approaches. We believe it is helpful to view 
the RD design as a distinct approach rather 
than as a special case of either IV or match 

ing/regression-control. Indeed, in important 
ways the RD design is more similar to a ran 

domized experiment, which we illustrate 
below. 

Consider a randomized experiment where 

subjects are assigned a random number X and 
are given the treatment if X > c. By construc 

tion, X is independent and not systematically 
related to any observable or unobservable 
characteristic determined prior to the ran 

domization. This situation is illustrated in 

panel A of figure 5. The first column shows 

the relationship between the treatment vari 
able D and X, a step function, going from 
0 to 1 at the X = c threshold. The second 
column shows the relationship between the 
observables W and X. This is flat because X is 

completely randomized. The same is true for 
the unobservable variable U, depicted in the 
third column. These three graphs capture 
the appeal of the randomized experiment: 
treatment varies while all other factors are 

kept constant (on average). And even though 
we cannot directly test whether there are no 

treatment-control differences in U, we can 
test whether there are such differences in 

the observable W. 
Now consider an RD design (panel B of 

figure 5) where individuals have imprecise 
control over X. Both W and U may be sys 

tematically related to X, perhaps due to the 
actions taken by units to increase their prob 
ability of receiving treatment. Whatever the 

shape of the relation, as long as individuals 
have imprecise control over X, the relation 

ship will be continuous. And therefore, as we 
examine Y near the X = c cutoff, we can be 
assured that like an experiment, treatment 
varies (the first column) while other factors 
are kept constant (the second and third col 

umns). And, like an experiment, we can test 
this prediction by assessing whether observ 
ables truly are continuous with respect to X 

(the second column).21 
We now consider two other commonly 

used nonexperimental approaches, referring 
to the model (2): 

Y Dt + WS1 + U 

D 1[X > c] 

X W52 + V. 

20 As discussed in 3.2.1, the inclusion of a direct effect 
of X in the outcome equation will not change identifica 
tion of r. 

21 We thank an anonymous referee for suggesting these 
illustrative graphs. 

This content downloaded from 153.90.148.35 on Thu, 28 Mar 2013 14:43:52 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Lee and Lemieux: Regression Discontinuity Designs in Economics 303 

D. Instrumental Variables 

Figure 5. Treatment, Observables, and Unobservables in Four Research Designs 
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3.5.1 Selection on Observables: Matching/ 
Regression Control 

The basic idea of the "selection on observ 
ables" approach is to adjust for differences 
in the Ws between treated and control indi 
viduals. It is usually motivated by the fact 
that it seems "implausible" that the uncon 

ditional mean Y for the control group repre 
sents a valid counterfactual for the treatment 

group. So it is argued that, conditional on W, 
treatment-control contrasts may identify the 

(W-specific) treatment effect. 
The underlying assumption is that condi 

tional on W, U and V are independent. From 
this it is clear that 

E[Y\D= l,W=w] 

- 
E[Y\D=0,W 

= w] 

= r + E[U\W=w,V>c-wS2] 

- 
E[U\W=w,V<c-w62] 

= T. 

Two issues arise when implementing this 

approach. The first is one of functional form: 
how exactly to control for the Ws? When 
the Ws take on discrete values, one possibil 
ity is to compute treatment effects for each 
distinct value of W, and then average these 
effects across the constructed "cells." This 
will not work, however, when W has continu 
ous elements, in which case it is necessary to 

implement multivariate matching, propen 
sity score, reweighting procedures, or non 

parametric regressions.22 
Regardless of the functional form issue, 

there is arguably a more fundamental ques 
tion of which Ws to use in the analysis. While 
it is tempting to answer "all of them" and 

hope that more Ws will lead to less biased 

estimates, this is obviously not necessarily 
the case. For example, consider estimating 
the economic returns to graduating high 
school (versus dropping out). It seems natu 
ral to include variables like parents' socioeco 
nomic status, family income, year, and place 
of birth in the regression. Including more 

and more family-level Ws will ultimately 
lead to a "within-family" sibling analysis; 
extending it even further by including date 
of birth leads to a "within-twin-pair" analysis. 
And researchers have been critical?justifi 
ably so?of this source of variation in edu 
cation. The same reasons causing discomfort 
about the twin analyses should also cause 

skepticism about "kitchen sink" multivariate 

matching/propensity score/regression con 

trol analyses.23 
It is also tempting to believe that, if the Ws 

do a "good job" in predicting D, the selection 
on observables approach will "work better." 
But the opposite is true: in the extreme case 

when the Ws perfectly predict X (and hence 
D), it is impossible to construct a treatment 
control contrast for virtually all observations. 
For each value of W, the individuals will 
either all be treated or all control. In other 

words, there will be literally no overlap in 
the support of the propensity score for the 
treated and control observations. The pro 

pensity score would take the values of either 
lor 0. 

The "selection on observables" approach is 
illustrated in panel C of figure 5. Observables 

W can help predict the probability of treat 
ment (first column), but ultimately one must 
assume that unobservable factors U must be 
the same for treated and control units for 

22 See Hahn (1998) on including covariates directly 
with nonparametric regression. 

23 Researchers question the twin analyses on the 

grounds that it is not clear why one twin ends up having 
more education than the other, and that the assumption 
that education differences among twins is purely random 

(as ignorability would imply) is viewed as far-fetched. We 
thank David Card for pointing out this connection between 
twin analyses and matching approaches. 
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every value of W. That is, the crucial assump 
tion is that the two lines in the third column 
be on top of each other. Importantly, there is 
no comparable graph in the second column 
because there is no way to test the design 
since all the W's are used for estimation. 

3.5.2 Selection on Unobservables: 
Instrumental Variables and "Heckit" 

A less restrictive modeling assumption is 
to allow U and V to be correlated, conditional 
on W. But because of the arguably "more 

realistic"/flexible data generating process, 
another assumption is needed to identify r. 

One such assumption is that some elements 
of W (call them Z) enter the selection equa 
tion, but not the outcome equation and are 

also uncorrelated with U. An instrumental 
variables approach utilizes the fact that 

E[Y\W* 
= w*,Z=z] 

= E[D\Wm = w\Z = z]T+w*y 

+ E[U\W*= w*,Z = z] 

= 
E[D\W* 

= w*,Z = z]t+ to* 7 

+ E[U\W*= w*], 

where W has been split up into W* and Z 
and 7 is the corresponding coefficient for w*. 
Conditional on W* = w*, Y only varies with 
Z because of how D varies with Z. Thus, one 

identifies r by "dividing" the reduced form 

quantity E[D \ W* = w*, Z = z]r (which can 
be obtained by examining the expectation 
of Y conditional on Z for a particular value 
w* of W*) by E[D\W* = w*,Z = z], which 
is also provided by the observed data. It is 
common to model the latter quantity as a 

linear function in Z, in which case the IV 
estimator is (conditional on W*) the ratio of 
coefficients from regressions of Y on Z and 
D on Z. When Z is binary, this appears to be 
the only way to identify r without imposing 
further assumptions. 

When Z is continuous, there is an addi 
tional approach to identifying r. The "Heckit" 

approach uses the fact that 

E[Y\W* 
= w*,Z=z,D = 1] 

= r + w*^y 

+ E[U\W* 
= w*,Z = 

z,V>c-w52] 

E[Y\W* 
= w*,Z=z,D=0] 

* = w 7 

+ E[U\W* 
= w*,Z=z,V<c- w82]. 

If we further assume a functional form for 
the joint distribution of 17, V, conditional 
on W* and Z, then the "control function" 
terms E[U\W 

= w,V > c ? w52] and 

E[lJ\W=w,V<c-w82] are functions 
of observed variables, with the parameters 
then estimable from the data. It is then pos 
sible, for any value of W = w, to identify r 
as 

(8) (E[Y\W* 
= w*,Z=z,D= 1] 

- 
E[Y\W* 

= w*,Z=z,D=0]) 

- 
(E[U\W* 

= w*,Z = z, V>c-w82] 

- 
E[U\W* 

= w*,Z = 
z,V<c-w82]). 

Even if the joint distribution of U, V is 

unknown, in principle it is still possible 
to identify r, if it were possible to choose 
two different values of Z such that c ? wS2 

approaches 
? oo and oo. If so, the last two 

terms in (8) approach E[U\ W* = w*] and, 
hence, cancel one another. This is known as 

"identification at infinity." 
Perhaps the most important assumption 

that any of these approaches require is the 
existence of a variable Z that is (conditional 
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on W*) independent of U.24 There does not 
seem to be any way of testing the validity 
of this assumption. Different, but equally 
"plausible" Z's may lead to different answers, 
in the same way that including different sets 
of Ws may lead to different answers in the 
selection on observables approach. 

Even when there is a mechanism that 

justifies an instrument Z as "plausible," it is 
often unclear which covariates W* to include 
in the analysis. Again, when different sets of 

W* lead to different answers, the question 
becomes which is more plausible: Z is inde 

pendent of U conditional on W* or Z is inde 

pendent of U conditional on a subset of the 
variables in W*? While there may be some 
situations where knowledge of the mecha 
nism dictates which variables to include, in 

other contexts, it may not be obvious. 
The situation is illustrated in panel D of 

figure 5. It is necessary that the instrument 
Z is related to the treatment (as in the first 

column). The crucial assumption is regard 
ing the relation between Z and the unob 
servables U (the third column). In order for 
an IV or a "Heckit" approach to work, the 
function in the third column needs to be flat. 
Of course, we cannot observe whether this is 
true. Furthermore, in most cases, it is unclear 
how to interpret the relation between W and 
Z (second column). Some might argue the 
observed relation between W and Z should 
be flat if Z is truly exogenous, and that if Z is 

highly correlated with W, then it casts doubt 
on Z being uncorrelated with U. Others will 

argue that using the second graph as a test is 

only appropriate when Z is truly randomized, 

and that the assumption invoked is that Z is 
uncorrelated with U, conditional on W. In this 
latter case, the design seems fundamentally 
untestable, since all the remaining observable 
variables (the Ws) are being "used up" for 

identifying the treatment effect. 

3.5.3 RD as "Design" not "Method" 

RD designs can be valid under the more 

general "selection on unobservables" 

environment, allowing an arbitrary correla 
tion among U, V, and W, but at the same time 
not requiring an instrument. As discussed 

above, all that is needed is that conditional on 

W, U, the density of V is continuous, and the 
local randomization result follows. 

How is an RD design able to achieve 

this, given these weaker assumptions? The 
answer lies in what is absolutely necessary 
in an RD design: observability of the latent 
index X. Intuitively, given that both the 
"selection on observables" and "selection on 

unobservables" approaches rely heavily on 

modeling X and its components (e.g., which 
Ws to include, and the properties of the 
unobservable error V and its relation to other 

variables, such as an instrument Z), actually 
knowing the value of X ought to help. 

In contrast to the "selection on observ 
ables" and "selection on unobservables" 

modeling approaches, with the RD design 
the researcher can avoid taking any strong 
stance about what Ws to include in the anal 

ysis, since the design predicts that the Ws 
are irrelevant and unnecessary for identifi 
cation. Having data on Ws is, of course, of 
some use, as they allow testing of the under 

lying assumption (described in section 4.4). 
For this reason, it may be more helpful to 

consider RD designs as a description of a par 
ticular data generating process, rather than a 

"method" or even an "approach." In virtually 
any context with an outcome variable Y, treat 
ment status D, and other observable variables 

W, in principle a researcher can construct a 

regression-control or instrumental variables 

24 For IV, violation of this assumption essentially means 

that Z varies with Y for reasons other than its influence 
on D. For the textbook "Heckit" approach, it is typically 
assumed that U, V have the same distribution for any value 
of Z. It is also clear that the "identification at infinity" 
approach will only work if Z is uncorrelated with U, oth 
erwise the last two terms in equation (8) would not cancel. 
See also the framework of Heckman and Edward Vytlacil 
(2005), which maintains the assumption of the indepen 
dence of the error terms and Z, conditional on W*. 
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(after designating one of the W variables a 

valid instrument) estimator, and state that 
the identification assumptions needed are 

satisfied. 
This is not so with an RD design. Either 

the situation is such that X is observed, or it 
is not. If not, then the RD design simply does 
not apply.25 If X is observed, then one has 
little choice but to attempt to estimate the 

expectation of Y conditional on X on either 

side of the cutoff. In this sense, the RD 

design forces the researcher to analyze it in 
a particular way, and there is little room for 
researcher discretion?at least from an iden 

tification standpoint. The design also pre 
dicts that the inclusion of Ws in the analysis 
should be irrelevant. Thus it naturally leads 
the researcher to examine the density of X or 

the distribution of Ws, conditional on X, for 

discontinuities as a test for validity. 
The analogy of the truly randomized 

experiment is again helpful. Once the 
researcher is faced with what she thinks is a 

properly carried out randomized controlled 

trial, the analysis is quite straightforward. 
Even before running the experiment, most 

researchers agree it would be helpful to dis 

play the treatment-control contrasts in the 
Ws to test whether the randomization was 

carried out properly, then to show the simple 
mean comparisons, and finally to verify the 
inclusion of the Ws make little difference in 

the analysis, even if they might reduce sam 

pling variability in the estimates. 

4. Presentation, Estimation, and Inference 

In this section, we systematically discuss 

the nuts and bolts of implementing RD 

designs in practice. An important virtue 

of RD designs is that they provide a very 

transparent way of graphically showing how 
the treatment effect is identified. We thus 

begin the section by discussing how to graph 
the data in an informative way. We then 

move to arguably the most important issue 
in implementing an RD design: the choice 
of the regression model. We address this by 
presenting the various possible specifications, 
discussing how to choose among them, and 

showing how to compute the standard errors. 

Next, we discuss a number of other prac 
tical issues that often arise in RD designs. 
Examples of questions discussed include 
whether we should control for other covari 
ates and what to do when the assignment 
variable is discrete. We discuss a number of 
tests to assess the validity of the RD designs, 

which examine whether covariates are "bal 
anced" on the two sides of the threshold, and 
whether the density of the assignment vari 

able is continuous at the threshold. Finally, 
we summarize our recommendations for 

implementing the RD design. 
Throughout this section, we illustrate the 

various concepts using an empirical example 
from Lee (2008) who uses an RD design to 
estimate the causal effect of incumbency in 
U.S. House elections. We use a sample of 

6,558 elections over the 1946-98 period (see 
Lee 2008 for more detail). The assignment 
variable in this setting is the fraction of votes 
awarded to Democrats in the previous elec 
tion. When the fraction exceeds 50 percent, 
a Democrat is elected and the party becomes 
the incumbent party in the next election. 
Both the share of votes and the probability 
of winning the next election are considered 
as outcome variables. 

4.1 Graphical Presentation 

A major advantage of the RD design over 

competing methods is its transparency, which 
can be illustrated using graphical methods. 
A standard way of graphing the data is to 

divide the assignment variable into a number 
of bins, making sure there are two separate 

25 Of course, sometimes it may seem at first that an RD 

design does not apply, but a closer inspection may reveal that it 

does. For example, see Per Pettersson (2000), which eventu 

ally became the RD analysis in Pettersson-Lidbom (2008b). 
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bins on each side of the cutoff point (to avoid 

having treated and untreated observations 
mixed together in the same bin). Then, the 

average value of the outcome variable can be 

computed for each bin and graphed against 
the mid-points of the bins. 

More formally, for some bandwidth h, 
and for some number of bins K0 and Kx to 

the left and right of the cutoff value, respec 

tively, the idea is to construct bins (bk,bk+i\, 
for k = 1,. . . , K = K0 + Kh where 

bk 
= c ? 

(Kq 
? k + l)h. 

The average value of the outcome variable 
in the bin is 

n = 
^-iyii{h<xi<bk+1}. 

It is also useful to calculate the number of 
observations in each bin 

i=l 

to detect a possible discontinuity in the 

assignment variable at the threshold, which 
would suggest manipulation. 

There are several important advantages 
in graphing the data this way before starting 
to run regressions to estimate the treatment 
effect. First, the graph provides a simple way 
of visualizing what the functional form of the 

regression function looks like on either side 
of the cutoff point. Since the mean of Y in 
a bin is, for nonparametric kernel regres 
sion estimators, evaluated at the bin mid 

point using a rectangular kernel, the set of 
bin means literally represent nonparametric 
estimates of the regression function. Seeing 
what the nonparametric regression looks like 
can then provide useful guidance in choosing 
the functional form of the regression models. 

A second advantage is that comparing the 
mean outcomes just to the left and right of the 
cutoff point provides an indication of the mag 
nitude of the jump in the regression function 

at this point, i.e., of the treatment effect. Since 
an RD design is "as good as a randomized 

experiment" right around the cutoff point, the 
treatment effect could be computed by com 

paring the average outcomes in "small" bins 

just to the left and right of the cutoff point. 
If there is no visual evidence of a discontinu 

ity in a simple graph, it is unlikely the formal 

regression methods discussed below will yield 
a significant treatment effect. 

