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This paper reviews some of the most popular policy evaluation methods
in empirical microeconomics: social experiments, natural experiments,
matching, instrumental variables, discontinuity design, and control functions.
It discusses identification of traditionally used average parameters and more
complex distributional parameters. The adequacy, assumptions, and data
requirements of each approach are discussed, drawing on empirical evidence
from the education and employment policy evaluation literature. A workhorse
simulation model of education and earnings is used throughout the paper to
discuss and illustrate each approach. The full set of STATA data sets and do-
files are available free online and can be used to reproduce all estimation
results.

I. Introduction

The aim of this paper is to examine alternative evaluation methods in
microeconomic policy analysis and to lay out the assumptions on which they rest
within a common framework. The focus is on application to the evaluation of policy
interventions associated with welfare programs, training programs, wage subsidy
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programs, and tax-credit programs. At the heart of this kind of policy evaluation is a
missing data problem. An individual may either be subject to the policy intervention or
she may not, but no one individual can be in both states simultaneously. Indeed, there
would be no evaluation problem of the type discussed here if we could observe the
counterfactual outcome for those in the program had they not participated. Construct-
ing this counterfactual in a convincing way is a key ingredient of any serious evalua-
tion method.

The choice of evaluation method will depend on three broad concerns: the nature of
the question to be answered; the type and quality of data available; and the mechanism
by which individuals are allocated to the program or receive the policy. The last of
these is typically labeled the ‘‘assignment rule’’ and will be a central component in
the analysis we present. In a perfectly designed social experiment, assignment is ran-
dom. In a structural microeconomic model, assignment is assumed to obey some rules
from economic theory. Alternative methods exploit different assumptions concerning as-
signment and differ according to the type of assumption made. Unless there is a convinc-
ing case for the reliability of the assignment mechanism being used, the results of the
evaluation are unlikely to convince the thoughtful skeptic. Just as an experiment needs
to be carefully designed, a structural economic model needs to be carefully argued.

In this review we consider six distinct, but related, approaches: (i) social experi-
ment methods, (ii) natural experiment methods, (iii) discontinuity design methods,
(iv) matching methods, (v) instrumental variable methods, and (vi) control function
methods. The first of these approaches is closest to the ‘‘theory’’ free method of a
clinical trial, relying on the availability of a randomized assignment rule. The control
function approach is closest to the structural econometric approach, directly model-
ing the assignment rule in order to fully control for selection in observational (non-
experimental) data.1 The other methods can be thought of lying somewhere in
between, often attempting to mimic the randomized assignment of the experimental
setting but doing so with nonexperimental data. Natural experiments exploit random-
ization to programs created through some naturally occurring event external to the
researcher. Discontinuity design methods exploit ‘‘natural’’ discontinuities in the rules
used to assign individuals to treatment. Matching attempts to reproduce the treatment
group among the nontreated, this way reestablishing the experimental conditions in a
nonexperimental setting, but relies on observable variables to account for selection.
The instrumental variable approach is a step closer to the structural method, relying
on explicit exclusion restrictions to achieve identification. Exactly what parameters
of interest, if any, can be recovered by each method will typically relate to the spe-
cific environment in which the policy or program is being conducted.

In many ways, the social experiment method is the most convincing method of
evaluation since it directly constructs a control (or comparison) group, which is a
randomized subset of the eligible population. The advantages of experimental data
are discussed in papers by Bassi (1983, 1984) and Hausman and Wise (1985) and
were based on earlier statistical experimental developments (see Cockrane and Rubin
1973; Fisher 1951). Although a properly designed social experiment can overcome

1. The examination of fully specified structural evaluation models is beyond the scope of this review but for
many important ex-ante policy evaluations they are the dominant approach; see Blundell and MaCurdy
(1999) for some examples in the evaluation of tax and welfare policy proposals.
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the missing data problem, in economic evaluations it is frequently difficult to ensure
that the experimental conditions have been met. Since programs are typically volun-
tary, those individuals ‘‘randomized in’’ may decide not to participate in the treat-
ment. The measured program impact will therefore recover an ‘‘intention to treat’’
parameter, rather than the actual treatment effect. Further, unlike in many clinical tri-
als, it is not possible to offer the control group a placebo in economic policy evalua-
tions. Consequently, individuals who enter a program and then are ‘‘randomized out’’
may suffer a ‘‘disappointment’’ effect and alter their behavior. Nonetheless, well
designed experiments have much to offer in enhancing our knowledge of the possible
impact of policy reforms. Indeed, a comparison of results from nonexperimental data
can help assess appropriate methods where experimental data is not available. For
example, the important studies by LaLonde (1986); Heckman, Ichimura, and Todd
(1998); Heckman et al. (1998); Heckman, Smith, and Clements (1997) use experi-
mental data to assess the reliability of comparison groups used in the evaluation
of training programs. An example of a well-conducted social experiment is the Ca-
nadian Self Sufficiency Project (SSP), which was designed to measure the earnings
and employment responses of single mothers on welfare to a time-limited earned in-
come tax credit program. This study has produced invaluable evidence on the effec-
tiveness of financial incentives in inducing welfare recipients into work (see Card and
Robbins 1998).

The natural experiment approach attempts to find a naturally occurring compari-
son group that can mimic the properties of the control group in the properly designed
experiment. This method is also often labeled ‘‘difference-in-differences’’ because it
is usually implemented by comparing the difference in average behavior before and
after the reform for the eligible group with the before and after contrast for a com-
parison group. This approach can be a powerful tool in measuring the average effect
of the treatment on the treated. It does this by removing unobservable individual
effects and common macro effects by relying on two critically important identifying
assumptions of (i) common time effects across groups, and (ii) no systematic compo-
sition changes within each group. The evaluation of the ‘‘New Deal for the Young
Unemployed’’ in the United Kingdom is a good example of a policy design suited
to this approach. It was an initiative to provide work incentives to unemployed indi-
viduals aged 18 to 24. The program is mandatory and was rolled out in selected pilot
areas prior to the national roll out. The Blundell et al. (2004) study investigates the
impact of this program by using similar 18–24 years old in nonpilot areas as a com-
parison group.

The discontinuity design method can also be classified as a natural experiment ap-
proach but one that exploits situations where the probability of enrollment into treat-
ment changes discontinuously with some continuous variable. For example, where
eligibility to an educational scholarship depends on parental income falling below
some cutoff or the student achieving a specific test score. It turns out to be convenient
to discuss this approach in the context of the instrumental variable estimator since the
parameter identified by discontinuity design is a local average treatment effect sim-
ilar to the parameter identified by IV but not necessarily the same. We contrast the IV
and discontinuity design approaches.