A third advantage is that the graph also 
shows whether there are unexpected compa 
rable jumps at other points. If such evidence 
is clearly visible in the graph and cannot be 

explained on substantive grounds, this calls 
into question the interpretation of the jump 
at the cutoff point as the causal effect of the 
treatment. We discuss below several ways of 

testing explicitly for the existence of jumps at 

points other than the cutoff. 
Note that the visual impact of the graph 

is typically enhanced by also plotting a rela 

tively flexible regression model, such as a 

polynomial model, which is a simple way 
of smoothing the graph. The advantage of 

showing both the flexible regression line 
and the unrestricted bin means is that the 

regression line better illustrates the shape of 
the regression function and the size of the 

jump at the cutoff point, and laying this over 

the unrestricted means gives a sense of the 

underlying noise in the data. 
Of course, if bins are too narrow the esti 

mates will be highly imprecise. If they are 

too wide, the estimates may be biased as they 
fail to account for the slope in the regression 
line (negligible for very narrow bins). More 

importantly, wide bins make the compari 
sons on both sides of the cutoff less credible, 
as we are no longer comparing observations 

just to the left and right of the cutoff point. 
This raises the question of how to choose 

the bandwidth (the width of the bin). In 

practice, this is typically done informally by 
trying to pick a bandwidth that makes the 

graphs look informative in the sense that bins 
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are wide enough to reduce the amount of 

noise, but narrow enough to compare obser 
vations "close enough" on both sides of the 
cutoff point. While it is certainly advisable to 

experiment with different bandwidths and 
see how the corresponding graphs look, it is 

also useful to have some formal guidance in 

the selection process. 
One approach to bandwidth choice is 

based on the fact that, as discussed above, the 
mean outcomes by bin correspond to kernel 

regression estimates with a rectangular ker 
nel. Since the standard kernel regression is a 

special case of a local linear regression where 
the slope term is equal to zero, the cross-val 
idation procedure described in more detail 
in section 4.3.1 can also be used here by 
constraining the slope term to equal zero.26 
For reasons we discuss below, however, one 

should not solely rely on this approach to 

select the bandwidth since other reasonable 

subjective goals should be considered when 

choosing how to the plot the data. 

Furthermore, a range a bandwidths often 

yield similar values of the cross-valida 
tion function in practical applications (see 
below). A researcher may, therefore, want 
to use some discretion in choosing a band 

width that provides a particularly compelling 
illustration of the RD design. An alternative 

approach is to choose a bandwidth based on 
a more heuristic visual inspection of the data, 
and then perform some tests to make sure 

this informal choice is not clearly rejected. 
We suggest two such tests. Consider the 

case where one has decided to use K' bins 
based on a visual inspection of the data. The 

first test is a standard F-test comparing the fit 
of a regression model with K! bin dummies 
to one where we further divide each bin into 
two equal sized smaller bins, i.e., increase the 
number of bins to 2K' (reduce the bandwidth 
from h'toh'/2). Since the model with K! bins 
is nested in the one with 2Kf bins, a standard 
F-test with Kf degrees of freedom can be 
used. If the null hypothesis is not rejected, 
this provides some evidence that we are not 

oversmoothing the data by using only K! bins. 
Another test is based on the idea that if the 

bins are "narrow enough," then there should 
not be a systematic relationship between Y 
and X, that we capture using a simple regres 
sion of Y on X, within each bin. Otherwise, 
this suggests the bin is too wide and that the 

mean value of Y over the whole bin is not 

representative of the mean value of Y at the 
boundaries of the bin. In particular, when 
this happens in the two bins next to the cut 

off point, a simple comparison of the two bin 
means yields a biased estimate of the treat 
ment effect. A simple test for this consists of 

adding a set of interactions between the bin 
dummies and X to a base regression of Y on 

the set of bin dummies, and testing whether 
the interactions are jointly significant. The 
test statistic once again follows a F distribu 
tion with K' degrees of freedom. 

Figures 6-11 show the graphs for the 
share of Democrat vote in the next elec 
tion and the probability of Democrats win 

ning the next election, respectively. Three 
sets of graphs with different bandwidths are 

reported using a bandwidth of 0.02 in figures 
6 and 9, 0.01 in figures 7 and 10, and 0.005 

26 In section 4.3.1, we consider the cross-validation 
function CVY(/i) = (l/N)EiIi (Y, 

- 
Y(X,))2 where Y(^) 

is the predicted value of Yt based on a regression using 
observations with a bin of width h on either the left (for 
observations on left of the cutoff) or the right (for observa 
tions on the right of the cutoff) of observation i, but not 

including observation i itself. In the context of the graph 
discussed here, the only modification to the cross-valida 
tion function is that the predicted value Y(Xf) is based only 

on a regression with a constant term, which means Y(X,-) 
is the average value of Y among all observations in the bin 

(excluding observation i). Note that this is slightly differ 
ent from the standard cross-validation procedure in kernel 

regressions where the left-out observation is in the middle 
instead of the edge of the bin (see, for example, Richard 
Blundell and Alan Duncan 1998). Our suggested procedure 
is arguably better suited to the RD context since estimation 

of the treatment effect takes place at boundary points. 
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Figure 8. Share of Vote in Next Election, Bandwidth of 0.005 (200 bins) 

1.00 I-1-1 
^ - _? 

0.90-+??- -a? 

0.80-* 

0.70 ?-?--/ 

f 
0.60-? 

0.50 

0.40 

0.30-?-??-?-?-? 

0.10-? ---?+?* 

0.00 F*--1-1-1-1-1-1-1-1 
_0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

Figure 9. Winning the Next Election, Bandwidth of 0.02 (50 bins) 
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Figure 10. Winning the Next Election, Bandwidth of 0.01 (100 bins) 

Figure 11. Winning the Next Election, Bandwidth of 0.005 (200 bins) 
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in figures 8 and 11. In all cases, we also show 
the fitted values from a quartic regression 

model estimated separately on each side of 
the cutoff point. Note that the assignment 
variable is normalized as the difference 
between the share of vote to Democrats and 

Republicans in the previous election. This 
means that a Democrat is the incumbent 
when the assignment variable exceeds zero. 

We also limit the range of the graphs to win 

ning margins of 50 percent or less (in abso 
lute terms) as data become relatively sparse 
for larger winning (or losing) margins. 

All graphs show clear evidence of a discon 

tinuity at the cutoff point. While the graphs 
are all quite informative, the ones with the 
smallest bandwidth (0.005, figures 8 and 11) 
are more noisy and likely provide too many 
data points (200) for optimal visual impact. 

The results of the bandwidth selection pro 
cedures are presented in table 1. Panel A shows 
the cross-validation procedure always suggests 
using a bandwidth of 0.02 or more, which cor 

responds to similar or wider bins than those 
used in figures 6 and 9 (those with the largest 
bins). This is true irrespective of whether we 

pick a separate bandwidth on each side of the 
cutoff (first two rows of the panel), or pick the 
bandwidth that minimizes the cross-validation 
function for the entire date range on both the 
left and right sides of the cutoff. In the case 

where the outcome variable is winning the 
next election, the cross-validation procedure 
for the data to the right of the cutoff point and 
for the entire range suggests using a very wide 
bin (0.049) that would only yield about ten 
bins on each side of the cutoff. 

As it turns out, the cross-validation function 
for the entire data range has two local min 
ima at 0.021 and 0.049 that correspond to the 

optimal bandwidths on the left and right hand 
side of the cutoff. This is illustrated in figure 
12, which plots the cross-validation function 
as a function of the bandwidth. By contrast, 
the cross-validation function is better behaved 
and shows a global minimum around 0.020 

when the outcome variable is the vote share 

(figure 13). For both outcome variables, the 
value of the cross-validation function grows 
quickly for bandwidths smaller than 0.02, 

suggesting that the graphs with narrower bins 

(figures 7, 8,10, and 11) are too noisy. 
Panel B of table 1 shows the results of our 

two suggested specification tests. The tests 
based on doubling the number of bins and 

running regressions within each bin yield 
remarkably similar results. Generally speak 
ing, the results indicate that only fairly wide 
bins are rejected. Looking at both outcome 

variables, the tests systematically reject mod 
els with bandwidths of 0.05 or more (twenty 
bins over the -0.5 to 0.5 range). The models 
are never rejected for either outcome vari 
able once we hit bandwidths of 0.02 (fifty 
bins) or less. In practice, the testing proce 
dure rules out bins that are larger than those 

reported in figures 6-11. 
At first glance, the results in the two pan 

els of table 1 appear to be contradictory. The 
cross-validation procedure suggests band 
widths ranging from 0.02 to 0.05, while the 
bin and regression tests suggest that almost 
all bandwidths of less than 0.05 are accept 
able. The reason for this discrepancy is that 
while the cross-validation procedure tries 
to balance precision and bias, the bin and 

regression tests only deal with the "bias" part 
of the equation by checking whether the 
value of Y is more or less constant within a 

given bin. Models with small bins easily pass 
this kind of test, although they may yield a 

very noisy graph. One alternative approach is 
to choose the largest possible bandwidth that 

passes the bin and the regression test, which 
turns out to be 0.033 in table 1, a bandwidth 
that is within the range of those suggested by 
the cross-validation procedure. 

From a practical point of view, it seems to 
be the case that formal procedures, and in par 
ticular cross-validation, suggest bandwidths 
that are wider than those one would likely 
choose based on a simple visual examination 
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TABLE 1 
Choice of Bandwidth in Graph for Voting Example 

A. Optimal bandwidth selected by cross-validation 

Side of cutoff Share of vote 

Left 

Right 
Both 

0.021 

0.026 

0.021 

B. P-values of tests for the numbers of bins in RD graph 

Share of vote 

No. of bins Bandwidth Bin test Regr. test 

Win next election 

0.049 

0.021 

0.049 

Win next election 

Bin test Regr. test 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.100 

0.050 

0.033 

0.025 

0.020 

0.017 

0.014 

0.013 

0.011 

0.010 

0.000 

0.000 

0.163 

0.157 

0.957 

0.159 

0.596 

0.526 

0.815 

0.787 

0.000 

0.000 

0.390 

0.296 

0.721 

0.367 

0.130 

0.740 

0.503 

0.976 

0.001 

0.026 

0.670 

0.024 

0.477 

0.247 

0.630 

0.516 

0.806 

0.752 

0.000 

0.049 

0.129 

0.020 

0.552 

0.131 

0.743 

0.222 

0.803 

0.883 

Notes: Estimated over the range of the forcing variable (Democrat to Republican difference in the share of 
vote in the previous election) ranging between -0.5 and 0.5. The "bin test" is computed by comparing the fit 
of a model with the number of bins indicated in the table to an alternative where each bin is split in 2. The 
"regression test" is a joint test of significance of bin-specific regression estimates of the outcome variable on 

the share of vote in the previous election. 

of the data. In particular, both figures 7 and 
10 (bandwidth of 0.01) look visually accept 
able but are clearly not recommended on the 
basis of the cross-validation procedure. This 

likely reflects the fact that one important 
goal of the graph is to show how the raw data 

look, and too much smoothing would defy the 

purpose of such a data illustration exercise. 

Furthermore, the regression estimates of the 
treatment effect accompanying the graphi 
cal results are a formal way of smoothing the 
data to get precise estimates. This suggests 
that there is probably little harm in under 

smoothing (relative to what formal bandwidth 
selection procedures would suggest) to better 
illustrate the variation in the raw data when 

graphically illustrating an RD design. 

4.2 Regression Methods 

4.2.1 Parametric or Nonparametric 
Regressions? 

When we introduced the RD design 
in section 2, we followed Thistlethwaite 
and Campbell (1960) in assuming that the 
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underlying regression model was linear in 
the assignment variable X: 

Y = a + Dr + X(3 + e. 

In general, as in any other setting, there is 
no particular reason to believe that the true 
model is linear. The consequences of using an 
incorrect functional form are more serious in 
the case of RD designs however, since mis 

specification of the functional form typically 
generates a bias in the treatment effect, r.27 
This explains why, starting with Hahn, Todd, 
and van der Klaauw (2001), the estimation of 
RD designs have generally been viewed as a 

nonparametric estimation problem. 
This being said, applied papers using the 

RD design often just report estimates from 

parametric models. Does this mean that 
these estimates are incorrect? Should all 
studies use nonparametric methods instead? 
As we pointed out in the introduction, we 
think that the distinction between parametric 
and nonparametric methods has sometimes 
been a source of confusion to practitioners. 
Before covering in detail the practical issues 
involved in the estimation of RD designs, we 
thus provide some background to help clarify 
the insights provided by nonparametric anal 

ysis, while also explaining why, in practice, 
RD designs can still be implemented using 
"parametric" methods. 

Going beyond simple parametric linear 

regressions when the true functional form is 
unknown is a well-studied problem in econo 
metrics and statistics. A number of nonpara 
metric methods have been suggested to 

provide flexible estimates of the regression 

function. As it turns out, however, the RD 

setting poses a particular problem because 
we need to estimate regressions at the cutoff 

point. This results in a "boundary problem" 
that causes some complications for nonpara 

metric methods. 
From an applied perspective, a simple 

way of relaxing the linearity assumption is 
to include polynomial functions of X in the 

regression model. This corresponds to the 
series estimation approach often used in non 

parametric analysis. A possible disadvantage 
of the approach, however, is that it provides 
global estimates of the regression function 
over all values of X, while the RD design 
depends instead on local estimates of the 

regression function at the cutoff point. The 
fact that polynomial regression models use 
data far away from the cutoff point to predict 
the value of Y at the cutoff point is not intui 

tively appealing. That said, trying more flex 
ible specification by adding polynomials in X 
as regressors is an important and useful way of 

assessing the robustness of the RD estimates 
of the treatment effect. 

The other leading nonparametric approach 
is kernel regressions. Unlike series (poly 
nomial) estimators, the kernel regression is 

fundamentally a local method well suited for 

estimating the regression function at a partic 
ular point. Unfortunately, this property does 
not help very much in the RD setting because 
the cutoff represents a boundary point where 
kernel regressions perform poorly. 

These issues are illustrated in figure 2, 
which shows a situation where the relation 

ship between Y and X (under treatment or 

control) is nonlinear. First, consider the point 
D located away from the cutoff point. The 
kernel estimate of the regression of Y on X at 
X = Xd is simply a local mean of Y for values 
of X close to Xd. The kernel function provides 
a way of computing this local average by put 
ting more weight on observations with values 
of X close to Xd than on observations with val 
ues of X far away from Xd. Following Imbens 

27 
By contrast, when one runs a linear regression in a 

model where the true functional form is nonlinear, the esti 
mated model can still be interpreted as a linear predictor 
that minimizes specification errors. But since specification 
errors are only minimized globally, we can still have large 
specification errors at specific points including the cutoff 

point and, therefore, a large bias in RD estimates of the 
treatment effect. 
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and Lemieux (2008), we focus on the conve 
nient case of the rectangular kernel. In this 

setting, computing kernel regressions simply 
amounts to computing the average value of Y 
in the bin illustrated in figure 2. The result 

ing local average is depicted as the horizontal 
line EF, which is very close to true value of Y 
evaluated at X = Xj on the regression line. 

Applying this local averaging approach is 

problematic, however, for the RD design. 
Consider estimating the value of the regres 
sion function just on the right of the cutoff 

point. Clearly, only observations on the right 
of the cutoff point that receive the treatment 
should be used to compute mean outcomes 
on the right hand side. Similarly, only observa 
tions on the left of the cutoff point that do not 
receive the treatment should be used to com 

pute mean outcomes on the left hand side. 

Otherwise, regression estimates would mix 
observations with and without the treatment, 
which would invalidate the RD approach. 

In this setting, the best thing is to com 

pute the average value of Y in the bin just 
to the right and just to the left of the cutoff 
point. These two bins are shown in figure 2. 
The RD estimate based on kernel regres 
sions is then equal to B' ? A'. In this exam 

ple where the regression lines are upward 
sloping, it is clear, however, that the esti 

mate B' ? A! overstates the true treatment 
effect represented as the difference B ? A 
at the cutoff point. In other words, there 
is a systematic bias in kernel regression 
estimates of the treatment effect. Hahn, 
Todd, and van der Klaauw (2001) provide a 
more formal derivation of the bias (see also 
Imbens and Lemieux 2008 for a simpler 
exposition when the kernel is rectangu 
lar). In practical terms, the problem is that 
in finite samples the bandwidth has to be 

large enough to encompass enough obser 
vations to get a reasonable amount of pre 
cision in the estimated average values of 
Y. Otherwise, attempts to reduce the bias 

by shrinking the bandwidth will result in 

extremely noisy estimates of the treatment 
effect.28 

As a solution to this problem, Hahn, Todd, 
and van der Klaauw (2001) suggests run 

ning local linear regressions to reduce the 

importance of the bias. In our setup with a 

rectangular kernel, this suggestion simply 
amounts to running standard linear regres 
sions within the bins on both sides of the 
cutoff point to better predict the value of the 

regression function right at the cutoff point. 
In this example, the regression lines within 
the bins around the cutoff point are close to 
linear. It follows that the predicted values of 
the local linear regressions at the cutoff point 
are very close to the true values of A and B. 

Intuitively, this means that running local 
linear regressions instead of just computing 
averages within the bins reduces the bias by 
an order of magnitude. Indeed, Hahn, Todd, 
and van der Klaauw (2001) show that the 

remaining bias is of an order of magnitude 
lower, and is comparable to the usual bias 
in kernel estimation at interior points like D 

(the small difference between the horizontal 
line EF and the true value of the regression 
line evaluated at D). 

In the literature on 
nonparametric estima 

tion at boundary points, local linear regres 
sions have been introduced as a means of 

reducing the bias in standard kernel regres 
sion methods.29 One of the several contribu 
tions of Hahn, Todd, and van der Klaauw 

(2001) is to show how the same bias-reducing 

28 The trade-off between bias and precision is a funda 
mental feature of kernel regressions. A larger bandwidth 

yields more precise, but potentially biased, estimates of the 

regression. In an interior point like D, however, we see that 
the bias is of an order of magnitude lower than at the cutoff 

(boundary) point. In more technical terms, it can be shown 

(see Hahn, Todd, and van der Klaauw 2001 or Imbens and 
Lemieux 2008) that the usual bias is of order h2 at interior 

points, but of order h at boundary points, where h is the 
bandwidth. In other words, the bias dies off much more 

quickly when h goes to zero when we are at interior, as 

opposed to boundary, points. 
29 See Jianqing Fan and Irene Gijbels (1996). 
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procedure should also be applied to the RD 

design. We have shown here that, in practice, 
this simply amounts to applying the original 
insight of Thistlethwaite and Campbell (1960) 
to a narrower window of observations around 
the cutoff point. When one is concerned that 
the regression function is not linear over the 

whole range of X, a highly sensible procedure 
is, thus, to restrict the estimation range to 
values closer to the cutoff point where the 
linear approximation of the regression line is 
less likely to result in large biases in the RD 
estimates. In practice, many applied papers 
present RD estimates with varying window 
widths to illustrate the robustness (or lack 

thereof) of the RD estimates to specifica 
tion issues. It is comforting to know that this 
common empirical practice can be justified 
on more formal econometric grounds like 
those presented by Hahn, Todd, and van der 
Klaauw (2001). The main conclusion we draw 
from this discussion of nonparametric meth 
ods is that it is essential to explore how RD 
estimates are robust to the inclusion of higher 
order polynomial terms (the series or poly 
nomial estimation approach) and to changes 
in the window width around the cutoff point 
(the local linear regression approach). 

4.3 Estimating the Regression 

A simple way of implementing RD designs 
in practice is to estimate two separate regres 
sions on each side of the cutoff point. In 
terms of computations, it is convenient to 
subtract the cutoff value from the covariate, 
i.e., transform X to X ? c, so the intercepts 
of the two regressions yield the value of the 

regression functions at the cutoff point. 
The regression model on the left hand side 

of the cutoff point (X < c) is 

Y = Q>i + fi(X 
? 

C) + ?, 

while the regression model on the right hand 
side of the cutoff point (X > c) is 

Y = ar + fr(X 
? 

c) + e, 

where/; ( ) and/r ( ) are functional forms that 
we discuss later. The treatment effect can 

then be computed as the difference between 
the two regressions intercepts, ar and c^, 
on the two sides of the cutoff point. A more 
direct way of estimating the treatment effect 
is to run a pooled regression on both sides of 
the cutoff point: 

Y = + tD + f(X-c) + e, 

where r = ar 
? 

ol\ and/(X 
? 

c) =fi(X 
? 

c) 
+ D[fr(X-c) -ft(X-c)]. One advan 

tage of the pooled approach is that it directly 
yields estimates and standard errors of the 
treatment effect r. Note, however, that 
it is recommended to let the regression 
function differ on both sides of the cut 
off point by including interaction terms 
between D and X. For example, in the lin 
ear case where //(X 

? 
c) 

? 
ft (X 

? 
c) and 

fr(X 
? 

c) = ft(X 
? 

c), the pooled regression 
would be 

Y = ch+TD+ft(X-c) 

+ (ft 
- 

ft) D (X - c) + e. 

The problem with constraining the slope of 
the regression lines to be the same on both 
sides of the cutoff (ft =ft) is best illustrated 
by going back to the separate regressions 
above. If we were to constrain the slope to 
be identical on both sides of the cutoff, this 
would amount to using data on the right 
hand side of the cutoff to estimate a/, and 
vice versa. Remember from section 2 that 
in an RD design, the treatment effect is 
obtained by comparing conditional expec 
tations of Y when approaching from the 
left (c*i = limx|c E[Yf|Xf = x]) and from the 
right (ar 

= 
limx^c E[Yf|Xf 

= ac]) of the cut 
off. Constraining the slope to be the same 

would thus be inconsistent with the spirit of 
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the RD design, as data from the right of the 
cutoff would be used to estimate ah which 
is defined as a limit when approaching from 
the left of the cutoff, and vice versa. 

In practice, however, estimates where 
the regression slope or, more generally, the 

regression function/(X 
? 

c) are constrained 
to be the same on both sides of the cutoff 

point are often reported. One possible justi 
fication for doing so is that if the functional 
form is indeed the same on both sides of the 

cutoff, then more efficient estimates of the 
treatment effect r are obtained by imposing 
that constraint. Such a constrained specifica 
tion should only be viewed, however, as an 

additional estimate to be reported for the 
sake of completeness. It should not form the 
core basis of the empirical approach. 

4.3.1 Local Linear Regressions and 
Bandwidth Choice 

As discussed above, local linear regres 
sions provide a nonparametric way of consis 

tently estimating the treatment effect in an 
RD design (Hahn, Todd, and van der Klaauw 

(2001), Jack Porter (2003)). Following 
Imbens and Lemieux (2008), we focus on 

the case of a rectangular kernel, which 
amounts to estimating a standard regression 
over a window of width h on both sides of the 
cutoff point. While other kernels (triangular, 
Epanechnikov, etc.) could also be used, the 
choice of kernel typically has little impact 
in practice. As a result, the convenience 
of working with a rectangular kernel com 

pensates for efficiency gains that could be 
achieved using more sophisticated kernels.30 

The regression model on the left hand side 
of the cutoff point is 

Y = ax + A (X 
- 

c) + e, 

where c ? h < X < c, 

while the regression model on the right hand 
side of the cutoff point is 

Y = ar + pr (X 
- 

c) + e, 

where c < X < c + h. 

As before, it is also convenient to estimate 
the pooled regression 

Y = a, + rD + A(X-c) 

+ (/?r-^)D(X-c) + e, 

where c ? h < X < c + h, 

since the standard error of the estimated 
treatment effect can be directly obtained 
from the regression. 
While it is straightforward to estimate the 

linear regressions within a given window of 
width h around the cutoff point, a more dif 
ficult question is how to choose this band 
width. In general, choosing a bandwidth 
in nonparametric estimation involves find 

ing an optimal balance between precision 
and bias. One the one hand, using a larger 
bandwidth yields more precise estimates as 
more observations are available to estimate 
the regression. On the other hand, the lin 
ear specification is less likely to be accurate 

30 It has been shown in the statistics literature (Fan and 

Gijbels 1996) that a triangular kernel is optimal for esti 

mating local linear regressions at the boundary. As it turns 

out, the only difference between regressions using a rect 

angular or a triangular kernel is that the latter puts more 

weight (in a linear way) on observations closer to the cutoff 

point. It thus involves estimating a weighted, as opposed 
to an unweighted, regression within a bin of width h. An 

arguably more transparent way of putting more weight on 

observations close to the cutoff is simply to reestimate a 

model with a rectangular kernel using a smaller bandwidth. 
In practice, it is therefore simpler and more transparent 
to just estimate standard linear regressions (rectangular 
kernel) with a variety of bandwidths, instead of trying out 
different kernels corresponding to particular weighted 
regressions that are more difficult to interpret. 
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when a larger bandwidth is used, which can 
bias the estimate of the treatment effect. If 
the underlying conditional expectation is not 

linear, the linear specification will provide 
a close approximation over a limited range 
of values of X (small bandwidth), but an 

increasingly bad approximation over a larger 
range of values of X (larger bandwidth). 

As the number of observations avail 
able increases, it becomes possible to use 
an increasingly small bandwidth since linear 

regressions can be estimated relatively pre 
cisely over even a small range of values of 
X. As it turns out, Hahn, Todd, and van der 
Klaauw (2001) show the optimal bandwidth 
is proportional to N~~1/5, which corresponds 
to a fairly slow rate of convergence to zero. 
For example, this suggests that the bandwidth 
should only be cut in half when the sample 
size increases by a factor of 32 (25). For tech 
nical reasons, however, it would be preferable 
to undersmooth by shrinking the bandwidth 
at a faster rate requiring that h oc N~6 with 

l/5<5<2/5, in order to eliminate an 
asymptotic bias that would remain when 

5=1/5. In the presence of this bias, the 
usual formula for the variance of a standard 
least square estimator would be invalid.31 

In practice however, knowing at what rate 
the bandwidth should shrink in the limit does 
not really help since only one actual sam 

ple with a given number of observations is 

available. The importance of undersmooth 

ing only has to do with a thought experi 
ment of how much the bandwidth should 
shrink if the sample size were larger so that 
one obtains asymptotically correct standard 
errors, and does not help one choose a par 
ticular bandwidth in a particular sample.32 

In the econometrics and statistics litera 

ture, two procedures are generally consid 
ered for choosing bandwidths. The first 

procedure consists of characterizing the 

optimal bandwidth in terms of the unknown 

joint distribution of all variables. The rel 
evant components of this distribution can 
then be estimated and plugged into the opti 

mal bandwidth function.33 In the context 
of local linear regressions, Fan and Gijbels 
(1996) show this involves estimating a num 
ber of parameters including the curvature of 
the regression function. In practice, this can 
be done in two steps. In step one, a rule-of 
thumb (ROT) bandwidth is estimated over 
the whole relevant data range. In step two, 
the ROT bandwidth is used to estimate the 
optimal bandwidth right at the cutoff point. 
For the rectangular kernel, the ROT band 
width is given by: 

hROT 
= 2.702 a2R 

E?{m''W}S 

1/5 

31 See Hahn, Todd, and van der Klaauw (2001) and 
Imbens and Lemieux (2008) for more details. 

32 The main purpose of asymptotic theory is to use the 

large sample properties of estimators to approximate the 
distribution of an estimator in the real sample being con 
sidered. The issue is a little more delicate in a nonparamet 
ric setting where one also has to think about how fast the 
bandwidth should shrink when the sample size approaches 
infinity. The point about undersmoothing is simply that 
one unpleasant property of the optimal bandwidth is that 
it does not yield the convenient least squares variance for 

mula. But this can be fixed by shrinking the bandwidth 
a little faster as the sample size goes to infinity. Strictly 
speaking, this is only a technical issue with how to perform 
the thought experiment (what happens when the sample 
size goes to infinity?) required for using asymptotics to 

approximate the variance of the RD estimator in the actual 

sample. This does not say anything about what bandwidth 
should be chosen in the actual sample available for imple 

menting the RD design. 33 A well known example of this procedure is the 
"rule-of-thumb" bandwidth selection formula in ker 
nel density estimation where an estimate of the dis 

persion in the variable (standard deviation or the 

interquartile range), a, is plugged into the formula 
0.9 a AT1/5. Bernard W. Silverman (1986) shows that 
this formula is the closed form solution for the optimal 
bandwidth choice problem when both the actual density 
and the kernel are Gaussian. See also Imbens and Karthik 

Kalyanaraman (2009), who derive an optimal bandwidth 
for this RD setting, and propose a data-dependent method 
for choosing the bandwidth. 
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where m"(-) is the second derivative (curva 
ture) of an estimated regression of Y on X, a 
is the estimated standard error of the regres 
sion, R is the range of the assignment vari 
able over which the regression is estimated, 
and the constant 2.702 is a number specific to 
the rectangular kernel. A similar formula can 

be used for the optimal bandwidth, except 
both the regression standard error and the 

average curvature of the regression func 
tion are estimated locally around the cutoff 

point. For the sake of simplicity, we only 
compute the ROT bandwidth in our empiri 
cal example. Following the common practice 
in studies using these bandwidth selection 

methods, we also use a quartic specification 
for the regression function.34 

The second approach is based on a cross 

validation procedure. In the case consid 
ered here, Jens Ludwig and Douglas Miller 

(2007) and Imbens and Lemieux (2008) have 

proposed a "leave one out" procedure aimed 

specifically at estimating the regression func 
tion at the boundary. The basic idea behind 
this procedure is the following. Consider an 

observation i. To see how well a linear regres 
sion with a bandwidth h fits the data, we run 
a regression with observation i left out and 
use the estimates to predict the value of Y at 
X= Xt. In order to mimic the fact that RD 
estimates are based on regression estimates 
at the boundary, the regression is estimated 

using only observations with values of X on 

the left of Xi (X{ 
- h < X < XJ for observa 

tions on the left of the cutoff point (X( < c). 
For observations on the right of the cutoff 

point (Xi > c), the regression is estimated 

using only observations with values of X on 
the right of X, (Xf < X < X* + h). 

Repeating the exercise for each and every 
observation, we get a whole set of predicted 
values of Y that can be compared to the 
actual values of Y. The optimal bandwidth 
can be picked by choosing the value of h that 
minimizes the mean square of the difference 
between the predicted and actual value of Y. 

More formally, let Y(Xf) represent the pre 
dicted value of Y obtained using the regres 
sions described above. The cross-validation 
criterion is defined as 

(9) CVY(h) = -Lf^-Y^.))2 

with the corresponding cross-validation 
choice for the bandwidth 

h^y 
= 

arg min CVY(/i). 
h 

Imbens and Lemieux (2008) discuss this pro 
cedure in more detail and point out that since 
we are primarily interested in what happens 
around the cutoff, it may be advisable to only 
compute CVY(/i) for a subset of observations 
with values of X close enough to the cutoff 

point. For instance, only observations with 
values of X between the median value of X to 
the left and right of the cutoff could be used 
to perform the cross-validation. 

The second rows of tables 2 and 3 show the 
local linear regression estimates of the treat 

ment effect for the two outcome variables 

(share of vote and winning the next election). 
We show the estimates for a wide range of 
bandwidths going from the entire data range 
(bandwidth of 1 on each side of the cutoff) 
to a very small bandwidth of 0.01 (winning 

margins of one percent or less). As expected, 
the precision of the estimates declines 

quickly as we approach smaller and smaller 
bandwidths. Notice also that estimates based 

34 See McCrary and Heather Royer (2003) for an 

example where the bandwidth is selected using the ROT 

procedure (with a triangular kernel), and Stephen L. 

Desjardins and Brian P. McCall (2008) for an example 
where the second step optimal bandwidth is computed 
(for the Epanechnikov kernel). Both papers use a quartic 
regression function m(%) = 

j30 + fax + ... + 04x4, which 
means that m"(x) = 

2/32 + 6/33x + 12/34x2. Note that the 

quartic regressions are estimated separately on both sides 
of the cutoff. 
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TABLE 2 
RD Estimates of the Effect of Winning the Previous Election on the 

Share of Votes in the Next Election 

Bandwidth: 1.00 0.50 0.25 0.15 0.10 0.05 0.04 0.03 0.02 0.01 

Polynomial of ord 

Zero 

One 

Two 

Three 

Four 

Optimal order of 

the polynomial 

Observations 

0.347 0.257 

(0.003) (0.004) 
[0.000] [0.000] 
0.118 0.090 

(0.006) (0.007) 
[0.000] [0.332] 
0.052 0.082 

(0.008) (0.010) 
[0.000] [0.335] 
0.111 0.068 

(0.011) (0.013) 
[0.001] [0.335] 
0.077 0.066 

(0.013) (0.017) 
[0.014] [0.325] 

6 3 

6,558 4,900 

0.179 0.143 

(0.004) (0.005) 
[0.000] [0.000] 
0.082 0.077 

(0.008) (0.011) 
[0.423] [0.216] 
0.069 0.050 

(0.013) (0.016) 
[0.371] [0.385] 
0.057 0.061 

(0.017) (0.022) 
[0.524] [0.421] 
0.048 0.074 

(0.022) (0.027) 
[0.385] [0.425] 

1 2 

2,763 1,765 

0.125 0.096 

(0.006) (0.009) 
[0.003] [0.047] 
0.061 0.049 

(0.013) (0.019) 
[0.543] [0.168] 
0.057 0.100 

(0.020) (0.029) 
[0.458] [0.650] 
0.072 0.112 

(0.028) (0.037) 
[0.354] [0.603] 
0.103 0.106 

(0.033) (0.048) 
[0.327] [0.560] 

1 2 

1,209 610 

0.080 0.073 

(0.011) (0.012) 
[0.778] [0.821] 
0.067 0.079 

(0.022) (0.026) 
[0.436] [0.254] 
0.101 0.119 

(0.033) (0.038) 
[0.682] [0.272] 
0.119 0.092 

(0.043) (0.052) 
[0.453] [0.324] 
0.088 0.049 

(0.056) (0.067) 
[0.497] [0.044] 

0 0 

483 355 

0.077 0.088 

(0.014) (0.015) 
[0.687] 
0.098 0.096 

(0.029) (0.028) 
[0.935] 
0.088 0.098 

(0.044) (0.045) 
[0.943] 
0.108 0.082 

(0.062) (0.063) 
[0.915] 
0.055 0.077 

(0.079) (0.063) 
[0.947] 

0 0 

231 106 

Notes: Standard errors in parentheses. P-values from the goodness-of-fit test in square brackets. The goodness-of-fit 
test is obtained by jointly testing the significance of a set of bin dummies included as additional regressors in the 

model. The bin width used to construct the bin dummies is 0.01. The optimal order of the polynomial is chosen using 
Akaike s criterion (penalized cross-validation). 

on very wide bandwidths (0.5 or 1) are sys 

tematically larger than those for the smaller 
bandwidths (in the 0.05 to 0.25 range) that 
are still large enough for the estimates to be 

reasonably precise. A closer examination of 

figures 6-11 also suggests that the estimates 
for very wide bandwidths are larger than 
what the graphical evidence would suggest.35 
This is consistent with a substantial bias for 

these estimates linked to the fact that the lin 
ear approximation does not hold over a wide 
data range. This is particularly clear in the 
case of winning the next election where fig 
ures 9-11 show some clear curvature in the 

regression function. 
Table 4 shows the optimal bandwidth 

obtained using the ROT and cross-valida 
tion procedure. Consistent with the above 

35 In the case of the vote share, the quartic regression 
shown in figures 6-8 implies a treatment effect of 0.066, 

which is substantially smaller than the local linear regres 
sion estimates with a bandwidth of 0.5 (0.090) or 1 (0.118). 