The matching method has a long history in nonexperimental evaluation (see
Heckman, Ichimura, and Todd 1997; Rosenbaum and Rubin 1985; Rubin 1979).
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The aim of matching is simple: to lineup comparison individuals according to suffi-
cient observable factors to remove systematic differences in the evaluation outcome
between treated and nontreated. Multiple regression is a simple linear example of
matching. For this ‘‘selection on observables’’ approach, a clear understanding of
the determinants of assignment rule on which the matching is based is essential.
The measurement of returns to education, where scores from prior ability tests are
available in birth cohort studies, is a good example. As we document below, match-
ing methods have been extensively refined and their properties examined in the re-
cent evaluation literature and they are now a valuable part of the evaluation
toolbox. Lalonde (1986) and Heckman, Ichimura, and Todd (1998) demonstrate that
experimental data can help in evaluating the choice of matching variables.

The instrumental variable method is a standard econometric approach to endo-
geneity. It relies on finding a variable excluded from the outcome equation but which
is also a determinant of the assignment rule. In the simple linear constant parameter
model, the IV estimator identifies the treatment effect removed of all the biases that
emanate from a nonrandomized control. However, in ‘‘heterogeneous’’ treatment ef-
fect models, in which the impact parameter can differ in unobservable ways across
individuals, the IV estimator will only identify the average treatment effect under
strong assumptions and ones that are unlikely to hold in practice. Work by Imbens
and Angrist (1994) and Heckman and Vytlacil (1999) provided an ingenious inter-
pretation of the IV estimator in terms of local treatment effect parameters. We discuss
these developments.

Finally, the control function method directly characterizes the choice problem fac-
ing individuals deciding on program participation. It is, therefore, closest to a struc-
tural microeconomic analysis. It uses the full specification of the assignment rule
together with an excluded ‘‘instrument’’ to derive a control function which, when in-
cluded in the outcome equation, controls for endogenous selection. This approach
relates directly to the selectivity estimator of Heckman (1979).

As already noted, structural microeconometric simulation models are perfectly
suited for ex-ante policy simulation. Blundell and MaCurdy (1999) provide a de-
tailed survey and a discussion of the relationship between the structural choice ap-
proach and the evaluation approaches presented here. A fully specified structural
model can be used to simulate the parameter being estimated by any of the nonex-
perimental estimators above. Naturally, such a structural model would depend on a
more comprehensive set of prior assumptions and may be less robust. However, re-
sults from evaluation approaches described above can be usefully adapted to assess
the validity of a structural evaluation model (see Todd and Wolpin 2006, and Attanasio,
Meghir, and Santiago 2008).

Throughout our discussion, we provide a running example of a structural model of
schooling choices to assess each of the proposed econometric nonexperimental
methods with regard to their ability to recover the returns to education. In the model,
individuals differ with respect to educational attainment, which is partly determined
by a subsidy policy and partly determined by other factors. This ‘‘workhorse’’ model
of education and earnings is used to generate a simulated data set. Each estimator is
then applied to the simulated data with the intention of recovering (some average of)
the returns to education. In such a controlled experiment, the true education effects
and choices are perfectly understood. Such insight can be used to reveal where each
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estimator fails and to understand and compare the treatment effect parameters iden-
tified in each case. The specification of the education model is described in full detail
in the appendix. A full set of STATA data sets are provided online that contain 200
Monte Carlo replications of all the data sets used in the simulated models. There are
also a full set of STATA .do files available online for each of the estimators described
in this paper. The .do-files can be used together with the data sets to reproduce all the
results in the paper.

The rest of paper is organized as follows. In the next section we ask what are we
trying to measure in program evaluation.2 We also develop the education evaluation
model which we carry through the discussion of each alternative approach. Sections
III to VIII are the main focus of this paper and present a detailed comparison of the
six alternative evaluation methods we examine here. In each case we use a common
framework for analysis and apply each nonexperimental method to the education eval-
uation model. This extends our previous discussion in Blundell and Costa-Dias (2000).
The order in which we discuss the various approaches follows the sequence described
above with one exception: We choose to discuss discontinuity design after instrumen-
tal variables in order to relate the approaches together. Indeed, an organizing principle
we use throughout this review is to relate the assumptions underlying each approach to
each other, so that the pros and cons of each can be assessed in common environment.
Finally, in Section IX we provide a short summary.

II. Which Treatment Parameter?

A. Average Treatment Effects

In what follows we consider a policy that provides a treatment. Some individuals re-
ceive the treatment and these are the treated or program participants. Later on, while
discussing noncompliance, we allow the treated and program participants to differ.

Are individual responses to a policy homogeneous or do responses differ across
individuals? If the responses differ, do they differ in a systematic way? The distinc-
tion between homogenous and heterogeneous responses is central to understand what
parameters alternative evaluation methods measure. In the homogeneous linear
model, common in elementary econometrics, there is only one impact of the program
and it is one that would be common to all participants and nonparticipants alike. In
the heterogeneous model, the treated and nontreated may benefit differently from
program participation. In this case, the average treatment effect among the treated
will differ from the average value overall or on the untreated individuals. Indeed,
we can define a whole distribution of the treatment effects. A common theme in this
review will be to examine the aspects of this distribution that can be recovered by the
different approaches.

To ground the discussion, we consider a model of potential outcomes. As is com-
mon to most evaluation literature in economics, we consider an inherently static se-
lection model. This is a simple and adequate setup to discuss most methods presented

2. In the labor market area, from which we draw heavily in this review, the ground breaking papers were
those by Ashenfelter (1978), Ashenfelter and Card (1985), and Heckman and Robb (1985, 1986).
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below. Implicitly it allows for selection and outcomes to be realized at different
points in time but excludes the possibility of an endogenous choice of the time of
treatment. Instead, the underlying assumption is that treatment and outcomes are ob-
served at fixed (if different) points in time and thus can be modeled in a static frame-
work. The time dimension will be explicitly considered only when necessary.

A brief comment about notation is due before continuing with the formal specifi-
cation of the model. In here and throughout the whole paper, we reserve Greek letters
to denote the unknown parameters of the model and use upper case to denote vectors
of random variables and lower case to denote random variables.

Now suppose one wishes to measure the impact of treatment on an outcome, y.
Abstract for the moment from other observable covariates that may impact on y; such
covariates will be included later on. Denote by d the treatment indicator: a dummy
variable assuming the value one if the individual has been treated and zero otherwise.
The potential outcomes for individual i are denoted by y1

i and y0
i for the treated and

nontreated scenarios, respectively. They are specified as

y1
i ¼ b + ai + ui

y0
i ¼ b + ui

ð1Þ

where b is the intercept parameter, ai is the effect of treatment on individual i and u
is the unobservable component of y. The observable outcome is then

yi ¼ diy
1
i + ð12diÞy0

ið2Þ

so that

yi ¼ b + aidi + ui:

This is a very general model as no functional form or distributional assumptions on
the components of the outcome have been imposed for now. In what follows we show
how different estimators use different sets of restrictions.