Similarly, the quartic regression shown in figures 9-11 for 

winning the next election implies a treatment effect of 

0.375, which is again smaller than the local linear regres 
sion estimates with a bandwidth of 0.5 (0.566) or 1 (0.689). 
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TABLE 3 
RD Estimates of the Effect of Winning the Previous Election on 

Probability of Winning the Next Election 

Bandwidth: 1.00 0.50 0.25 0.15 0.10 0.05 0.04 0.03 0.02 0.01 

Polynomial of ord 

Zero 

One 

Two 

Three 

Four 

Optimal order of 

the polynomial 

Observations 

0.814 0.777 

(0.007) (0.009) 
[0.000] [0.000] 
0.689 0.566 

(0.011) (0.016) 
[0.000] [0.000] 
0.526 0.440 

(0.016) (0.023) 
[0.075] [0.145] 
0.452 0.370 

(0.021) (0.031) 
[0.818] [0.277] 
0.385 0.375 

(0.026) (0.039) 
[0.965] [0.200] 
4 3 

6,558 4,900 

0.687 0.604 

(0.013) (0.018) 
[0.000] [0.000] 
0.457 0.409 

(0.026) (0.036) 
[0.126] [0.269] 
0.375 0.391 

(0.039) (0.055) 
[0.253] [0.192] 
0.408 0.435 

(0.052) (0.075) 
[0.295] [0.115] 
0.424 0.529 

(0.066) (0.093) 
[0.200] [0.173] 
2 1 

2,763 1,765 

0.550 0.479 

(0.023) (0.035) 
[0.011] [0.201] 
0.378 0.378 

(0.047) (0.073) 
[0.336] [0.155] 
0.450 0.607 

(0.072) (0.110) 
[0.245] [0.485] 
0.472 0.566 

(0.096) (0.143) 
[0.138] [0.536] 
0.604 0.453 

(0.119) (0.183) 
[0.292] [0.593] 

1 2 

1,209 610 

0.428 0.423 

(0.040) (0.047) 
[0.852] [0.640] 
0.472 0.524 

(0.083) (0.099) 
[0.400] [0.243] 
0.586 0.589 

(0.124) (0.144) 
[0.367] [0.191] 
0.547 0.412 

(0.166) (0.198) 
[0.401] [0.234] 
0.331 0.134 

(0.214) (0.254) 
[0.507] [0.150] 
0 0 

483 355 

0.459 0.533 

(0.058) (0.082) 
[0.479] 
0.567 0.453 

(0.116) (0.157) 
[0.125] 
0.440 0.225 

(0.177) (0.246) 
[0.134] 
0.266 0.172 

(0.247) (0.349) 
[0.304] 
0.050 0.168 

(0.316) (0.351) 
[0.244] 
0 1 

231 106 

Notes: Standard errors in parentheses. P-values from the goodness-of-fit test in square brackets. The goodness-of-fit 
test is obtained by jointly testing the significance of a set of bin dummies included as additional regressors in the 

model. The bin width used to construct the bin dummies is 0.01. The optimal order of the polynomial is chosen using 
Akaike s criterion (penalized cross-validation). 

discussion, the suggested bandwidth ranges 
from 0.14 to 0.28, which is large enough to 

get precise estimates, but narrow enough to 
minimize the bias. Two interesting patterns 
can be observed in table 4. First, the band 

width chosen by cross-validation tends to be 
a bit larger than the one based on the rule 
of-thumb. Second, the bandwidth is gener 

ally smaller for winning the next election 

(second column) than for the vote share (first 
column). This is particularly clear when the 

optimal bandwidth is constrained to be the 
same on both sides of the cutoff point. This 
is consistent with the graphical evidence 

showing more curvature for winning the next 
election than the vote share, which calls for a 
smaller bandwidth to reduce the estimation 
bias linked to the linear approximation. 

Figures 14 and 15 plot the value of the 
cross-validation function over a wide range 
of bandwidths. In the case of the vote share 
where the linearity assumption appears more 
accurate (figures 6-8), the cross-validation 
function is fairly flat over a sizable range of 
values for the bandwidth (from about 0.16 
to 0.29). This range includes the optimal 
bandwidth suggested by cross-validation 

(0.282) at the upper end, and the ROT 
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TABLE 4 
Optimal Bandwidth for Local Linear Regressions, 

Voting Example 

A. Rule-of-thumb bandwidth Share of vote Win next election 
Left 0.162 0.164 

Right 0.208 0.130 
Both 0.180 0.141 

B. Optimal bandwidth selected by cross-validation 

Left 0.192 0.247 

Right 0.282 0.141 
Both 0.282 0.172 

Notes: Estimated over the range of the forcing variable (Democrat to Republican difference in the share of vote in 

the previous election) ranging between -0.5 and 0.5. See the text for a description of the rule-of-thumb and cross 

validation procedures for choosing the optimal bandwidth. 

bandwidth (0.180) at the lower end. In the 
case of winning the next election (figure 
15), the cross-validation procedure yields 
a sharper suggestion of optimal bandwidth 
around 0.15, which is quite close to both the 

optimal cross-validation bandwidth (0.172) 
and the ROT bandwidth (0.141). 

The main difference between the two 
outcome variables is that larger bandwidths 
start getting penalized more quickly in the 
case of winning the election (figure 15) than 
in the case of the vote share (figure 14). This 
is consistent with the graphical evidence in 

figures 6-11. Since the regression function 
looks fairly linear for the vote share, using 

larger bandwidths does not get penalized as 

much since they improve efficiency without 

generating much of a bias. But in the case 

of winning the election where the regression 
function exhibits quite a bit of curvature, 

larger bandwidths are quickly penalized for 

introducing an estimation bias. Since there 
is a real tradeoff between precision and 

bias, the cross-validation procedure is quite 
informative. By contrast, there is not much 
of a tradeoff when the regression function is 
more or less linear, which explains why the 

optimal bandwidth is larger in the case of the 
vote share. 

This example also illustrates the impor 
tance of first graphing the data before run 

ning regressions and trying to choose the 

optimal bandwidth. When the graph shows 
a more or less linear relationship, it is natu 
ral to expect different bandwidths to yield 
similar results and the bandwidth selection 

procedure not to be terribly informative. But 
when the graph shows substantial curvature, 
it is natural to expect the results to be more 
sensitive to the choice of bandwidth and that 
bandwidth selection procedures will play a 
more important role in selecting an appro 

priate empirical specification. 

4.3.2 Order of Polynomial in Local 

Polynomial Modeling 
In the case of polynomial regressions, 

the equivalent to bandwidth choice is 
the choice of the order of the polynomial 
regressions. As in the case of local linear 

regressions, it is advisable to try and report 
a number of specifications to see to what 
extent the results are sensitive to the order 
of the polynomial. For the same reason 
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Figure 15. Cross-Validation Function for Local Linear Regression: Winning the Next Election 
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mentioned earlier, it is also preferable to 
estimate separate regressions on the two 
sides of the cutoff point. 

The simplest way of implementing poly 
nomial regressions and computing standard 
errors is to run a pooled regression. For 

example, in the case of a third order polyno 
mial regression, we would have 

Y=az+rD + 

+ (3l2(X-c)2 + (3l3(X-cf 

+ (/3rl-Pll)D(X-c) 

+ ((3r2-(3l2)D(X-c)2 

+ ((3r3-(3l3)D(X-c)3+e. 

While it is important to report a number of 

specifications to illustrate the robustness of 
the results, it is often useful to have some 

more formal guidance on the choice of the 
order of the polynomial. Starting with van 
der Klaauw (2002), one approach has been 
to use a generalized cross-validation proce 
dure suggested in the literature on nonpara 
metric series estimators.36 One special case 
of generalized cross-validation (used by Dan 
A. Black, Jose Galdo, and Smith (2007a), for 

example), which we also use in our empirical 
example, is the well known Akaike informa 
tion criterion (AIC) of model selection. In a 

regression context, the AIC is given by 

AIC = N In (a2) + 2p, 

where a2 is the mean squared error of the 

regression, and p is the number of param 
eters in the regression model (order of the 

polynomial plus one for the intercept). 
One drawback of this approach is that it 

does not provide a very good sense of how 

a particular parametric model (say a cubic 

model) compares relative to a more general 
nonparametric alternative. In the context 
of the RD design, a natural nonparametric 
alternative is the set of unrestricted means of 
the outcome variable by bin used to graphi 
cally depict the data in section 4.1. Since one 
virtue of polynomial regressions is that they 
provide a smoothed version of the graph, 
it is natural to ask how well the polynomial 

model fits the unrestricted graph. A simple 
way of implementing the test is to add the 
set of bin dummies to the polynomial regres 
sion and jointly test the significance of the 
bin dummies. For example, in a first order 

polynomial model (linear regression), the 
test can be computed by including K ? 2 
bin dummies Bk, for k = 2 to K ? 

1, in the 
model 

Y - 
at+rD+ PniX-c) 

+ (fa-fiJDiX-c) 
K-l 

+ E <hBk + e 
k=2 

and testing the null hypothesis that 

02 
= 

03 
? ? = 0. Note that two of 

the dummies are excluded because of col 

linearity with the constant and the treatment 

dummy, D.37 In terms of specification choice 

procedure, the idea is to add a higher order 
term to the polynomial until the bin dum 

mies are no longer jointly significant. 
Another major advantage of this proce 

dure is that testing whether the bin dum 
mies are significant turns out to be a test for 

36 See Blundell and Duncan (1998) for a more general 
discussion of series estimators. 

37 While excluding dummies for the two bins next to the 
cutoff point yields more interpretable results (r remains 
the treatment effect), the test is invariant to the excluded 
bin dummies, provided that one excluded dummy is on the 
left of the cutoff point and the other one is on the right 
(something standard regression packages will automati 

cally do if all K dummies are included in the regression). 
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the presence of discontinuities in the regres 
sion function at points other than the cutoff 

point. In that sense, it provides a falsification 
test of the RD design by examining whether 
there are other unexpected discontinuities in 

the regression function at randomly chosen 

points (the bin thresholds). To see this, 
rewrite 

Y,k=1 4>kBk as 

K K 

E&b* = 0i + E(^-^-i)^^ 
k=l k=2 

where Bk = ^2*f=k Bj is a dummy variable 
indicating that the observation is in bin 
k or above, i.e., that the assignment variable 
X is above the bin cutoff bk. Testing whether 

all the 4>k 
? 

4>k_x are equal to zero is equiva 
lent to testing that all the (j)k are the same 

(the above test), which amounts to testing 
that the regression line does not jump at the 
bin thresholds bk. 

Tables 2 and 3 show the estimates of the 
treatment effect for the voting example. For 
the sake of completeness, a wide range of 
bandwidths and specifications are presented, 
along with the corresponding p-values for 
the goodness-of fit test discussed above (a 
bandwidth of 0.01 is used for the bins used 
to construct the test). We also indicate at the 
bottom of the tables the order of the polyno 
mial selected for each bandwidth using the 
AIC. Note that the estimates of the treat 
ment effect for the "order zero" polynomi 
als are just comparisons of means on the two 

sides of the cutoff point, while the estimates 

for the "order one" polynomials are based on 

(local) linear regressions. 
Broadly speaking, the goodness-of-fit tests 

do a very good job ruling out clearly mis 

specified models, like the zero order poly 
nomials with large bandwidths that yield 

upward biased estimates of the treatment 

effect. Estimates from models that pass 
the goodness-of-fit test mostly fall in the 
0.05-0.10 range for the vote share (table 2) 

and 0.37-0.57 for the probability of winning 
(table 3). One set of models the goodness-of 
fit test does not rule out, however, is higher 
order polynomial models with small band 
widths that tend to be imprecisely estimated 
as they "overfit" the data. 

Looking informally at both the fit of the 
model (goodness-of-fit test) and the preci 
sion of the estimates (standard errors) sug 
gests the following strategy: use higher 
order polynomials for large bandwidths of 
0.50 and more, lower order polynomials for 

bandwidths between 0.05 and 0.50, and zero 

order polynomials (comparisons of means) 
for bandwidths of less than 0.05, since the 
latter specification passes the goodness 
of-fit test for these very small bandwidths. 

Interestingly, this informal approach more or 

less corresponds to what is suggested by the 
AIC. In this specific example, it seems that 

given a specific bandwidth, the AIC provides 
reasonable suggestions on which order of the 

polynomial to use. 

4.3.3 Estimation in the Fuzzy RD Design 

As discussed earlier, in both the "sharp" 
and the "fuzzy" RD designs, the probability 
of treatment jumps discontinuously at the 
cutoff point. Unlike the case of the sharp RD 
where the probability of treatment jumps 
from 0 to 1 at the cutoff, in the fuzzy RD 

case, the probability jumps by less than one. 

In other words, treatment is not solely deter 
mined by the strict cutoff rule in the fuzzy 
RD design. For example, even if eligibility for 
a treatment solely depends on a cutoff rule, 
not all the eligibles may get the treatment 

because of imperfect compliance. Similarly, 
program eligibility may be extended in some 
cases even when the cutoff rule is not satis 

fied. For example, while Medicare eligibility 
is mostly determined by a cutoff rule (age 65 
or older), some disabled individuals under 
the age of 65 are also eligible. 

Since we have already discussed the inter 

pretation of estimates of the treatment effect 
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in a fuzzy RD design in section 3.4.1, here we 

just focus on estimation and implementation 
issues. The key message to remember from 
the earlier discussion is that, as in a standard 
IV framework, the estimated treatment effect 
can be interpreted as a local average treat 
ment effect, provided monotonicity holds. 

In the fuzzy RD design, we can write the 

probability of treatment as 

Pr(D = 1 |X = x) - 7 + ST + g(x 
- c), 

where T = 1[X > c] indicates whether the 

assignment variable exceeds the eligibil 
ity threshold c.38 Note that the sharp RD is 
a special case where 7=0, g(-) 

= 0, and 
5 = 1. It is advisable to draw a graph for 
the treatment dummy D as a function of the 

assignment variable X using the same proce 
dure discussed in section 4.1. This provides 
an informal way of seeing how large the 

jump in the treatment probability 5 is at the 
cutoff point, and what the functional form 

g(-) looks like. 
Since D = Pr(D = 1 |X 

= x) + u, where 
v is an error term independent of X, the 

fuzzy RD design can be described by the two 

equation system: 

(10) Y - a + rD + /(X 
- c) + e, 

(11) D - 7 + 5T + g(X-c) + v. 

Looking at these equations suggests esti 

mating the treatment effect r by instru 

menting the treatment dummy D with 
T. Note also that substituting the treat 
ment determining equation into the out 
come equation yields the reduced form 

(12) Y = ar + rrT + fr(X-c) + 

where rr? r 5. In this setting, rr can be 

interpreted as an "intent-to-treat" effect. 
Estimation in the fuzzy RD design can 

be performed using either the local linear 

regression approach or polynomial regres 
sions. Since the model is exactly identified, 
2SLS estimates are numerically identical to 
the ratio of reduced form coefficients rr/5, 

provided that the same bandwidth is used 
for equations (11) and (12) in the local lin 
ear regression case, and that the same order 
of polynomial is used for g(-) and/(-) in the 

polynomial regression case. 
In the case of the local linear regression, 

Imbens and Lemieux (2008) recommend 

using the same bandwidth in the treatment 
and outcome regression. When we are close 
to a sharp RD design, the function g(-) 
is expected to be very flat and the optimal 
bandwidth to be very wide. In contrast, there 
is no particular reason to expect the func 

tion/( ) in the outcome equation to be flat 
or linear, which suggests the optimal band 
width would likely be less than the one for 
the treatment equation. As a result, Imbens 
and Lemieux (2008) suggest focusing on the 
outcome equation for selecting bandwidth, 
and then using the same bandwidth for the 
treatment equation. 
While using a wider bandwidth for the 

treatment equation may be advisable on 

efficiency grounds, there are two practi 
cal reasons that suggest not doing so. First, 

using different bandwidths complicates the 

computation of standard errors since the 
outcome and treatment samples used for the 
estimation are no longer the same, meaning 
the usual 2SLS standard errors are no longer 
valid. Second, since it is advisable to explore 
the sensitivity of results to changes in the 

bandwidth, "trying out" separate bandwidths 
for each of the two equations would lead to 
a large and difficult-to-interpret number of 

specifications. 

38 
Although the probability of treatment is modeled as 

a linear probability model here, this does not impose any 
restrictions on the probability model since g(x 

? 
c) is unre 

stricted on both sides of the cutoff c, while T is a dummy 
variable. So there is no need to write the model using a 

probit or logit formulation. 
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The same broad arguments can be used in 
the case of local polynomial regressions. In 

principle, a lower order of polynomial could 
be used for the treatment equation (11) than 
for the outcome equation (12). In practice, 
however, it is simpler to use the same order 
of polynomial and just run 2SLS (and use 
2SLS standard errors). 