Selection into treatment determines the treatment status, d. We assume this as-
signment depends on the available information at the time of decision, which
may not completely reveal the potential outcomes under the two alternative treat-
ment scenarios. Such information is summarized by the observable variables, Z,
and unobservable, v. Assignment to treatment is then assumed to be based on a se-
lection rule

di ¼
1 if d�i $ 0
0 otherwise

�
ð3Þ

where d� is a function of Z and v

d�i ¼ gðZi; viÞ:ð4Þ

A popular specification for the selection rule is based on the assumption of a linear
index:
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d�i ¼ 1ðZig + vi $ 0Þð5Þ

where g is the vector of coefficients.
In this general specification, we have allowed for a heterogeneous impact of treat-

ment, with a varying freely across individuals.3 Estimation methods typically iden-
tify some average impact of treatment over some subpopulation. The three most
commonly used parameters are: the population average treatment effect (ATE),
which would be the average outcome if individuals were assigned at random to treat-
ment, the average effect on individuals that were assigned to treatment (ATT) and the
average effect on nonparticipants (ATNT). If it is the impact of treatment on individ-
uals of a certain type as if they were randomly assigned to it that is of interest, then
ATE is the parameter to recover. On the other hand, the appropriate parameter to
identify the impact of treatment on individuals of a certain type that were assigned
to treatment is the ATT. Using the model specification above, we can express these
three average parameters as follows

aATE ¼ EðaiÞð6Þ

aATT ¼ Eðaijdi ¼ 1Þ ¼ EðaijgðZi; viÞ$ 0Þð7Þ

aATNT ¼ Eðaijdi ¼ 0Þ ¼ EðaijgðZi; viÞ, 0Þ:ð8Þ

An increasing interest on the distribution of treatment effects has led to the
study of additional treatment effects (Bjorklund and Moffitt 1987; Imbens and
Angrist 1994; Heckman and Vytlacil 1999). Two particularly important parameters
are the local average treatment effect (LATE) and the marginal treatment effect
(MTE). To introduce them we need to assume that the participation decision,
d, is a nontrivial function of Z, meaning that it is a nonconstant function of Z.
Now suppose there exist two distinct values of Z, say Z� and Z��, for which only
a subgroup of participants under Z�� also participate under Z�. The average impact
of treatment on individuals that move from nonparticipants to participants when Z
changes from Z� to Z�� is the LATE parameter

aLATEðZ�; Z��Þ ¼ EðaijdiðZ��Þ ¼ 1; diðZ�Þ ¼ 0Þ

where di Zð Þ is a dichotomous random variable representing the treatment status for
individual i drawing observables Z.

Where Z is continuous we can define the MTE, which measures the change in
expected outcome due to an infinitesimal change in the participation rate,

3. See, for example, Carneiro, Hansen, and Heckman (2001, 2003) for a discussion of the distribution of
treatment effects.
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aMTEðpÞ ¼ @EðyjpÞ
@p

:

Bjorklund and Moffitt (1987) were the first to introduce the concept of MTE, which
they interpreted as being the impact of treatment on individuals just indifferent about
participation if facing observables Z where Z yields a participation probability
p ¼ P d ¼ 1jZð Þ. Under certain conditions, to be explored later, the MTE is a limit
version of LATE.

All these parameters will be identical under homogeneous treatment effects.
Under heterogeneous treatment effects, however, a nonrandom process of selection
into treatment may lead to differences between them. However, whether the
impact of treatment is homogeneous or heterogeneous, selection bias may be
present.

B. The selection problem and the assignment rule

In nonexperimental settings, assignment to treatment is most likely not random. Col-
lecting all the unobserved heterogeneity terms together we can rewrite the Outcome
Equation 2 as

yi ¼ b + aATEdi + ui + diðai2aATEÞÞ
¼ b + aATEdi + ei:

ð9Þ

Nonrandom selection occurs if the unobservable term e in Equation 9 is correlated
with d. This implies that e is either correlated with the regressors determining assign-
ment, Z, or correlated with the unobservable component in the selection or assign-
ment equation, v. Consequently there are two types of nonrandom selection:
selection on the observables and selection on the unobservables. When selection
arises from a relationship between u and d we say there is selection on the untreated
outcomes as individuals with different untreated outcomes are differently likely to
become treated. If, on the other hand, selection arises due to a relationship between
a and d we say there is selection on the (expected) gains, whereby expected gains
determine participation.

The result of selection is that the causal relationship between y and d is not di-
rectly observable from the data since participants and nonparticipants are not
comparable. We will see later on that different estimators use different assump-
tions about the form of assignment and the nature of the impact to identify the
treatment parameter of interest. Here we just illustrate the importance of some
assumptions in determining the form and importance of selection by contrasting
the homogeneous and heterogeneous treatment effect scenarios. Throughout the
whole paper, the focus is on the identification of different treatment effect param-
eters by alternative methods. In most cases sample analog estimators will also be
presented.

Under homogeneous treatment effects, selection bias occurs if and only if d is cor-
related with u since the outcome equation is reduced to
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yi ¼ b + adi + ui

where a is the impact of treatment on any individual and, therefore, equals aATE. The
OLS estimator will then identify

E½âOLS� ¼ a + E½uijdi ¼ 1�2 E½uijdi ¼ 0�

which is in general different from a if d and u are related.

The selection process is expected to be more severe in the presence of heteroge-
neous treatment effects, when correlation between e and d may arise through u (se-
lection on nontreated outcomes) or the idiosyncratic gains from treatment, ai 2 aATE

(selection on gains). The parameter identified by OLS in this case is

E½âOLS� ¼ aATE + E½ai 2 aATEjdi ¼ 1�+ E½uijdi ¼ 1�2 E½uijdi ¼ 0�:

Note that the first term, aATE + E½ai 2 aATEjdi ¼ 1�, is the ATT. Thus, in the presence
of selection on (expected) gains OLS will identify the ATT if d and u are not related.

C. The Work-horse model: education choice and the returns to education

Throughout this review we will use a dynamic model of educational choice and
returns to education to illustrate the use of each of the nonexperimental methods.
The model is solved and simulated under alternative conditions, and the simulated
data is then used to discuss the ability of each method to identify informative param-
eters. In all cases the goal is to recover the returns to education.

This simulation exercise can be viewed as a perfectly controlled experiment. With
full information about the nature of the decision process and the individual treatment
effects, we can understand the sort of problems faced by each method in each case. It
also provides a thread throughout the paper that allows for comparisons between al-
ternative estimators and an assessment of their relative strengths and weaknesses.

At this stage we will focus on the role of selection and heterogeneous effects in the
evaluation problem. In the model, individuals differ with respect to a number of fac-
tors, both observable and unobservable to the analyst. Such factors affect the costs of
and/or expected returns to education, leading to heterogeneous investment behavior.
To study such interactions, we use a simpler version of the model by abstracting from
considerations about the policy environment. This will be introduced later on, in Sec-
tion IV, in the form of a subsidy to advanced education. The model is described in
full detail in Appendix 1.