4.3.4 How to Compute Standard Errors? 

As discussed above, for inference in the 

sharp RD case we can use standard least 

squares methods. As usual, it is recom 

mended to use heteroskedasticity-robust 
standard errors (Halbert White 1980) instead 
of standard least squares standard errors. One 
additional reason for doing so in the RD case 
is to ensure the standard error of the treat 

ment effect is the same when either a pooled 
regression or two separate regressions on 

each side of the cutoff are used to compute 
the standard errors. As we just discussed, it 
is also straightforward to compute standard 
errors in the fuzzy RD case using 2SLS meth 

ods, although robust standard errors should 
also be used in this case. Imbens and Lemieux 

(2008) propose an alternative way of comput 
ing standard errors in the fuzzy RD case, but 
nonetheless suggest using 2SLS standard 
errors readily available in econometric soft 
ware packages. 

One small complication that arises in the 

nonparametric case of local linear regres 
sions is that the usual (robust) standard errors 

from least squares are only valid provided that 
h oc N~6 with 1/5 < 6 < 2/5. As we men 
tioned earlier, this is not a very important point 
in practice, and the usual standard errors can 

be used with local linear regressions. 

4.4 Implementing Empirical Tests of RD 

Validity and Using Covariates 

In this part of the section, we describe 
how to implement tests of the validity of the 
RD design and how to incorporate covariates 
in the analysis. 

4.4.1 Inspection of the Histogram of the 

Assignment Variable 

Recall that the underlying assumption 
that generates the local random assignment 
result is that each individual has impre 
cise control over the assignment variable, 
as defined in section 3.1.1. We cannot test 
this directly (since we will only observe one 
observation on the assignment variable per 
individual at a given point in time), but an 
intuitive test of this assumption is whether 
the aggregate distribution of the assignment 
variable is discontinuous, since a mixture of 
individual-level continuous densities is itself 
a continuous density. 

McCrary (2008) proposes a simple two 

step procedure for testing whether there is a 

discontinuity in the density of the assignment 
variable. In the first step, the assignment vari 
able is partitioned into equally spaced bins 
and frequencies are computed within those 
bins. The second step treats the frequency 
counts as a dependent variable in a local linear 

regression. See McCrary (2008), who adopts 
the nonparametric framework for asymptot 
ics, for details on this procedure for inference. 

As McCrary (2008) points out, this test can 
fail to detect a violation of the RD identifica 
tion condition if for some individuals there is 
a "jump" up in the density, offset by jumps 
"down" for others, making the aggregate den 

sity continuous at the threshold. McCrary 
(2008) also notes it is possible the RD esti 

mate could remain unbiased, even when 
there is important manipulation of the assign 

ment variable causing a jump in the density. 
It should be noted, however, that in order to 

rely upon the RD estimate as unbiased, one 
needs to invoke other identifying assumptions 
and cannot rely upon the mild conditions we 
focus on in this article.39 

39 
McCrary (2008) discusses an example where students 

who barely fail a test are given extra points so that they 
barely pass. The RD estimator can remain unbiased if one 
assumes that those who are given extra points were chosen 

randomly from those who barely failed. 
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Figure 16. Density of the Forcing Variable (Vote Share in Previous Election) 

One of the examples McCrary uses for his 
test is the voting model of Lee (2008) that 

we used in the earlier empirical examples. 
Figure 16 shows a graph of the raw densi 
ties computed over bins with a bandwidth 
of 0.005 (200 bins in the graph), along with 
a smooth second order polynomial model. 
Consistent with McCrary (2008), the graph 
shows no evidence of discontinuity at the 
cutoff. McCrary also shows that a formal 
test fails to reject the null hypothesis of no 

discontinuity in the density at the cutoff. 

4.4.2 Inspecting Baseline Covariates 

An alternative approach for testing the 

validity of the RD design is to examine 

whether the observed baseline covariates 
are "locally" balanced on either side of the 

threshold, which should be the case if the 
treatment indicator is locally randomized. 

A natural thing to do is conduct both 
a graphical RD analysis and a formal 

estimation, replacing the dependent vari 
able with each of the observed baseline 
covariates in W. A discontinuity would indi 
cate a violation in the underlying assump 
tion that predicts local random assignment. 
Intuitively, if the RD design is valid, we 

know that the treatment variable cannot 

influence variables determined prior to the 
realization of the assignment variable and 
treatment assignment; if we observe it does, 

something is wrong in the design. 
If there are many covariates in W, even 

abstracting from the possibility of misspecifi 
cation of the functional form, some discon 
tinuities will be statistically significant by 
random chance. It is thus useful to combine 
the multiple tests into a single test statistic to 
see if the data are consistent with no discon 
tinuities for any of the observed covariates. 
A simple way to do this is with a Seemingly 
Unrelated Regression (SUR) where each 

equation represents a different baseline 
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covariate, and then perform a %2 test for 
the discontinuity gaps in all questions being 
zero. For example, supposing the underlying 
functional form is linear, one would estimate 
the system 

wl = oli + Df31 + X^fi + i 

Wk = ?k + D/3K + + ?k 

and test the hypothesis that (3h...,(3K are 

jointly equal to zero, where we allow the 
?s to be correlated across the K equations. 
Alternatively, one can simply use the OLS 
estimates of (3h...,f3K obtained from a 

"stacked" regression where all the equations 
for each covariate are pooled together, while 
D and X are fully interacted with a set of K 

dummy variables (one for each covariate w^). 
Correlation in the error terms can then be 

captured by clustering the standard errors 
on individual observations (which appear 
in the stacked dataset K times). Under the 
null hypothesis of no discontinuities, the 

Wald test statistic N/3'V-1/? (where ft is 
the vector of estimates of /3l9...,/3K, and V 
is the cluster-and-heteroskedasticity con 
sistent estimate of the asymptotic variance 
of (3) converges in distribution to a %2 with 
K degrees of freedom. 

Of course, the importance of functional 
form for RD analysis means a rejection of 
the null hypothesis tells us either that the 

underlying assumptions for the RD design 
are invalid, or that at least some of the equa 
tions are sufficiently misspecified and too 

restrictive, so that nonzero discontinuities 
are being estimated, even though they do 
not exist in the population. One could use 

the parametric specification tests discussed 
earlier for each of the individual equations to 
see if misspecification of the functional form 
is an important problem. Alternatively, the 
test could be performed only for observations 

within a narrower window around the cut 
off point, such as the one suggested by the 
bandwidth selection procedures discussed in 
section 4.3.1. 

Figure 17 shows the RD graph for a base 
line covariate, the Democratic vote share in 
the election prior to the one used for the 

assignment variable (four years prior to 

the current election). Consistent with Lee 

(2008), there is no indication of a disconti 

nuity at the cutoff. The actual RD estimate 

using a quartic model is -0.004 with a stan 

dard error of 0.014. Very similar results are 

obtained using winning the election as the 
outcome variable instead (RD estimate of 
-0.003 with a standard error of 0.017). 

4.5 Incorporating Covariates in Estimation 

If the RD design is valid, the other use for 
the baseline covariates is to reduce the sam 

pling variability in the RD estimates. We dis 
cuss two simple ways to do this. First, one can 

"residualize" the dependent variable?sub 
tract from Y a prediction of Y based on the 
baseline covariates W?and then conduct an 

RD analysis on the residuals. Intuitively, this 

procedure nets out the portion of the varia 
tion in Y we could have predicted using the 

predetermined characteristics, making the 

question whether the treatment variable 
can explain the remaining residual varia 
tion in Y. The important thing to keep in 

mind is that if the RD design is valid, this 

procedure provides a consistent estimate of 
the same RD parameter of interest. Indeed, 

any combination of covariates can be used, 
and abstracting from functional form issues, 
the estimator will be consistent for the same 

parameter, as discussed above in equation 
(4). Importantly, this two-step approach also 
allows one to perform a graphical analysis of 
the residual. 

To see this more formally in the paramet 
ric case, suppose one is willing to assume 

that the expectation of Y as a function of X 
is a polynomial, and the expectation of each 
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element of W is also a polynomial function of 
X. This implies 

(13) Y = Dr + X7 + e 

W = XS + u, 

where X is a vector of polynomial terms in X, 
S and u are of conformable dimension, and 
e and u are by construction orthogonal to D 

and X. It follows that 

(14) Y - Wtt = Dr + X7 
- Wtt + e 

= Dr + X(7 
? 

Sir) 
? tar -f- e 

= Dr + X7 
- u7t + e. 

This makes clear that a regression of Y ? Wtt 
on D and X will give consistent estimates of 
rand 7. This is true no matter the value of 7r. 

Furthermore, as long as the specification in 

equation (13) is correct, in computing esti 

mated standard errors in the second step, 
one can ignore the fact that the first step was 

estimated.40 

The second approach?which uses the 
same assumptions implicit in equation (13)? 
is to simply add w to the regression. While 
this may seem to impose linearity in how w 

40 The two-step procedure solves the sample analogue 
to the following set of moment equations: 

As noted above, the second-step estimator for r is con 

sistent for any value of 7r. Letting 6 = (^), and using the 
notation of Whitney K. Newey and Daniel L. McFadden 

(1994), this means that the first row of V^ttq) 
= 

-GolG? 
is a row of zeros. It follows from their theorem 6.1, with 

the 1,1 element of V being the asymptotic variance of the 
estimator for r, that the 1,1 element of V is equal to the 1,1 
element of Gq 

1 
E[g(z)g(z)']Gg which is the asymptotic 

covariance matrix of the second stage estimator ignoring 
estimation in the first step. 

0 

E[W{Y 
- W7T{)) 0. 
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affects Y, it can be shown that the inclusion 
of these regressors will not affect the consis 

tency of the estimator for r.41 The advantage 
of this second approach is that under these 
functional form assumptions and with homo 

skedasticity, the estimator for ris guaranteed 
to have a lower asymptotic variance.42 By 
contrast, the "residualizing" approach can in 
some cases raise standard errors.43 

The disadvantage of solely relying upon 
this second approach, however, is that it does 
not help distinguish between an inappropri 
ate functional form and discontinuities in W, 
as both could potentially cause the estimates 

of rto change significantly when W is includ 
ed.44 On the other hand, the "residualizing" 
approach allows one to examine how well the 
residuals fit the assumed order of polynomial 
(using, for example, the methods described 
in subsection 4.3.2). If it does not fit well, 
then it suggests that the use of that order of 

polynomial with the second approach is not 

justified. Overall, one sensible approach is to 

directly enter the covariates, but then to use 

the "residualizing" approach as an additional 

diagnostic check on whether the assumed 
order of the polynomial is justified. 

As discussed earlier, an alternative 

approach to estimating the discontinuity 

involves limiting the estimation to a window 
of data around the threshold and using a lin 
ear specification within that window.45 We 
note that as the neighborhood shrinks, the 
true expectation of W conditional on X will 
become closer to being linear, and so equa 
tion (13) (with X containing only the linear 
term) will become a better approximation. 

For the voting example used throughout 
this paper, Lee (2008) shows that adding a 

set of covariates essentially has no impact on 

the RD estimates in the model where the 
outcome variable is winning the next elec 
tion. Doing so does not have a large impact 
on the standard errors either, at least up 
to the third decimal. Using the procedure 
based on residuals instead actually slightly 
increases the second step standard errors? 
a possibility mentioned above. Therefore in 
this particular example, the main advantage 
of using baseline covariates is to help estab 
lish the validity of the RD design, as opposed 
to improving the efficiency of the estimators. 

4.6 A Recommended "Checklist" for 
Implementation 

Below is a brief summary of our recom 
mendations for the analysis, presentation, 
and estimation of RD designs. 

41 To see this, rewrite equation (13) as Y = Dr + X7 + 
Da + Xb + Wc 4- /i, where a,b,c, and fi are linear projec 
tion coefficients and the residual from a population regres 
sion e on D, X, and W. If 0 = 0, then adding W will not 

affect the coefficient on D. This will be true?applying the 

Frisch-Waugh theorem?when the covariance between 
s and D ? Xd ? We (where d and e are coefficients from 

projecting D on X and W) is zero. This will be true when 
e = 0, because e is by assumption orthogonal to both D 

and X. Applying the Frisch-Waugh theorem again, e is the 

coefficient obtained by regressing D on W ? XS = w; by 
assumption w and D are uncorrelated, so e = 0. 

42 The asymptotic variance for the least squares esti 
mator (without including W) of r is given by the ratio 

V(e)/V(D) where D is the residual from the population 
regression of D on X. If W is included, then the least 

squares estimator has asymptotic variance of cr2/V(D 
? 

Xd ? 
We), where a2 is the variance of the error when W 

is included, and d and e are coefficients from projecting 
D on X and W. a2 cannot exceed V(e), and as shown in 

the footnote above, e = 0, and thus D ? Xd = D, imply 
ing that the denominator in the ratio does not change when 

W is included. 
43 From equation (14), the regression error variance 

will increase if V(e 
- 

un) > V(e) <^ V(utt) 
- 

2C(e, uir) > 

0, which will hold when, for example, e is orthogonal to u 

and 7r is nonzero. 
44 If the true equation for W contains more polyno 

mial terms than X, then e, as defined in the preceding 
footnotes (the coefficient obtained by regressing D on the 
residual from projecting W on X), will not be zero. This 

implies that including W will generally lead to inconsis 
tent estimates of r, and may cause the asymptotic variance 
to increase (since V(D 

- Xd - 
We) < V(D)). 

45 And we have noted that one can justify this by assum 

ing that in that specified neighborhood, the underlying 
function is in fact linear, and make standard parametric 
inferences. Or one can conduct a nonparametric inference 

approach by making assumptions about the rate at which 
the bandwidth shrinks as the sample size grows. 
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1. To assess the possibility of manipula 
tion of the assignment variable, show 
its distribution. The most straightfor 

ward thing to do is to present a histo 

gram of the assignment variable, using 
a fixed number of bins. The bin widths 
should be as small as possible, without 

compromising the ability to visually see 

the overall shape of the distribution. 
For an example, see figure 16. The bin 
to-bin jumps in the frequencies can 

provide a sense in which any jump at 

the threshold is "unusual." For this rea 

son, we recommend against plotting a 

smooth function comprised of kernel 

density estimates. A more formal test 
of a discontinuity in the density can be 
found in McCrary (2008). 

2. Present the main RD graph using 
binned local averages. As with the his 

togram, we recommend using a fixed 
number of nonoverlapping bins, as 

described in subsection 4.1. For exam 

ples, see figures 6-11. The nonover 

lapping nature of the bins for the local 

averages is important; we recommend 

against simply presenting a continuum 
of nonparametric estimates (with a sin 

gle break at the threshold), as this will 

naturally tend to give the impression of 
a discontinuity even if there does not 
exist one in the population. We recom 

mend reporting bandwidths implied by 
cross-validation, as well as the range of 
widths that are not statistically rejected 
in favor of strictly less restrictive alterna 
tives (for an example, see table 1). We 
recommend generally "undersmooth 

ing," while at the same time avoiding 
"too narrow" bins that produce a scatter 
of data points, from which it is difficult 
to see the shape of the underlying func 
tion. Indeed, we recommend against 
simply plotting the raw data without a 

minimal amount of local averaging. 

3. Graph a benchmark polynomial 
specification. Superimpose onto the 

graph the predicted values from a low 
order polynomial specification (see fig 
ures 6-11). One can often informally 
assess by comparing the two functions 
whether a simple polynomial specifi 
cation is an adequate summary of the 
data. If the local averages represent the 
most flexible "nonparametric" repre 
sentation of the function, the polyno 

mial represents a "best case" scenario 
in terms of the variance of the RD 

estimate, since if the polynomial speci 
fication is correct, under certain con 

ditions, the least squares estimator is 
efficient. 

4. Explore the sensitivity of the results 
to a range of bandwidths, and a range 
of orders to the polynomial. For an 

example, see tables 2 and 3. The tables 
should be supplemented with infor 

mation on the implied rule-of-thumb 
bandwidth and cross-validation band 
widths for local linear regression (as 
in table 4), as well as the AlC-implied 
optimal order of the polynomial. The 

specification tests that involve add 

ing bin dummies to the polynomial 
specifications can help rule out overly 
restrictive specifications. Among all the 

specifications that are not rejected by 
the bin-dummy tests, and among the 

polynomial orders recommended by 
the AIC, and the estimates given by 
both rule of thumb and CV bandwidths, 
report a "typical" point estimate and 
a range of point estimates. A useful 

graphical device for illustrating the 

sensitivity of the results to bandwidths 
is to plot the local linear discontinuity 
estimate against a continuum of band 
widths (within a range of bandwidths 
that are not ruled out by the above 

specification tests). For an example 
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Figure 18. Local Linear Regression with Varying Bandwidth: Share of Vote at Next Election 

of such a presentation, see the online 

appendix to Card, Carlos Dobkin, and 
Nicole Maestas (2009), and figure 18. 

5. Conduct a parallel RD analysis on 

the baseline covariates. As discussed 

earlier, if the assumption that there is 
no precise manipulation or sorting of 
the assignment variable is valid, then 
there should be no discontinuities in 

variables that are determined prior 
to the assignment. See figure 17, for 

example. 