We consider individuals indexed by i facing lifetime earnings y that depend,
among other things, on education achievement. Individuals are heterogeneous at
birth with respect to ability, u, and family environment or family background, z.
Their lives are modeled in two stages, ages one and two. We assume there are only
two levels of education, basic or low and advanced or high. The educational attain-
ment is represented by the dummy variable d where d ¼ 1 for advanced education
and d ¼ 0 for low education. In the first stage of life (age one), the individual decides
whether to invest in high education based on associated costs and expected gains. It
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is assumed that the (utility) cost of education, c, depends on the observable family
background, z, and the unobservable (to the researcher) v,

ci ¼ d0 + d1zi + við10Þ

where (d0,d1) are some parameters.

In the second stage of life (age two) the individual is working. Lifetime earnings
are realized, depending on ability, u, educational attainment, d, and the unobservable
u. We assume that u is unobservable to the researcher and is (partly) unpredictable by
the individual at the time of deciding about education (age one). The logarithm of
lifetime earnings is modeled as follows

ln yi ¼ b0 + b1xi + a0di + a1uidi + uið11Þ

where x is some exogenous explanatory variable, here interpreted as region, (b0, b1)
are the parameters determining low-skilled earnings and (a0, a1) are the returns to
education parameters for the general and ability-specific components, respectively.

The returns to high education are heterogeneous in this model for as long as a1 6¼ 0,
in which case such returns depend on ability. The individual-specific return on log earn-
ings is

ai ¼ a0 + a1ui:

We assume ui is known by individual i but not observable by the econometrician.
The educational decision of individual i will be based on the comparison of expected
lifetime earnings in the two alternative scenarios

E½ln yijxi; di ¼ 1; ui; vi� ¼ b0 + b1xi + a0 + a1ui + E½uijvi�
E½ln yijxi; di ¼ 0; ui; vi� ¼ b0 + b1xi + E½uijvi�

with the cost of education in Equation 10. Notice that we are assuming that z does
not explain the potential outcomes except perhaps indirectly, through the effect it
has on educational investment.

The assignment (or selection) rule will therefore be

di ¼
1 if E½yijxi; di ¼ 1; ui; vi�2 E½yijxi; di ¼ 0; ui; vi�. d0 + d1zi + vi

0 otherwise

�
so that investment in education occurs whenever the expected return exceeds the ob-
served cost.

In this simple model, the education decision can be expressed by a threshold rule.
Let ṽ be the point at which an individual is indifferent between investing and not
investing in education. It depends on the set of other information available to the in-
dividual at the point of deciding, namely x; z; uð Þ. Then ṽ solves the implicit equation

ṽðxi; zi; uiÞ¼E½yijxi; di ¼ 1; ui; ṽðxi; zi; uiÞ�2E½yijxi; di

¼ 0; ui; ṽðxi; zi; uiÞ�2 d0 2 d1zi:

If tastes for education and work are positively related, v measures (dis)taste for
education and u measures unobserved productivity levels that are positively related
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with taste for work, then v and u are expected to be negatively correlated. This then
means that, holding everything else constant, the higher v the higher the cost of ed-
ucation and the smaller the expected return from the investment. As v increases it
will reach a point where the cost is high enough and the return is low enough for
the individual to give up education. Thus, an individual i observing the state space
xi; zi; uið Þ will follow the decision process,

di ¼
1 if vi , ṽðxi; zi; uiÞ
0 otherwise

�
ð12Þ

and this implies that educated individuals are disproportionately from the low-cost/
high-return group.

This model is simulated using the parametrization described in Appendix 1. Data and
estimation routines are freely available online, as desribed in Appendix 2.4 The data sets
include lifecycle information under three alternative policy scenarios: unsubsidized ad-
vanced education, subsidized advanced education, and subsidized advanced education
when individuals are unaware of the existence of a subsidy one period ahead of deciding
about the investment. A set of STATA .do files run the alternative estimation procedures
using each of the discussed methods to produce the Monte Carlo results presented in the
paper.

1. Homogeneous treatment effects

Homogeneous treatment effects occur if the returns are constant across the popula-
tion, that is either a1 ¼ 0 or ui ¼ u over the whole population. In this case, the Out-
come Equation 11 reduces to,

ln yi ¼ b0 + b1xi + a0di + ui

and aATE ¼ aATT ¼ aATNT ¼ a0 while a0 also equals aLATE and aMTE for any choice
of z. In this case, the selection mechanism simplifies to ṽ zið Þ.

If, in addition, v and u are mean independent, the selection process will be exclusively
based on the cost of education. In this case, OLS will identify the true treatment effect a0.

2. Heterogeneous treatment effects

Under heterogeneous treatment effects, education returns vary and selection into ed-
ucation will generally depend on expected gains. This causes differences in average
treatment parameters. The ATE and ATT will now be,

aATE ¼ a0 + a1EðuiÞ
aATT ¼ a0 + a1E½uijvi , ṽðxi; zi; uiÞ�:

If a1 is positive, then high ability individuals will have higher returns to education
and the threshold rule ṽ will be increasing in u. This is the case where higher ability
individuals are also more likely to invest in education. It implies that the average

4. All simulation files can be found at http://www.ifs.org.uk/publications.php?publication_id¼4326.
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ability among educated individuals is higher than the average ability in the popula-
tion because ṽ will be increasing in u and so E½uijvi , ṽðxi; zi; uiÞ�. E½ui�. In this
case, it is also true that aATT > aATE.

Assuming u is not observable by the analyst, the Outcome Equation 11 can be re-
written as,

ln yi ¼ b0 + b1xi + ½a0 + a1EðuiÞ�di + ½ui + a1diðui2EðuiÞÞ�:

and OLS identifies

E½bða0 + a1EðuiÞÞ
OLS� ¼ ½a0 + a1EðuiÞ�+ a1E½ui2EðuiÞjdi ¼ 1�

+E½uijdi ¼ 1�2E½uijdi ¼ 0�
¼ a0 + a1E½uijdi ¼ 1�+ E½uijdi ¼ 1�2 E½uijdi ¼ 0�:

This is the ATT if ðu; vÞ and ðu; zÞ are two pairs of mean independent random var-
iables, while the ATE will not be identified by OLS.5 Indeed, as will become clear
from the discussion below, the ATE is typically much harder to identify.

III. Social Experiments

A. Random assignment

Suppose that an evaluation is proposed in which it is possible to run a social exper-
iment that randomly chooses individuals from a group to be administered the treat-
ment. If carefully implemented, random assignment provides the correct
counterfactual, ruling out bias from self-selection. In the education example, a social
experiment would randomly select potential students to be given some education
while excluding the remaining individuals from the educational system. In this case,
assignment to treatment would be random, and thus independent from the outcome
or the treatment effect.

By implementing randomization, one ensures that the treated and the nontreated
groups are equal in all aspects apart from the treatment status. In terms of the het-
erogeneous treatment effects model we consider in this paper and described in Equa-
tions 1 and 2, randomization corresponds to two key assumptions:

R1 : E½uijdi ¼ 1� ¼ E½uijdi ¼ 0� ¼ E½ui�

R2 : E½aijdi ¼ 1� ¼ E½aijdi ¼ 0� ¼ E½ai�:

These randomization ‘‘assumptions’’ are required for recovering the average treat-
ment effect (ATE).

Experiments are frequently impossible to implement. In many cases, such as that
of education policies in general, it may not be possible to convince a government to
agree to exclude/expose individuals from/to a given treatment at random. But even

5. One could always think of controlling for z in the OLS regression if u and z are not mean independent.
This is the motivation of the matching method, which will be discussed later in this paper.
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when possible, experimental designs have two strong limitations. First, by excluding
the selection behavior, experiments overlook intention to treat. However, the selec-
tion mechanism is expected to be strongly determined by the returns to treatment.
In such case, the experimental results cannot be generalized to an economy-wide
implementation of the treatment. Second, a number of contaminating factors may in-
terfere with the quality of information, affecting the experimental results. One pos-
sible problem concerns dropout behavior. For simplicity, suppose a proportion p of
the eligible population used in the experiment prefer not to be treated and when
drawn into the treatment group decide not to comply with treatment. Noncompliance
might not be observable, and this will determine the identifiable parameter.

To further explore the potential consequences of noncompliance, consider the re-
search design of a medical trial for a drug. The experimental group is split into treat-
ments, who receive the drug, and controls, who receive a placebo. Without knowing
whether they are treatments or controls, experimental participants will decide
whether to take the medicine. A proportion p of each group will not take it. Suppose
compliance is unrelated with the treatment effect, ai. If compliance is not observed,
the identifiable treatment effect parameter is,

ã ¼ ð12pÞE½ai�

which is a fraction of the ATE. If, on the other hand, compliance is observable, the
ATE can be identified from the comparison of treatment and control compliers.

Unfortunately, noncompliance will unevenly affect treatments and controls in most
economic experiments. Dropouts among the treated may correspond to individuals
that would not choose to be treated themselves if given the option; dropouts among
the controls may be driven by many reasons, related or not to their own treatment
preferences. As a consequence, the composition of the treatment and control groups
conditional on (non)compliance will be different. It is also frequently the case that
outcomes are not observable for the dropouts.

Another possible problem results from the complexity of contemporaneous poli-
cies in developed countries and the availability of similar alternative treatments ac-
cessible to experimental controls. The experiment itself may affect experimental
controls as, for instance, excluded individuals may be ‘‘compensated’’ with detailed
information about other available treatments, which, in some cases, is the same treat-
ment but accessed through different channels. This would amount to another form of
noncompliance, whereby controls obtain the treatment administered to experimental
treatments.

B. Recovering the average return to education

In the education example described in Section IIB, suppose we randomly select poten-
tial students to be enrolled in an education intervention while excluding the remaining
students. If such experiment can be enforced, assignment to treatment would be totally
random and thus independent from the outcome or the treatment effect. This sort of
randomization ensures that treated and nontreated are equal in all aspects apart from
treatment status. The Randomization Hypotheses R1 and R2 would be,

• E[uijdi ¼ 1] ¼ E[uijdi ¼ 0] ¼ E[ui]—no selection on untreated outcomes; and
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• E[uijdi ¼ 1] ¼ E[uijdi ¼0] ¼ E[ui]—no selection on idiosyncratic gains.

These conditions are enough to identify the average returns to education in the ex-
perimental population using OLS,

E
hbða0 + a1EðuiÞÞ

OLS
i
¼ a0 + a1EðuiÞ

which is the ATE.6

IV. Natural experiments

A. The difference-in-differences (DID) estimator

The natural experiment method makes use of naturally occurring phenomena that
may induce some form of randomization across individuals in the eligibility or the
assignment to treatment. Typically this method is implemented using a before and
after comparison across groups. It is formally equivalent to a difference-in-differ-
ences (DID) approach which uses some naturally occurring event to create a ‘‘pol-
icy’’ shift for one group and not another. The policy shift may refer to a change of
law in one jurisdiction but not another, to some natural disaster, which changes a
policy of interest in one area but not another, or to a change in policy that makes a
certain group eligible to some treatment but keeps a similar group ineligible. The
difference between the two groups before and after the policy change is con-
trasted— thereby creating a DID estimator of the policy impact.

In its typical form, DID explores a change in policy occurring at some time pe-
riod k, which introduces the possibility of receiving treatment for some popula-
tion. It then uses longitudinal data, where the same individuals are followed
over time, or repeated cross section data, where samples are drawn from the same
population before and after the intervention, to identify some average impact of
treatment. We start by considering the evaluation problem when longitudinal data
is available.

To explore the time dimension in the data, we now introduce time explicitly in
the model specification. Each individual is observed before and after the policy
change, at times t0 , k and t1 . k, respectively. Let dit denote the treatment status
of individual i at time t and di (without the time subscript) be the treatment
group to which individual i belongs to. This is identified by the treatment status
at t ¼ t1:

di ¼
1 if dit1 ¼ 1
0 otherwise

�
The DID estimator uses a common trend assumption and also assumes no selec-

tion on the transitory shock so that we can rewrite the Outcome Equation 2 as follows

6. For a dichotomous treatment in an experimental setting with identical composition of the treated and
controls, the OLS estimator is the difference in the outcomes of treated and controls after the treatment
period.
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yit ¼ b + aidit + uit

where E½uitjdi; t� ¼ E½nijdi�+ mt:
ð13Þ

In the above equation, ni is an unobservable individual fixed effect and mt is an
aggregate macro shock. Thus, DID is based on the assumption that the randomi-
zation hypothesis ruling out selection on untreated outcomes (R1) holds in first
differences

E½uit1 2 uit10
jdi ¼ 1� ¼ E½uit1 2 uit10

jdi ¼ 0� ¼ E½uit1 2 uit10
�:

Assumption DID1 in Equation 13 does not rule out selection on the unobservables
but restricts its source by excluding the possibility of selection based on transitory
individual-specific effects. Also, it does not restrict selection on idiosyncratic gains
from treatment that would mimic the Randomization Hypothesis R2. As a conse-
quence, and as will be seen, it will only identify ATT in general.