6. Explore the sensitivity of the results 
to the inclusion of baseline covari 
ates. As discussed above, the inclusion 
of baseline covariates?no matter how 

highly correlated they are with the out 

come?should not affect the estimated 

discontinuity, if the no-manipulation 

assumption holds. If the estimates do 

change in an important way, it may indi 
cate a potential sorting of the assign 
ment variable that may be reflected in 
a discontinuity in one or more of the 

baseline covariates. In terms of imple 
mentation, in subsection 4.5, we sug 

gest simply including the covariates 

directly, after choosing a suitable order 
of polynomial. Significant changes in 

the estimated effect or increases in the 
standard errors may be an indication of 
a misspecified functional form. Another 
check is to perform the "residualizing" 
procedure suggested there, to see if 

that same order of polynomial provides 
a good fit for the residuals, using the 

specification tests from point 4. 

We recognize that, due to space limitations, 
researchers may be unable to present every 
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permutation of presentation (e.g., points 
2-4 for every one of 20 baseline covariates) 
within a published article. Nevertheless, we 

do believe that documenting the sensitiv 

ity of the results to these array of tests and 
alternative specifications?even if they only 
appear in unpublished, online appendices? 
is an important component of a thorough 
RD analysis. 

5. Special Cases 

In this section, we discuss how the RD 

design can be implemented in a number of 

specific cases beyond the one considered up 
to this point (that of a single cross-section 

with a continuous assignment variable). 

5.1 Discrete Assignment Variable and 

Specification Errors 

Up until now, we have assumed the assign 
ment variable was continuous. In practice, 
however, X is often discrete. For example, 
age or date of birth are often only available 
at a monthly, quarterly, or annual frequency 
level. Studies relying on an age-based cut 
off thus typically rely on discrete values of 
the age variable when implementing an RD 

design. 
Lee and Card (2008) study this case in 

detail and make a number of important 
points. First, with a discrete assignment vari 

able, it is not possible to compare outcomes 
in very narrow bins just to the right and left 
of the cutoff point. Consequently, one must 
use regressions to estimate the conditional 

expectation of the outcome variable at the 
cutoff point by extrapolation. As discussed 
in section 4, however, in practice we always 
extrapolate to some extent, even in the case 

of a continuous assignment variable. So the 
fact we must do so in the case of a discrete 

assignment variable does not introduce par 
ticular complications from an econometric 

point of view, provided the discrete variable 
is not too coarsely distributed. 

Additionally, the various estimation and 

graphing techniques discussed in section 
4 can readily be used in the case of a dis 
crete assignment variable. For instance, 
as with a continuous assignment variable, 
either local linear regressions or polyno 
mial regressions can be used to estimate the 

jump in the regression function at the cutoff 

point. Furthermore, the discreteness of the 

assignment variable simplifies the problem 
of bandwidth choice when graphing the 
data since, in most cases, one can simply 
compute and graph the mean of the out 
come variable for each value of the discrete 

assignment variable. The fact that the vari 
able is discrete also provides a natural way 
of testing whether the regression model is 
well specified by comparing the fitted model 
to the raw dispersion in mean outcomes at 
each value of the assignment variable. Lee 
and Card (2008) show that, when errors are 

homoskedastic, the model specification can 

be tested using the standard goodness-of-fit 
statistic 

(ESSR 
- 

ESSm)/(J 
- K) 

ESSUR/(N-J) 

where ESSR is the estimated sum of squares 
of the restricted model (e.g., low order poly 
nomial), while ESSUR is the estimated sum 

of squares of the unrestricted model where 
a full set of dummies (for each value of the 

assignment variable) are included. In this 
unrestricted model, the fitted regression cor 

responds to the mean outcome in each cell. 
G follows a F(J-K,N-J) distribution 
where / is the number of values taken by the 

assignment variables and K is the number of 

parameters of the restricted model. 
This test is similar to the test in section 

4 where we suggested including a full set 

of bin dummies in the regression model 
and testing whether the bin dummies were 

jointly significant. The procedure is even 
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simpler here, as bin dummies are replaced 
by dummies for each value of the discrete 

assignment variable. In the presence of het 

eroskedasticity, the goodness-of-fit test can 

be computed by estimating the model and 

testing whether a set of dummies for each 
value of the discrete assignment variable are 

jointly significant. In that setting, the test sta 
tistic follows a chi-square distribution with 

J 
? K degrees of freedom. 
In Lee and Card (2008), the difference 

between the true conditional expectation 
E [Y | X = x] and the estimated regression 
function forming the basis of the goodness 
of-fit test is interpreted as a random specifi 
cation error that introduces a group structure 
in the standard errors. One way of correcting 
the standard errors for group structure is to 
run the model on cell means.46 Another way 
is to "cluster" the standard errors. Note that 
in this setting, the goodness-of-fit test can also 
be interpreted as a test of whether standard 
errors should be adjusted for the group struc 
ture. In practice, it is nonetheless advisable to 
either group the data or cluster the standard 
errors in micro-data models irrespective of the 
results of the goodness-of-fit test. The main 

purpose of the test should be to help choose a 

reasonably accurate regression model. 
Lee and Card (2008) also discuss a num 

ber of issues including what to do when 

specification errors under treatment and 
control are correlated, and how to possibly 
adjust the RD estimates in the presence of 

specification errors. Since these issues are 

beyond the scope of this paper, interested 
readers should consult Lee and Card (2008) 
for more detail. 

5.2 Panel Data and Fixed Effects 

In some situations, the RD design will 
be embedded in a panel context, whereby 
period by period, the treatment variable is 
determined according to the realization of 
the assignment variable X. Again, it seems 

natural to propose the model 

Yit 
= 

Dttr+/(Xtt;7) + fl<+ett 

(where i and t denote the individuals and 

time, respectively), and simply estimate a 

fixed effects regression by including indi 
vidual dummy variables to capture the unit 

specific error component, a{. It is important 
to note, however, that including fixed effects 
is unnecessary for identification in an RD 

design. This sharply contrasts with a more 

traditional panel data setting where the error 

component a{ is allowed to be correlated 
with the observed covariates, including the 
treatment variable Dit, in which case includ 

ing fixed effects is essential for consistently 
estimating the treatment effect r. 

An alternative is to simply conduct the 
RD analysis for the entire pooled-cross 
section dataset, taking care to account for 

within-individual correlation of the errors 
over time using clustered standard errors. 
The source of identification is a compari 
son between those just below and above 
the threshold, and can be carried out with 
a single cross-section. Therefore, impos 
ing a specific dynamic structure intro 
duces more restrictions without any gain in 

identification. 
Time dummies can also be treated like 

any other baseline covariate. This is appar 
ent by applying the main RD identification 
result: conditional on what period it is, we 
are assuming the density of X is continuous 
at the threshold and, hence, conditional on 

X, the probability of an individual observa 
tion coming from a particular period is also 
continuous. 

46 When the discrete assignment variable?and the 
"treatment" dummy solely dependent on this variable?is 
the only variable used in the regression model, standard 

OLS estimates will be numerically equivalent to those 
obtained by running a weighted regression on the cell 

means, where the weights are the number of observations 

(or the sum of individual weights) in each cell. 
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We note that it becomes a little bit more 

awkward to use the justification proposed in 

subsection 4.5 for directly including dum 
mies for individuals and time periods on 

the right hand side of the regression. This 
is because the assumption would have to 
be that the probability that an observation 

belonged to each individual (or the probabil 
ity that an observation belonged to each time 

period) is a polynomial function in X and, 

strictly speaking, nontrivial polynomials are 
not bounded between 0 and 1. 

A more practical concern is that inclusion 
of individual dummy variables may lead to an 
increase in the variance of the RD estimator 
for another reason. If there is little "within 
unit" variability in treatment status, then 
the variation in the main variable of interest 

(treatment after partialling out the individual 

heterogeneity) may be quite small. Indeed, 

seeing standard errors rise when including 
fixed effects may be an indication of a mis 

specified functional form.47 

Overall, since the RD design is still valid 

ignoring individual or time effects, then the 

only rationale for including them is to reduce 

sampling variance. But there are other ways 
to reduce sampling variance by exploiting the 
structure of panel data. For instance, we can 
treat the lagged dependent variable Yit_i as 

simply another baseline covariate in period 
t. In cases where Yit is highly persistent over 

time, Yit_i may well be a very good predic 
tor and has a very good chance of reducing 
the sampling error. As we have also discussed 

earlier, looking at possible discontinuities in 

baseline covariates is an important test of the 

validity of the RD design. In this particular 
case, since Yit can be highly correlated with 

Yit_i, finding a discontinuity in Yit but not 
in Yit_i would be a strong piece of evidence 

supporting the validity of the RD design. 

In summary, one can utilize the panel 
nature of the data by conducting an RD 

analysis on the entire dataset, using lagged 
variables as baseline covariates for inclusion 
as described in subsection 4.5. The primary 
caution in doing this is to ensure that for 
each period, the included covariates are the 
variables determined prior to the present 
period s realization of Xit. 

6. Applications of RD Designs in 
Economics 

In what areas has the RD design been 

applied in economic research? Where do 
discontinuous rules come from and where 

might we expect to find them? In this section, 
we provide some answers to these questions 
by providing a survey of the areas of applied 
economic research that have employed the 
RD design. Furthermore, we highlight some 

examples from the literature that illustrate 
what we believe to be the most important 
elements of a compelling, "state-of-the-art" 

implementation of RD. 

6.1 Areas of Research Using RD 

As we suggested in the introduction, the 
notion that the RD design has limited appli 
cability to a few specific topics is inconsistent 
with our reading of existing applied research 
in economics. Table 5 summarizes our survey 
of empirical studies on economic topics that 
have utilized the RD design. In compiling 
this list, we searched economics journals as 

well as listings of working papers from econ 

omists, and chose any study that recognized 
the potential use of an RD design in their 

given setting. We also included some papers 
from non-economists when the research was 

closely related to economic work. 
Even with our undoubtedly incomplete 

compilation of over sixty studies, table 5 
illustrates that RD designs have been applied 
in many different contexts. Table 5 summa 

rizes the context of the study, the outcome 47 See the discussion in section 4.5. 
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TABLE 5 
Regression Discontinuity Applications in Economics 

Context Outcome(s) Treatment(s) Assignment variable(s) Study 

Education 

Angrist and Lavy (1999) 

Asadullah (2005) 

Bayer, Ferreira, 
and McMillan (2007) 

Black (1999) 

Canton and Blom (2004) 

Cascio and Lewis (2006) 

Chay, McEwan, 
and Urquiola (2005) 

Chiang (2009) 

Clark (2009) 

Ding and Lehrer (2007) 

Figlio and Kenny (2009) 

Goodman (2008) 

Goolsbee and 

Guryan (2006) 

Guryan (2001) 

Hoxby (2000) 

Kane (2003) 

Lavy (2002) 

Lavy (2004) 

Lavy (2006) 

Jacob and Lefgren (2004a) 

Public Schools 

(Grades 3-5), Israel 

Secondary schools, 

Bangladesh 

Valuation of schools 
and neighborhoods, 
Northern California 

Valuation of school 

quality, Massachusetts 

Higher education, 
Mexico 

Teenagers, 
United States 

Elementary schools, 
Chile 

School accountability, 
Florida 

High schools, U.K. 

Secondary school 

students, China 

Elementary and middle 

schools, Florida 

College enrollment, 
Massachusetts 

Public schools, 
California 

State-level equalization: 
elementary, middle 

schools, Massachusetts 

Elementary schools, 
Connecticut 

Higher education, 
California 

Secondary schools, 
Israel 

Secondary schools, 
Israel 

Secondary schools, 
Tel Aviv 

Elementary schools, 

Chicago 

Test scores 

Examination pass rate 

Housing prices, 
school test scores, 

demographic 
characteristics 

Housing prices 

University enrollment, 
GPA, Part-time 

employment, Career 
choice 

AFQT test scores 

Test scores 

Test scores, education 

quality 

Examination pass rates 

Academic achievement 

(Test scores) 

Private donations to 
school 

School choice 

Internet access in 

classrooms, test scores 

Spending on schools, 
test scores 

Test scores 

College attendance 

Test scores, 

drop out rates 

Test scores 

Dropout rates, 
test scores 

Test scores 

Class size 

Class size 

Inclusion in school 
attendance region 

Inclusion in school 
attendance region 

Student loan receipt 

Age at school entry 

Improved infrastructure, 
more resources 

Threat of sanctions 

"Grant maintained" 
school status 

School assignment 

D or F grade in school 

performance measure 

Scholarship offer 

E-Rate subsidy amount 

State education aid 

Class size 

Financial aid receipt 

Performance based 
incentives for teachers 

Pay-for-performance 
incentives 

School choice 

Teacher training 

Student enrollment 

Student enrollment 

Geographic location 

Geographic location 

Economic need index 

Birthdate 

School averages of test 
scores 

School's assessment 
score 

Vote share 

Entrance examination 
scores 

Grading points 

Test scores 

Proportion of students 

eligible for lunch 

program 

Relative average 
property values 

Student enrollment 

Income, assets, GPA 

Frequency of school 

type in community 

School matriculation 
rates 

Geographic location 

School averages on 
test scores 
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TABLE 5 (continued) 
Regression Discontinuity Applications in Economics 

Study Context Outcome(s) Treatment(s) Assignment variable(s) 

Jacob and Lefgren (2004b) 

Leuven, Lindahl, 
Oosterbeek, and 
Webbink (2007) 

Matsudaira (2008) 

Urquiola (2006) 

Urquiola and 

Verhoogen (2009) 

Van der Klaauw 

(2002,1997) 

Van der Klaauw (2008a) 

Elementary schools, 

Chicago 

Primary schools, 
Netherlands 

Elementary schools, 
Northeastern United 
States 

Elementary schools, 
Bolivia 

Class size sorting- RD 

violations, Chile 

College enrollment, 
East Coast College 

Elementary/middle 
schools, New York 

City 

Test scores 

Test scores 

Test scores 

Test scores 

Test scores 

Enrollment 

Test scores, 
student attendance 

Labor Market 

Battistin and Rettore 

(2002) 

Behaghel, Crepon, 
and Sedillot (2008) 

Black, Smith, Berger, and 
Noel (2003); Black, 
Galdo, and Smith (2007b) 

Card, Chetty, 
and Weber (2007) 

Chen and van der Klaauw 

(2008) 

Job training, Italy Employment rates 

Labor laws, France 

UI claimants, Kentucky 

Hiring among age 
groups 

Earnings, benefit 

receipt/duration 

Unemployment 
benefits, Austria 

De Giorgi (2005) 

DiNardo and Lee (2004) 

Dobkin and 
Ferreira (2009) 

Edmonds (2004) 

Hahn, Todd, and 
van der Klaauw (1999) 

Lalive (2008) 

Disability insurance 

beneficiaries, 
United States 

Welfare-to-work 

program, United 

Kingdom 

Unionization, 
United States 

Individuals, California 
and Texas 

Child labor supply and 
school attendance, 
South Africa 

Discrimination, 
United States 

Unemployment 
Benefits, Austria 

Unemployment 
duration 

Labor force 

participation 

Re-employment 
probability 

Summer school 

attendance, grade 
retention 

Extra funding 

Summer school, 

grade promotion 

Class size 

Class size 

Financial Aid offer 

Title I federal funding 

Training program 
(computer skills) 

Tax exemption for 

hiring firm 

Mandatory reemploy 
ment services (job 
search assistance) 

Lump-sum severance 

pay, extended UI 
benefits 

Disability insurance 
benefits 

Standardized test 
scores 

Percent disadvantaged 
minority pupils 

Test scores 

Student enrollment 

Student enrollment 

SAT scores, GPA 

Poverty rates 

Attitudinal test score 

Age of worker 

Profiling score 

(expected benefit 

duration) 

Months employed, 
job tenure 

Age at disability 
decision 

Job search assistance, Age at end of 

training, education unemployment spell 

Union victory in NLRB Vote share 
election 

Birthdate 

Wages, employment 
output 

Educational attainment, Age at school entry 
wages 

Child labor supply, school Pension receipt of oldest Age 
attendance family member 

Minority employment Coverage of federal Number of employees 
antidiscrimination law at firm 

Unemployment 
duration 

Maximum benefit 
duration 

Age at start of 

unemployment 
spell, geographic 
location 
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TABLE 5 (continued) 
Regression Discontinuity Applications in Economics 

Study Context Outcome(s) Treatment(s) Assignment variable(s) 

Lalive (2007) 

Lalive, Van Ours, 
and Zweimller (2006) 

Leuven and Oosterbeek 

(2004) 
Lemieux and Milligan 

(2008) 

Oreopoulos (2006) 

Political Economy 

Albouy (2009) 

Albouy (2008) 
Ferreira and Gyourko 

(2009) 
Lee (2008, 2001) 

Lee, Moretti, and Butler 

(2004) 

McCrary (2008) 

Pettersson-Lidbom (2006) 

Pettersson-Lidbom (2008) 

Health 

Card and Shore-Sheppard 
(2004) 

Card, Dobkin, 
and Maestas (2008) 

Card, Dobkin, 
and Maestas (2009) 

Carpenter and Dobkin 

(2009) 

Ludwig and Miller (2007) 

McCrary and Royer (2003) 

Unemployment, 
Austria 

Unemployment, 
Austria 

Employers, 
Netherlands 

Welfare, Canada 

Returns to education, 
U.K. 