Under the DID assumption (Equation 13) we can write,

E½yitjdi; t� ¼
b + E½aijdi ¼ 1�+ E½nijdi ¼ 1�+ mt if di ¼ 1 and t ¼ t1

b + E½nijdi�+ mt otherwise:

�
ð14Þ

It is now clear that we can eliminate both b and the error components by sequential
differences

aATT ¼ E½aijdi ¼ 1�
¼ fE½yitjdi ¼ 1; t ¼ t1�2E½yitjdi ¼ 1; t ¼ t0�g

2fE½yitjdi ¼ 0; t ¼ t1�2E½yitjdi ¼ 0; t ¼ t0�g:
ð15Þ

This is precisely the DID identification strategy. The sample analog of Equation 15 is
the DID estimator:

âDID ¼ ½�y1
t1
2�y1

t0
�2½�yt1

02�yt0
0�ð16Þ

where �yt
d is the average outcome over group d at time t. DID measures the excess out-

come change for the treated as compared to the nontreated, this way identifying the ATT,

E½âDID� ¼ aATT :

Notice that, the DID estimator is just the first differences estimator commonly
applied to panel data in the presence of fixed effects. This means that an alternative
way of obtaining âDID is to take the first differences of the Outcome Equation 13 to
obtain

yit1 2yit0 ¼ aidit + ðmt1 2 mt0Þ+ ðoit1 2 oit0Þ

where o represents the transitory idiosyncratic shocks. Under the DID assumptions,
the above regression equation can be consistently estimated using OLS. Notice also
that the DID assumption implies that the transitory shocks, oit, are uncorrelated with
the treatment variable. Therefore, the standard within groups panel data estimator is

ðDID1Þ

Blundell and Dias 579



analytically identical to the DID estimator of the ATT under these assumptions (see
Blundell and MaCurdy 1999).

From Equation 14 it follows that repeated cross-sectional data would be enough to
identify ATT for as long as treatment and control groups can be separated before the
policy change, in period t ¼ t0. Such information is sufficient for the average fixed
effect per group to cancel out in the before after differences.

B. A DID application: the New Deal Gateway in the United Kingdom

As an example, the DID approach has been used to study the impact of the ‘‘New
Deal for the Young Unemployed,’’ a U.K. initiative to provide work incentives to
individuals aged 18 to 24 and claiming Job Seekers Allowance (UI) for six months.
The program was first introduced in January 1998, following the election of a new
government in Britain in the previous year. It combines initial job search assistance
followed by various subsidized options including wage subsidies to employers, tem-
porary government jobs, and full time education and training. Prior to the New Deal,
young people in the United Kingdom could, in principle, claim unemployment ben-
efits indefinitely. Now, after six months of unemployment, young people enter the
New Deal ‘‘Gateway’’ which is the first period of job search assistance. The program
is mandatory, including the subsidized options part, which at least introduces an in-
terval in the claiming spell.

The Blundell et al. (2004) study investigates the impact of the program on employ-
ment in the first 18 months of the scheme. In particular it exploits an important de-
sign feature by which the program was rolled out in certain pilot areas prior to the
national roll out. A before and after comparison can then be made using a regular
DID estimator. This can be improved by a matching DID estimator as detailed in
Section VE. The pilot area based design also means that matched individuals of
the same age can be used as an alternative control group.

The evaluation approach consists of exploring sources of differential eligibility
and different assumptions about the relationship between the outcome and the partic-
ipation decision to identify the effects of the New Deal. On the ‘‘differential eligibil-
ity’’ side, two potential sources of identification are used. First, the program being
age-specific implies that using slightly older people of similar unemployment dura-
tion is a natural comparison group. Second, the program was first piloted for three
months (January to March 1998) in selected areas before being implemented nation-
wide (the ‘‘National Roll Out’’ beginning April 1998). The same age group in non-
pilot areas is not only likely to satisfy the quasi-experimental conditions more
closely but also allows for an analysis of the degree to which the DID comparisons
within the treatment areas suffer from both general equilibrium or market level
biases and serious substitution effects. Substitution occurs if participants take (some
of) the jobs that nonparticipants would have got in the absence of treatment. Equi-
librium wage effects may occur when the program is wide enough to affect the wage
pressure of eligible and ineligible individuals.

The study focuses on the change in transitions from the unemployed claimant
count to jobs during the Gateway period. It finds that the outflow rate for men has
risen by about 20 percent as a result of the New Deal program. Similar results show
up from the use of within area comparisons using ineligible age groups as controls
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and also from the use of individuals who satisfy the eligibility criteria but reside in
nonpilot areas. Such an outcome suggests that either wage and substitution effects
are not very strong or they broadly cancel each other out. The results appear to be
robust to preprogram selectivity, changes in job quality, and different cyclical effects.

C. Weaknesses of DID

1. Selection on idiosyncratic temporary shocks: ‘‘Ashenfelter’s dip’’

The DID procedure does not control for unobserved temporary individual-specific
shocks that influence the participation decision. If o is not unrelated to d, DID is in-
consistent for the estimation of ATT and instead approximates the following param-
eter

E½âDID� ¼ aATT + E½oit1 2 oit0 jdi ¼ 1�2 E½oit1 2 oit0 jdi ¼ 0�
To illustrate the conditions such inconsistency might arise, suppose a training pro-

gram is being evaluated in which enrolment is more likely if a temporary dip in earn-
ings occurs just before the program takes place—the so-called ‘‘Ashenfelter’s dip’’
(see Ashenfelter1978; Heckman and Smith 1999). A faster earnings growth is
expected among the treated, even without program participation. Thus, the DID es-
timator is likely to overestimate the impact of treatment.

Another important example of this is in the use of tax reforms as natural experi-
ments to measure the responsiveness of taxable income to changes in marginal tax
rates (see Lindsey 1987; Feenberg and Poterba 1993, for repeated cross sections
applications; Feldstein 1995, for a panel data application). Much of this literature
has focused on individuals with high income, who generally experience more pro-
nounced changes in the tax schedule and are arguably more responsive to changes
in marginal tax rates. These papers have relied on DID to identify the elasticity of
taxable income to marginal tax rates by comparing the relative change in taxable in-
come of the highest income group with that of other (generally also high income)
groups. However, in a recent discussion of these studies Goolsbee (2000) suggests
that reactions in anticipation of the tax changes that shift income across tax years
around the policy change may account for most, if not all, of the responses identified
in the earlier literature. This would imply that previous estimates may be upward bi-
ased by disregarding such behavioral responses. Nontax-related increases in income
inequality contemporaneous to the tax reforms has also been suggested to partly ex-
plain the identified effects, suggesting the occurrence of differential macro trends to
which we now turn.

2. Differential macro trends

Identification of ATT using DID relies on the assumption that treated and controls
experience common trends or, in other words, the same macro shocks. If this is
not the case, DID will not consistently estimate the ATT. Differential trends might
arise in the evaluation of training programs if treated and controls operate in different
labor markets. For example, unemployment in different age groups is often found to
respond differently to cyclical fluctuations. In particular, unemployment among the
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youngest is generally more volatile, responding more strongly to changes in macro
conditions and thus exhibiting more pronounced rises and drops as the economy
evolves.

Figure 1 illustrates what is meant by common trends. It refers to the New Deal
study described above and compares treated and controls over time with respect to
the outflows from unemployment. The common trends assumption holds when the
curves for treated and controls are parallel. In our example, the curves are nearly par-
allel over most of the period. The only important exception is at the beginning of the
observable period. The graph suggests that the common trends assumption on both
control groups considered in the study is broadly valid.