Medicaid, 
United States 

Medicare, 
United States 

Medicare, California 

Snyder and Evans (2006) 

Alcohol and mortality, 
United States 

Head Start, 
United States 

Maternal education, 
United States, 
California and Texas 

Social Security 
recipients, United 
States 

Unemployment duration, 
duration of job search, 

quality of post 
unemployment jobs 

Unemployment 
duration 

Benefits duration Age at start of 

unemployment spell 

Training, wages 

Employment, marital 
status, living 
arrangements 

Earnings 

Congress, United States 

Senate, United States 

Mayoral Elections, 
United States 

Congressional elections, 
United States 

House of Representa 
tives, United States 

House of Representa 
tives, United States 

Local Governments, 
Sweden and Finland 

Local Governments, 
Sweden 

Federal expenditures 
Roll call votes 

Local expenditures 

Vote share in next 
election 

Roll call votes 

N/A 

Expenditures, 
tax revenues 

Expenditures, 
tax revenues 

Overall insurance 

coverage 

Health care utilization 

Benefit replacement Pre-unemployment 
rate, potential benefit income, age 
duration 

Business tax deduction, Age of employee 
training 

Cash benefit Age 

Coverage of compulsory Birth year 
schooling law 

Party control of seat 

Incumbency 

Incumbency 

Incumbency 

Incumbency 

Passing of resolution 

Number of council seats 

Left-, right-wing bloc 

Medicaid eligibility 

Coverage under 
Medicare 

Insurance coverage, Medicare coverage 
Health services, Mortality 

Mortality Attaining minimum 

legal drinking age 

Child mortality, Head Start funding 
educational attainment 

Infant health, fertility 
timing 

Mortality 

Age of school entry 

Social security 
payments ($) 

Vote share in election 

Initial vote share 

Initial vote share 

Initial vote share 

Initial vote share 

Share of roll call vote 

"Yeay" 

Population 

Left-wing parties' 
share 

Birthdate 

Age 

Age 

Age 

County poverty rates 

Birthdate 

Birthdate 
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TABLE 5 (continued) 
Regression Discontinuity Applications in Economics 

Context Outcome(s) Treatment(s) Assignment variable(s) Study 

Crime 

Berk and DeLeeuw (1999) 

Berk and Rauma (1983) 

Chen and Shapiro (2004) 

Lee and McCrary (2005) 

Hjalmarsson (2009) 

Environment 

Chay and Greenstone 

(2003) 

Chay and Greenstone 

(2005) 
Davis (2008) 

Greenstone and Gallagher 
(2008) 

Other 

Battistin and Rettore 

(2008) 

Baum-Snow and Marion 

(2009) 

Buddelmeyer and Skoufias 

(2004) 

Buettner (2006) 

Card, Mas, and Rothstein 

(2008) 
Cole (2009) 

Edmonds, Mammen, and 
Miller (2005) 

Ferreira (2007) 

Pence(2006) 

Pitt and Khandker (1998) 

Pitt, Khandker, McKernan, 
and Latif (1999) 

Prisoner behavior in 
California 

Ex-prisoners recidivism, 
California 

Ex-prisoners recidivism, 
United States 

Criminal offenders, 
Florida 

Juvenile offenders, 

Washington State 

Health effects of 

pollution, United States 

Valuation of air quality, 
United States 

Restricted driving 
policy, Mexico 

Hazardous waste, 
United States 

Mexican anti-poverty 
program 
(PROGRESA) 

Housing subsidies, 
United States 

Mexican anti-poverty 
program 
(PROGRESA) 

Fiscal equalization 
across municipalities, 
Germany 

Racial segregation, 
United States 

Bank nationalization, 
India 

Household structure, 
South Africa 

Residential mobility, 
California 

Mortgage credit, 
United States 

Poor households, 

Bangladesh 

Poor households, 

Bangladesh 

Inmate misconduct 

Arrest, parole violation 

Arrest rates 

Arrest rates 

Recidivism 

Infant mortality 

Housing prices 

Hourly air pollutant 
measures 

Housing prices 

School attendance 

Residents' 

characteristics, new 

housing construction 

Child labor and 
school attendance 

Business tax rate 

Changes in census tract 
racial composition 

Share of credit granted 
by public banks 

Household composition 

Household mobility 

Size of loan 

Labor supply, children 
school enrollment 

Contraceptive use, 
Childbirth 

Prison security levels 

Unemployment 
insurance benefit 

Prison security levels 

Severity of sanctions 

Sentence length 

Regulatory status 

Regulatory status 

Restricted automobile 
use 

Superfund clean-up 
status 

Cash grants 

Increased subsidies 

Cash grants 

Implicit marginal tax 
rate on grants to 
localities 

Minority share exceeding 
"tipping" point 

Nationalization of 

private banks 

Pension receipt of 
oldest family member 

Coverage of tax benefit 

State mortgage credit 
laws 

Group-based credit 

program 

Group-based credit 

program 

Classification score 

Reported hours of 
work 

Classification score 

Age at arrest 

Criminal history score 

Pollution levels 

Pollution levels 

Time 

Ranking of level of 
hazard 

Pre-assigned 
probability of being 
poor 

Percentage of eligible 
households in area 

Pre-assigned 
probability of being 
poor 

Tax base 

Initial minority share 

Size of bank 

Age 

Age 

Geographic location 

Acreage of land 

Acreage of land 
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variable, the treatment of interest, and the 

assignment variable employed. 
While the categorization of the various 

studies into broad areas is rough and some 

what arbitrary, it does appear that a large share 
come from the area of education, where the 
outcome of interest is often an achievement 
test score and the assignment variable is also 
a test score, either at the individual or group 
(school) level. The second clearly identifiable 

group are studies that deal with labor market 
issues and outcomes. This probably reflects 

that, within economics, the RD design has so 

far primarily been used by labor economists, 
and that the use of quasi-experiments and 

program evaluation methods in documenting 
causal relationships is more prevalent in labor 
economics research. 

There is, of course, nothing in the struc 
ture of the RD design tying it specifically to 
labor economics applications. Indeed, as the 
rest of the table shows, the remaining half 
of the studies are in the areas of political 
economy, health, crime, environment, and 
other areas. 

6.2 Sources of Discontinuous Rules 

Where do discontinuous rules come from, 
and in what situations would we expect to 
encounter them? As table 5 shows, there is 
a wide variety of contexts where discontinu 
ous rules determine treatments of interest. 
There are, nevertheless, some patterns that 

emerge. We organize the various discontinu 
ous rules below. 

Before doing so, we emphasize that a good 
RD analysis?as with any other approach 
to program evaluation?is careful in clearly 
spelling out exactly what the treatment is, 
and whether it is of any real salience, inde 

pendent of whatever effect it might have on 

the outcome. For example, when a pretest 
score is the assignment variable, we could 

always define a "treatment" as being "having 
passed the exam" (with a test score of 50 per 
cent or higher), but this is not a very inter 

esting "treatment" to examine since it seems 

nothing more than an arbitrary label. On the 
other hand, if failing the exam meant not 

being able to advance to the next grade in 

school, the actual experience of treated and 
control individuals is observably different, no 
matter how large or small the impact on the 
outcome. 

As another example, in the U.S. Congress, 
a Democrat obtaining the most votes in 
an election means something real?the 
Democratic candidate becomes a represen 
tative in Congress; otherwise, the Democrat 
has no official role in the government. But 
in a three-way electoral race, the treatment 
of the Democrat receiving the second-most 
number of votes (versus receiving the low 
est number) is not likely a treatment of inter 
est: only the first-place candidate is given 
any legislative authority. In principle, stories 
could be concocted about the psychological 
effect of placing second rather than third 
in an election, but this would be an exam 

ple where the salience of the treatment is 
more speculative than when treatment is a 
concrete and observable event (e.g., a can 

didate becoming the sole representative of a 

constituency). 

6.2.1 Necessary Discretization 

Many discontinuous rules come about 
because resources cannot, for all practical 
purposes, be provided in a continuous man 
ner. For example, a school can only have a 

whole number of classes per grade. For 
a fixed level of enrollment, the moment a 

school adds a single class, the average class 
size drops. As long as the number of classes 
is an increasing function of enrollment, 
there will be discontinuities at enrollments 

where a teacher is added. If there is a man 

dated maximum for the student to teacher 

ratio, this means that these discontinuities 
will be expected at enrollments that are 

exact multiples of the maximum. This is the 
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essence of the discontinuous rules used in 

the analyses of Angrist and Lavy (1999), M. 
Niaz Asadullah (2005), Caroline M. Hoxby 
(2000), Urquiola (2006), and Urquiola and 

Verhoogen (2009). 
Another example of necessary discretiza 

tion arises when children begin their school 

ing years. Although there are certainly 
exceptions, school districts typically follow a 

guideline that aims to group children together 
by age, leading to a grouping of children 
born in year-long intervals, determined by 
a single calendar date (e.g., September 1). 
This means children who are essentially of 
the same age (e.g., those born on August 31 
and September 1), start school one year apart. 
This allocation of students to grade cohorts 
is used in Elizabeth U. Cascio and Ethan G. 
Lewis (2006), Dobkin and Fernando Ferreira 

(2009), and McCrary and Royer (2003). 
Choosing a single representative by way 

of an election is yet another example. When 
the law or constitution calls for a single rep 
resentative of some constituency and there 
are many competing candidates, the choice 
can be made via a "first-past-the-post" or 

"winner-take-all" election. This is the typi 
cal system for electing government officials 
at the local, state, and federal level in the 
United States. The resulting discontinuous 

relationship between win/loss status and the 
vote share is used in the context of the U.S. 

Congress in Lee (2001, 2008), Lee, Enrico 
Moretti and Matthew J. Butler (2004), 
David Albouy (2009), Albouy (2008), and in 
the context of mayoral elections in Ferreira 
and Joseph Gyourko (2009). The same idea 
is used in examining the impacts of union 

recognition, which is also decided by a secret 
ballot election (DiNardo and Lee 2004). 

6.2.2 Intentional Discretization 

Sometimes resources could potentially 
be allocated on a continuous scale but, in 

practice, are instead done in discrete lev 
els. Among the studies we surveyed, we 

identified three broad motivations behind 
the use of these discontinuous rules. 

First, a number of rules seem driven 

by a compensatory or equalizing motive. 
For example, in Kenneth Y. Chay, Patrick 

J. McEwan and Urquiola (2005), Edwin 
Leuven et al. (2007), and van der Klaauw 

(2008a), extra resources for schools were allo 
cated to the neediest communities, either on 

the basis of school-average test scores, dis 

advantaged minority proportions, or poverty 
rates. Similarly, Ludwig and Miller (2007), 
Erich Battistin and Enrico Rettore (2008), 
and Hielke Buddelmeyer and Emmanuel 
Skoufias (2004) study programs designed to 

help poor communities, where the eligibility 
of a community is based on poverty rates. In 
each of these cases, one could imagine pro 

viding the most resources to the neediest and 

gradually phasing them out as the need index 

declines, but in practice this is not done, per 

haps because it was impractical to provide 
very small levels of the treatment, given the 
fixed costs in administering the program. 

A second motivation for having a discon 
tinuous rule is to allocate treatments on the 
basis of some measure of merit. This was 
the motivation behind the merit award from 
the analysis of Thistlethwaite and Campbell 
(1960), as well as recent studies of the effect 
of financial aid awards on college enroll 

ment, where the assignment variable is some 
measure of student achievement or test 

score, as in Thomas J. Kane (2003) and van 

der Klaauw (2002). 

Finally, we have observed that a number 
of discontinuous rules are motivated by the 
need to most effectively target the treatment. 
For example, environmental regulations or 

clean-up efforts naturally will focus on the 
most polluted areas, as in Chay and Michael 
Greenstone (2003), Chay and Greenstone 

(2005), and Greenstone and Justin Gallagher 
(2008). In the context of criminal behav 

ior, prison security levels are often assigned 
based on an underlying score that quantifies 
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potential security risks, and such rules were 
used in Richard A. Berk and Jan de Leeuw 

(1999) and M. Keith Chen and Jesse M. 

Shapiro (2004). 

6.3 Nonrandomized Discontinuity Designs 

Throughout this article, we have focused 
on regression discontinuity designs that fol 
low a certain structure and timing in the 

assignment of treatment. First, individuals 
or communities?potentially in anticipa 
tion of the assignment of treatment?make 
decisions and act, potentially altering their 

probability of receiving treatment. Second, 
there is a stochastic shock due to "nature," 

reflecting that the units have incomplete 
control over the assignment variable. And 

finally, the treatment (or the intention to 

treat) is assigned on the basis of the assign 
ment variable. 

We have focused on this structure because 
in practice most RD analyses can be viewed 

along these lines, and also because of the 

similarity to the structure of a randomized 

experiment. That is, subjects of a random 
ized experiment may or may not make deci 
sions in anticipation to participating in a 
randomized controlled trial (although their 
actions will ultimately have no influence on 
the probability of receiving treatment). Then 
the stochastic shock is realized (the random 

ization). Finally, the treatment is adminis 
tered to one of the groups. 

A number of the studies we surveyed 
though, did not seem to fit the spirit or 
essence of a randomized experiment. Since it 
is difficult to think of the treatment as being 
locally randomized in these cases, we will 
refer to the two research designs we identi 
fied in this category as "nonrandomized" dis 

continuity designs. 

6.3.1 Discontinuities in Age with Inevitable 
Treatment 

Sometimes program status is turned 
on when an individual reaches a certain 

age. Receipt of pension benefits is typi 
cally tied to reaching a particular age (see 
Eric V. Edmonds 2004; Edmonds, Kristin 

Mammen, and Miller 2005) and, in the 
United States, eligibility for the Medicare 

program begins at age 65 (see Card, 
Dobkin, and Maestas 2008) and young 
adults reach the legal drinking age at 21 

(see Christopher Carpenter and Dobkin 

2009). Similarly, one is subject to the less 

punitive juvenile justice system until the 

age of majority (typically, 18) (see Lee and 
McCrary 2005). 

These cases stand apart from the typical 
RD designs discussed above because here 

assignment to treatment is essentially inevi 

table, as all subjects will eventually age into 
the program (or, conversely, age out of the 

program). One cannot, therefore, draw any 

parallels with a randomized experiment, 
which necessarily involves some ex ante 

uncertainty about whether a unit ultimately 
receives treatment (or the intent to treat). 

Another important difference is that 
the tests of smoothness in baseline char 
acteristics will generally be uninformative. 

Indeed, if one follows a single cohort over 

time, all characteristics determined prior to 

reaching the relevant age threshold are by 
construction identical just before and after 
the cutoff.48 Note that in this case, time is 
the assignment variable, and therefore can 
not be manipulated. 

This design and the standard RD share 
the necessity of interpreting the discontinu 

ity as the combined effect of all factors that 
switch on at the threshold. In the example of 
Thistlethwaite and Campbell (1960), if pass 
ing a scholarship exam provides the symbolic 

48 There are exceptions to this. There could be attrition 
over time, so that in principle, the number of observations 
could discontinuously drop at the threshold, changing the 

composition of the remaining observations. Alternatively, 
when examining a cross-section of different birth cohorts at 
a given point in time, it is possible to have sharp changes in 
the characteristics of individuals with respect to birthdate. 
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honor of passing the exam as well as a mon 

etary award, the true treatment is a pack 
age of the two components, and one cannot 
attribute any effect to only one of the two. 

Similarly, when considering an age-activated 
treatment, one must consider the possibility 
that the age of interest is causing eligibility 
for potentially many other programs, which 
could affect the outcome. 

There are at least two new issues that 
are irrelevant for the standard RD but are 

important for the analysis of age discontinui 
ties. First, even if there is truly an effect on 

the outcome, if the effect is not immediate, 
it generally will not generate a discontinu 

ity in the outcome. For example, suppose 
the receipt of Social Security benefits has 
no immediate impact but does have a long 
run impact on labor force participation. 
Examining the labor force behavior as a 

function of age will not yield a discontinuity 
at age 67 (the full retirement age for those 
born after 1960), even though there may be 
a long-run effect. It is infeasible to estimate 

long-run effects because by the time we 
examine outcomes five years after receiving 
the treatment, for example, those individuals 

who were initially just below and just above 

age 67 will be exposed to essentially the same 

length of time of treatment (e.g., five years).49 
The second important issue is that, be 

cause treatment is inevitable with the pas 
sage of time, individuals may fully anticipate 
the change in the regime and, therefore, may 
behave in certain ways prior to the time when 
treatment is turned on. Optimizing behavior 
in anticipation of a sharp regime change may 
either accentuate or mute observed effects. 
For example, simple life-cycle theories, 

assuming no liquidity constraints, suggest 
that the path of consumption will exhibit 

no discontinuity at age 67, when Social 

Security benefits commence payment. On 
the other hand, some medical procedures 
are too expensive for an under-65-year-old 
but would be covered under Medicare upon 
turning 65. In this case, individuals' greater 
awareness of such a predicament will tend to 
increase the size of the discontinuity in uti 
lization of medical procedures with respect 
to age (e.g., see Card, Dobkin, and Maestas 

2008). 
At this time we are unable to provide any 

more specific guidelines for analyzing these 

age/time discontinuities since it seems that 
how one models expectations, information, 
and behavior in anticipation of sharp changes 
in regimes will be highly context-dependent. 
But it does seem important to recognize 
these designs as being distinct from the stan 
dard RD design. 
We conclude by emphasizing that when 

distinguishing between age-triggered treat 
ments and a standard RD design, the involve 
ment of age as an assignment variable is not 
as important as whether the receipt of treat 
ment?or analogously, entering the control 
state?is inevitable. For example, on the sur 

face, the analysis of the Medicaid expansions 
in Card and Lara D. Shore-Sheppard (2004) 

appears to be an age-based discontinuity 
since, effective July 1991, U.S. law requires 
states to cover children born after September 
30, 1983, implying a discontinuous relation 

ship between coverage and age, where the 

discontinuity in July 1991 was around 8 years 
of age. This design, however, actually fits 

quite easily into the standard RD framework 
we have discussed throughout this paper. 

First, note that treatment receipt is not 
inevitable for those individuals born near the 

September 30, 1983, threshold. Those born 

strictly after that date were covered from 

July 1991 until their 18th birthday, while 
those born on or before the date received no 

such coverage. Second, the data generating 
process does follow the structure discussed 

49 
By contrast, there is no such limitation with the 

standard RD design. One can examine outcomes defined 
at an arbitrarily long time period after the assignment to 
treatment. 
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above. Parents do have some influence 

regarding when their children are born, but 
with only imprecise control over the exact 
date (and at any rate, it seems implausible 
that parents would have anticipated that such 
a Medicaid expansion would have occurred 

eight years in the future, with the particular 
birthdate cutoff chosen). Thus the treatment 
is assigned based on the assignment variable, 

which is the birthdate in this context. 

Examples of other age-based discontinui 
ties where neither the treatment nor control 
state is guaranteed with the passage of time 
that can also be viewed within the standard 
RD framework include studies by Cascio and 
Lewis (2006), McCrary and Royer (2003), 
Dobkin and Ferreira (2009), and Phillip 
Oreopoulos (2006). 

6.3.2 Discontinuities in Geography 

Another "nonrandomized" RD design 
is one involving the location of residences, 

where the discontinuity threshold is a bound 

ary that demarcates regions. Black (1999) 
and Patrick Bayer, Ferreira, and Robert 
McMillan (2007) examine housing prices on 

either side of school attendance boundaries 
to estimate the implicit valuation of different 
schools. Lavy (2006) examines adjacent 
neighborhoods in different cities, and there 
fore subject to different rules regarding 
student busing. Rafael Lalive (2008) com 

pares unemployment duration in regions in 
Austria receiving extended benefits to adja 
cent control regions. Karen M. Pence (2006) 
examines census tracts along state borders 
to examine the impact of more borrower 

friendly laws on mortgage loan sizes. 
In each of these cases, it is awkward to 

view either houses or families as locally ran 

domly assigned. Indeed this is a case where 
economic agents have quite precise control 
over where to place a house or where to live. 
The location of houses will be planned in 

response to geographic features (rivers, lakes, 
hills) and in conjunction with the planning of 

streets, parks, commercial development, etc. 
In order for this to resemble a more standard 
RD design, one would have to imagine the 
relevant boundaries being set in a "random" 

way, so that it would be simply luck deter 

mining whether a house ended up on either 
side of the boundary. The concern over the 

endogeneity of boundaries is clearly recog 
nized by Black (1999), who ". . . [bjecause 
of concerns about neighborhood differences 
on opposite sides of an attendance district 

boundary, 
. . . was careful to omit boundar 

ies from [her] sample if the two attendance 
districts were divided in ways that seemed 
to clearly divide neighborhoods; attendance 
districts divided by large rivers, parks, golf 
courses, or any large stretch of land were 

excluded." As one could imagine, the selec 
tion of which boundaries to include could 

quickly turn into more of an art than a science. 
We have no uniform advice on how to ana 

lyze geographic discontinuities because it 
seems that the best approach would be par 

ticularly context-specific. It does, however, 
seem prudent for the analyst, in assessing 
the internal validity of the research design, 
to carefully consider three sets of questions. 
First, what is the process that led to the loca 
tion of the boundaries? Which came first: 
the houses or the boundaries? Were the 
boundaries a response to some preexisting 
geographical or political constraint? Second, 
how might sorting of families or the endog 
enous location of houses affect the analysis? 
And third, what are all the things differing 
between the two regions other than the treat 
ment of interest? An exemplary analysis and 
discussion of these latter two issues in the 
context of school attendance zones is found 
in Bayer, Ferreira, and McMillan (2007). 

7. Concluding Remarks on RD Designs in 
Economics: Progress and Prospects 

Our reading of the existing and active lit 
erature is that?after being largely ignored 
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by economists for almost forty years?there 
have been significant inroads made in under 

standing the properties, limitations, inter 

pretability, and perhaps most importantly, 
in the useful application of RD designs to a 

wide variety of empirical questions in eco 
nomics. These developments have, for the 
most part, occurred within a short period of 

time, beginning in the late 1990s. 
Here we highlight what we believe are the 

most significant recent contributions of the 
economics literature to the understanding 
and application of RD designs. We believe 
these are helpful developments in guiding 
applied researchers who seek to implement 
RD designs, and we also illustrate them with 
a few examples from the literature. 

Sorting and Manipulation of the 

Assignment Variable: Economists con 
sider how self-interested individuals or 

optimizing organizations may behave in 

response to rules that allocate resources. 
It is therefore unsurprising that the 
discussion of how endogenous sort 

ing around the discontinuity threshold 
can invalidate the RD design has been 
found (to our knowledge, exclusively) in 
the economics literature. By contrast, 
textbook treatments outside econom 
ics on RD do not discuss this sorting or 

manipulation, and give the impression 
that the knowledge of the assignment 
rule is sufficient for the validity of the 
RD.50 

We believe a "state-of-the-art" RD 

analysis today will consider carefully 
the possibility of endogenous sorting. A 
recent analysis that illustrates this stan 
dard is that of Urquiola and Verhoogen 
(2009), who examine the class size cap 
RD design pioneered by Angrist and 
Lavy (1999) in the context of Chiles 
highly liberalized market for primary 
schools. In a certain segment of the pri 
vate market, schools receive a fixed pay 
ment per student from the government. 
However, each school faces a very high 
marginal cost (hiring one extra teacher) 
for crossing a multiple of the class size 

cap. Perhaps unsurprisingly, they find 

striking discontinuities in the histogram 
of the assignment variable (total enroll 
ment in the grade), with an undeniable 

"stacking" of schools at the relevant class 
size cap cutoffs. They also provide evi 
dence that those families in schools just 
to the left and right of the thresholds 
are systematically different in family 
income, suggesting some degree of sort 

ing. For this reason, they conclude that 
an RD analysis in this particular con 
text is most likely inappropriate.51 This 

study, as well as the analysis of Bayer, 
Ferreira, and McMillan (2007) reflects a 

heightened awareness of a sorting issue 

recognized since the beginning of the 
recent wave of RD applications in eco 

nomics.52 From a practitioners perspec 
tive, an important recent development 

50 For example, Trochim (1984) characterizes the three 
central assumptions of the RD design as: (1) perfect adher 
ence to the cutoff rule, (2) having the correct functional 

form, and (3) no other factors (other than the program of 

interest) cause the discontinuity. More recently, William 
R. Shadish, Cook, and Campbell (2002) claim on page 243 
that the proof of the unbiasedness of RD primarily follows 
from the fact that treatment is known perfectly once the 

assignment variable is known. They go on to argue that this 
deterministic rule implies omitted variables will not pose 
a problem. But Hahn, Todd, and van der Klaauw (2001) 

make it clear that the existence of a deterministic rule for 
the assignment of treatment is not sufficient for unbiased 
ness, and it is necessary to assume the influence of all other 
factors (omitted variables) are the same on either side of the 

discontinuity threshold (i.e., their continuity assumption). 
51 

Urquiola and Verhoogen (2009) emphasize the sort 

ing issues may well be specific to the liberalized nature of 
the Chilean primary school market, and that they may or 

may not be present in other countries. 
52 See, for example, footnote 23 in van der Klaauw 

(1997) and page 549 in Angrist and Lavy (1999). 
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is the notion that we can empirically 
examine the degree of sorting, and one 

way of doing so is suggested in McCrary 
(2008). 

RD Designs as Locally Randomized 

Experiments: Economists are hesitant 
to apply methods that have not been 

rigorously formalized within an econo 
metric framework, and where crucial 

identifying assumptions have not been 

clearly specified. This is perhaps one of 
the reasons why RD designs were under 
utilized by economists for so long, since it 
is only relatively recently that the under 

lying assumptions needed for the RD 
were formalized.53 In the recent litera 

ture, RD designs were initially viewed 
as a special case of matojaing (Heckman, 
Lalonde, and Smith 1999), or alterna 

tively as a special case of IV (Angrist and 

Krueger 1999), and these perspectives 
may have provided empirical researchers 
a familiar econometric framework within 
which identifying assumptions could be 
more carefully discussed. 

Today, RD is increasingly recognized 
in applied research as a distinct design 
that is a close relative to a randomized 

experiment. Formally shown in Lee 

(2008), even when individuals have 

some control over the assignment vari 

able, as long as this control is impre 
cise?that is, the ex ante density of the 

assignment variable is continuous?the 

consequence will be local randomiza 
tion of the treatment. So in a number 
of nonexperimental contexts where 
resources are allocated based on a sharp 
cutoff rule, there may indeed be a hid 
den randomized experiment to utilize. 
And furthermore, as in a randomized 

experiment, this implies that all observ 
able baseline covariates will locally have 
the same distribution on either side of 
the discontinuity threshold?an empiri 
cally testable proposition. 
We view the testing of the continuity 

of the baseline covariates as an impor 
tant part of assessing the validity of any 
RD design?particularly in light of the 
incentives that can potentially generate 
sorting?and as something that truly 
sets RD apart from other evaluation 

strategies. Examples of this kind of test 

ing of the RD design include Jordan D. 
Matsudaira (2008), Card, Raj Chetty 
and Andrea Weber (2007), DiNardo 
and Lee (2004), Lee, Moretti and Butler 

(2004), McCrary and Royer (2003), 
Greenstone and Gallagher (2008), and 

Urquiola and Verhoogen (2009). 

53 An example of how economistsVeconometricians' 
notion of a proof differs from that in other disciplines is 
found in Cook (2008), who views the discussion in Arthur 
S. Goldberger (1972a) and Goldberger (1972b) as the first 
"proof of the basic design," quoting the following passage 
in Goldberger (1972a) (brackets from Cook 2008): "The 
explanation for this serendipitous result [no bias when 
selection is on an observed pretest score] is not hard to 
locate. Recall that z [a binary variable representing the 
treatment contrast at the cutoff] is completely determined 

by pretest score x [an obtained ability score]. It cannot 
contain any information about x* [true ability] that is not 
contained within x. Consequently, when we control on x 
as in the multiple regression, z has no explanatory power 
with respect to y [the outcome measured with error]. More 

formally, the partial correlation of y and z controlling on 
x vanishes although the simple correlation of y and z is 

nonzero"(p. 647). After reading the article, an econometri 
cian will recognize the discussion above not as a proof of 
the validity of the RD, but rather as a restatement of the 

consequence of z being an indicator variable determined 

by an observed variable x, in a specific parameterized 
example. Today we know the existence of such a rule is 
not sufficient for a valid RD design, and a crucial neces 

sary assumption is the continuity of the influence of all 
other factors, as shown in Hahn, Todd, and van der Klaauw 

(2001). In Goldberger (1972a), the role of the continuity of 
omitted factors was not mentioned (although it is implicitly 
assumed in the stylized model of test scores involving nor 

mally distributed and independent errors). Indeed, appar 
ently Goldberger himself later clarified that he did not set 
out to propose the RD design, and was instead interested 
in the issues related to selection on observables and unob 
servables (Cook 2008). 
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Graphical Analysis and Presentation: 
The graphical presentation of an 
RD analysis is not a contribution of 

economists,54 but it is safe to say that the 

body of work produced by economists 
has led to a kind of "industry standard" 
that the transparent identification strat 

egy of the RD be accompanied by an 

equally transparent graph showing the 

empirical relation between the outcome 
and the assignment variable. Graphical 
presentations of RD are so prevalent in 

applied research, it is tempting to guess 
that studies not including the graphical 
evidence are ones where the graphs are 
not compelling or well-behaved. 

In an RD analysis, the graph is indis 

pensable because it can summarize a 

great deal of information in one picture. 
It can give a rough sense of the range 
of the both the assignment variable and 
the outcome variable as well as the over 
all shape of the relationship between 
the two, thus indicating what functional 
forms are likely to make sense. It can also 
alert the researcher to potential outliers 
in both the assignment and outcome 
variables. A graph of the raw means?in 

nonoverlapping intervals, as discussed 
in section 4.1?also gives a rough sense 

of the likely sampling variability of the 
RD gap estimate itself, since one can 

compare the size of the jump at the 

discontinuity to natural "bumpiness" in 

the graph away from the discontinuity. 
Our reading of the literature is that the 
most informative graphs are ones that 

simultaneously allow the raw data "to 

speak for themselves" in revealing a 

discontinuity if there is one, yet at the 
same time treat data near the thresh 
old the same as data away from the 

threshold.55 There are many exam 

ples that follow this general principle; 
recent ones include Matsudaira (2008), 
Card, Chetty and Weber (2007), Card, 
Dobkin, and Maestas (2009), McCrary 
and Royer (2003), Lee (2008), and 
Ferreira and Gyourko (2009). 

Applicability: Soon after the introduc 
tion of RD, in a chapter in a book on 

research methods, Campbell and Julian 
C. Stanley (1963) wrote that the RD 

design was "very limited in range of 

possible applications." The emerging 
body of research produced by econo 
mists in recent years has proven quite 
the opposite. Our survey of the litera 
ture suggests that there are many kinds 
of discontinuous rules that can help 
answer important questions in econom 
ics and related areas. Indeed, one may 
go so far as to guess that whenever a 
scarce resource is rationed for individual 

entities, if the political climate demands 
a transparent way of distributing that 

resource, it is a good bet there is an 
RD design lurking in the background. 
In addition, it seems that the approach 
of using changes in laws that disqualify 
older birth cohorts based on their date 
of birth (as in Card and Shore-Sheppard 
(2004) or Oreopoulos (2006)) may well 
have much wider applicability. 

One way to understand both the 

applicability and limitations of the RD 

design is to recognize its relation to a 

standard econometric policy evaluation 

framework, where the main variable 
of interest is a potentially endogenous 
binary treatment variable (as consid 
ered in Heckman 1978 or more recently 
discussed in Heckman and Vytlacil 

54 Indeed the original article of Thistlethwaite and 

Campbell (1960) included a graphical analysis of the data. 

55 For example, graphing a smooth conditional expec 
tation function everywhere except at the discontinuity 
threshold violates this principle. 
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2005). This selection model applies to a 

great deal of economic problems. As we 

pointed out in section 3, the RD design 
describes a situation where you are able 
to observe the latent variable that deter 

mines treatment. As long as the density 
of that variable is continuous for each 

individual, the benefit of observing the 
latent index is that one neither needs to 

make exclusion restrictions nor assume 

any variable (i.e., an instrument) is 

independent of errors in the outcome 

equation. 
From this perspective, for the class of 

problems that fit into the standard treat 
ment evaluation problem, RD designs 
can be seen as a subset since there is an 

institutional, index-based rule playing a 

role in determining treatment. Among 
this subset, the binding constraint of 
RD lies in obtaining the necessary data: 

readily available public-use household 

survey data, for example, will often only 
contain variables that are correlated 
with the true assignment variable (e.g., 
reported income in a survey, as opposed 
to the income used for allocation of ben 

efits), or are measured too coarsely (e.g., 
years rather than months or weeks) to 
detect a discontinuity in the presence 
of a regression function with significant 
curvature. This is where there can be a 

significant payoff to investing in secur 

ing high quality data, which is evident in 
most of the studies listed in table 5. 

7.1 Extensions 

We conclude by discussing two natural 
directions in which the RD approach can 

be extended. First, we have discussed the 

"fuzzy" RD design as an important departure 
from the "classic" RD design where treat 
ment is a deterministic function of the assign 
ment variable, but there are other departures 
that could be practically relevant but not as 

well understood. For example, even if there 

is perfect compliance of the discontinuous 

rule, it may be that the researcher does not 

directly observe the assignment variable, but 
instead possesses a slightly noisy measure of 
the variable. Understanding the effects of 
this kind of measurement error could further 

expand the applicability of RD. In addition, 
there may be situations where the researcher 
both suspects and statistically detects some 

degree of precise sorting around the thresh 

old, but that the sorting may appear to be 

relatively minor, even if statistically signifi 
cant (based on observing discontinuities in 
baseline characteristics). The challenge, 
then, is to specify under what conditions one 
can correct for small amounts of this kind of 
contamination. 

Second, so far we have discussed the 

sorting or manipulation issue as a potential 
problem or nuisance to the general program 
evaluation problem. But there is another way 
of viewing this sorting issue. The observed 

sorting may well be evidence of economic 

agents responding to incentives, and may 

help identify economically interesting phe 
nomena. That is, economic behavior may 
be what is driving discontinuities in the fre 

quency distribution of grade enrollment (as 
in Urquiola and Verhoogen 2009), or in the 
distribution of roll call votes (as in McCrary 
2008), or in the distribution of age at offense 

(as in Lee and McCrary 2005), and those 
behavioral responses may be of interest. 

These cases, as well as the age/time and 

boundary discontinuities discussed above, 
do not fit into the "standard" RD framework, 
but nevertheless can tell us something impor 
tant about behavior, and further expand the 
kinds of questions that can be addressed by 
exploiting discontinuous rules to identify 
meaningful economic parameters of interest. 
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