The possibility of differential trends motivates the ‘‘differential trend adjusted DID
estimator.’’ Suppose we suspect that the common trend assumption of DID does not
hold but can assume that selection into treatment is independent of the temporary in-
dividual-specific effect, oit, under differential trends

E½uitjdi ¼ d; t� ¼ E½nijdi ¼ d�+ qdmt

where qd is a scalar allowing for differential macro effects across the two groups (d
represents the group and is either one or zero).

Figure 1
Probability of Having Left Unemployment by the End of the Tenth Month on JSA
Notes: PF stands for ‘‘Pathfinder’’ or ‘‘Pilot’’ areas. Figure plots the probability of leaving unemploy-

ment claimant count by age and region of residence. From Blundell et al. (2004).
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The DID estimator now identifies

E½âDID� ¼ aATT + ðq12q0ÞE½mt1 2mt0 �

which does not recover the true ATT unless q1 ¼ q0, in which case we are back to the
standard DID assumption.

Given the availability of data, one possible solution is to compare the trends of
treated and controls historically, prior to the intervention. Historical, prereform data
can help if there exists another time interval, say ðt�; t��Þ (with t�, t��, k, over
which a similar macro trend has occurred. In that case, by comparing the DID esti-
mate of the impact of treatment contaminated with the bias from differential trend
with the estimate of the differential trend over ðt�; t��Þ one can separate the true im-
pact of treatment from the differential trend.

More precisely, suppose one finds a prereform period, ðt�; t��Þ for which the dif-
ferential macro trend matches the bias term in the DID estimator,
ðq12q0Þðmt1 2mt0Þ. That is, ðq12q0Þðmt��2mt� Þ ¼ ðq12q0Þðmt1 2mt0Þ.

This means that there is a point in history where the relative conditions of the two
groups being compared, treatments and controls, evolves similarly to what they do in
the prepost reform period, (t0,t1). Together with the absence of policy reforms that
affect the outcome y during ðt�; t��Þ, this condition allows one to identify the bias
term ðq12q0Þðmt1 2mt0Þ by applying DID to that prereform period. The impact of
treatment can now be isolated by comparing DID estimates for the two periods,
ðt0; t1Þ and ðt�; t��Þ. This is the differentially adjusted estimator proposed by Bell,
Blundell, and Van Reenen (1999), which will consistently estimate ATT,

â ¼ f½�y1
t1
2�y1

t0
�2½�yt1

02�yt0
0�g2f½�y1

t��
2�y1

t�
�2½�yt��

02�yt�
0�g:ð17Þ

It is likely that the most recent cycle is the most appropriate, as earlier cycles may
have systematically different effects across the target and comparison groups. The
similarity of subsequent cycles, and thus the adequacy of differential adjusted
DID, can be accessed in the presence of a long history of outcomes for the treatment
and control groups.

D. DID with repeated cross-sections: compositional changes

Although DID does not require longitudinal data to identify the true ATT parameter,
it does require similar treatment and control groups to be followed over time. In par-
ticular, in repeated cross-section surveys the composition of the groups with respect
to the fixed effects term must remain unchanged to ensure before-after comparability.
If before-after comparability does not hold, the DID will identify a parameter other
than ATT. We will illustrate this problem within our running education example.

E. Nonlinear DID models

A restrictive feature of the DID method is the imposition of additive separability of
the error term conditional on the observables, as specified by Assumption DID1 in
Equation 13. Recent studies have proposed ways of relaxing this assumption. In their
analysis of the New Deal for the Young People, Blundell et al. (2004) noted that lin-
earity in the error term can be particularly unrealistic when the outcome of interest is
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a dummy variable. In such case, the DID method can conceivably predict probabil-
ities outside the ½0,1� range. Instead, the authors suggest using the popular index
models and assuming linearity in the index. Unfortunately, DID loses much of its
simplicity even under a very simple nonlinear specification.

To extend DID to a nonlinear setting, suppose the outcome equation is now:

yit ¼ 1ðb + aidit + uit . 0Þð18Þ

where 1ðAÞ is the indicator function, assuming the value one if A is true and zero
otherwise. As before,

uit ¼ ni + mt2oit

and the DID assumption holds,

E½uitjdi; t� ¼ E½nijdi�+ mt

where di represents the treatment group. Additional assumptions are required. We as-
sume o follows a distribution F where F is invertible.7 Denote by F21 the inverse
probability rule. We simplify the model further by assuming a common group effect
instead of allowing for an individual-specific effect: it is assumed that ni ¼ nd for
d ¼ 0,1 being the post-program treatment status of individual i8.

Under these conditions and given a particular parametric assumption about the
shape of F, say normal, one could think of mimicking the linear DID procedure
by just running a probit regression of y on d and dummy variables for group and time
(and possibly other exogenous regressors x) hoping this would identify some average
of the treatment parameter a. One could then average the impact on y over the treated
to recover the average treatment effect on the treated (the individual impact would
depend on the point of the distribution where the individual is before treatment).

Unfortunately, this is not a valid approach in general. The problem is that the
model contains still another error component which has not been restricted and that,
under general conditions, will not fulfill the probit requirements. To see this, notice
we can rewrite Model 18 as follows:

yit ¼ 1ðb + aATEdit + ditðai2aATEÞ + nd + mt2oit . 0Þ

where dit ai2aATEð Þ is part of the error term. Standard estimation methods would re-
quire a distributional assumption for ai2aATEð Þ and its independence from the treat-
ment status.

Instead of imposing further restrictions in the model, we can progress by noticing
that under our parametric setup,

E½y0
itjdi ¼ d; t� ¼ Fðb +nd +mtÞ

7. More precisely, we are assuming the transitory shocks, o, are iid continuous random variables with a
strictly increasing cumulative density function, F, which is assumed known.
8. This is generally required for nonlinear discrete choice models (see Nickell 1981).
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where, as before, y0; y1ð Þ are the potential outcomes in the absence and in the pres-
ence of treatment, respectively. But then the index is recoverable given invertibility
of the function F,

b + nd + mt ¼ F21 E½y0
itjdi ¼ d; t�

� �
:

Using this result it is obvious that the trend can be identified from the comparison
of nontreated before and after treatment:

mt1 2mt0 ¼ F21 E½y0
itjdi ¼ 0; t1�

� �
2F21 E½y0

itjdi ¼ 0; t0�
� �

:ð19Þ

Moreover, given the common trend assumption it is also true that, would we be
able to observe the counterfactual of interest, E½y0

itjdi ¼ 1; t1�

mt1 2mt0 ¼ F21 E½y0
itjdi ¼ 1; t1�

� �
2F21 E½y0

itjdi ¼ 1; t0�
� �

:ð20Þ

But then Equations 19 and 20 can be combined to form the unobserved counter-
factual as follows:

F21 E½y0
itjdi ¼ 1; t1�

� �
¼ F21 E½y0

itjdi ¼ 1; t0�
� �

+ F21 E½y0
itjdi ¼ 0; t1�

� �
2F21 E½y0

itjdi ¼ 0; t0�
� �� �

:

Let the average parameter of interest be aATT , which measures the average impact
among the treated on the inverse transformation of the expected outcomes. Then9

aATT ¼ F21 E½y1
itjdi ¼ 1; t1�

� �
2F21 E½y0

itjdi ¼ 1; t1�
� �

¼ F21 E½y1
itjdi ¼ 1; t0�

� �
2F21 E½y0

itjdi ¼ 1; t0�
� �� �

2 F21 E½y0
itjdi ¼ 0; t1�

� �
2F21 E½y0

itjdi ¼ 0; t0�
� �� �

:

Rearranging, the missing counterfactual is

9. Notice that aATT is not the ATT since F21 E½y1
it jdi ¼ 1; t1�

� �
is generally different from the average index

for this group and time period (which is b + aATT + n1 + mt1 ) given the nonlinearity of F21 and the heterog-
enous nature of the treatment effect. To see why notice that,

E½y1
itjdi ¼ 1; t1� ¼

Z
D að Þ

F b + a + n1 + mt1ð ÞdGajd ajdi ¼ 1ð Þ

where D að Þ is the space of possible treatment effects, a, and Gajd is the cumulative distribution function of
a among individuals in treatment group d. Applying the inverse transformation yields,

F21 E½y1
itjdi ¼ 1; t1�

� �
¼ F21

Z
DðaÞ

Fðb + a + n1 + mt1Þd Gajdðajdi ¼ 1Þ
" #

6¼
Z

DðaÞ
F21½Fðb + a + n1 + mt1Þ�d Gajdðajdi ¼ 1Þ:

However, it can be used to recover the ATT as exposed in the main text.
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E½y0
itjdi ¼ 1; t1� ¼ F F21 E½y1

itjdi ¼ 1; t1�
� �

2aATT
� �

:

Using this expression, the ATT can be estimated by replacing the expected values
by their sample analogs,dATT ¼ �y1

t1
2 FfF21ð�y1

t1
Þ2âATTg

where

âATT ¼ ½F21ð�y1
t1
Þ2F21ð�y1

t0
Þ�2½F21ð�yt1

0Þ2F21ð�yt0
0Þ�:

Recently, Athey and Imbens (2006) developed a general nonlinear DID method
specially suited for continuous outcomes: the ‘‘changes-in-changes’’ (CIC) estima-
tor.10 The discussion of this method is outside the scope of this paper (we refer
the interested reader to the original paper by Athey and Imbens 2006).

F. Using DID to estimate returns to education

Since formal education occurs earlier in the lifecycle than labor market outcomes, it
is generally not possible to evaluate the returns to education using earnings of treated
and controls before and after the treatment. However, in the presence of an exoge-
nous change in the environment leading to potential changes in education decisions,
one may be able to identify some policy interesting parameter from the comparison
of different cohorts. To explore this possibility, we consider the simulation model
discussed before but now extended to include an education subsidy.

In this extension to the simple lifecycle model of education investment and work-
ing first discussed in Section IIB, the individual lives for three periods corresponding
to basic education, advanced education, and working life. These are denoted by age
being zero, one, and two, respectively. The new education subsidy is available to
individuals going into advanced education. Eligibility to subsidised education
depends on academic performance during basic education as described in more detail
below.

At birth, age zero, individuals are heterogeneous with respect to ability, u, and
family background, z. At this age all individuals complete basic education and per-
form a final test. The score on this test depends on innate ability (u) and the amount
of effort (e) the individual decides to put in preparing for it:

si ¼ g0 + g1uiei + qið21Þ

where q is the unpredictable part of the score and g0; g1ð Þ are some parameters. Ef-
fort e carries some utility cost, as described in Appendix 1. The (stochastic) payoff to
this effort is the possibility of obtaining a subsidy to cover (part of) the cost of ad-
vanced education if scoring above a minimum level s.

The remaining of the individual’s life follows as explained before in Section IIB.
At age one the individual decides whether to invest in advanced education. In the
presence of a subsidy to advanced education the cost is

10. An extension to the discrete case is also considered by the authors.
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ci ¼ d0 + d1zi21ðsi . sÞS + við22Þ

where 1ðAÞ is the characteristic function assuming the value one if proposition A is
true and zero otherwise.

Finally, age two represents the working life and earnings are realized. The loga-
rithm of earnings are defined as in Equation 11:

lnyi ¼ b0 + b1xi + a0di + a1uidi + ui:

1. Specification details and true parameters

For future reference and comparison purposes, we now present a couple of important
model parameters along with the true effects. Further specification details can be
found in Appendix 1.

The main set of estimates refers to the case where the unobservables in the cost
of education (Equation 22) and in the earnings equation (Equation 11) are nega-
tively correlated with the correlation coefficient being -0.5. In all cases we will
also consider the uncorrelated model, where all selection occurs in the observ-
ables. Eligibility to education subsidy is determined by the test score with individ-
uals scoring above s ¼ 4 being eligible. The exogenous explanatory variable, x, is
assumed to be discrete, in the present case assuming only two values, zero and
one. The exogenous determinant of the cost of education, z, is assumed to follow
a truncated normal distribution in the interval ½-2,2�. The unobservable level of
ability, u, is also assumed to be a truncated normal but this time in the interval
½0,1�.

Table 1 presents the true ATE and ATT as well as a range of statistics character-
izing the selection process in the presence of an education subsidy. Other parameters
and other cases not systematically discussed throughout the paper will be introduced
only when relevant. All numbers result from simulations for an economy with an ed-
ucation subsidy under the assumption that individuals are perfectly informed about
funding opportunities at birth.

Numbers in Table 1 represent two alternative cases depending on whether the cor-
relation between the unobservables u and v is negative (Column 1) or zero (Column
2). In both cases, the presence of strong selection mechanisms is quite evident. Rows
1 and 2 display the ATE and ATT respectively, and these are markedly different with
the average participant benefiting more from advanced education then the average
individual. The presence of selection is also suggested by the numbers in Rows 4
to 11 as the average of each variable among the educated is very different from that
over the whole population.

Row 5 shows that being eligible to subsidized education is a stronger determi-
nant of participation if the unobservables are uncorrelated. This is expected since
individuals have more information about potential gains from education in the
presence of correlation between the residuals and use this information in their ed-
ucation decision. Rows 6 to 9 show that both ability and family background are
strong determinants of participation and more so in the absence of correlation
between the residuals. Region is much less important, as displayed in Rows 10
and 11.
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2. Sources of variation for DID

This DID application relies on the occurrence of a policy change and availability of
individual information collected before and after the policy change. We denote these
cohorts by the time of their education decision, namely t ¼ 0 or t ¼ 1 for whether the
education decision is taken before or after the policy change, respectively. We then
explore two sources of variability. The first assumes the subsidy is first piloted in one
region, say x ¼ 1, while the old policy remains active in the rest of the country (re-
gion x ¼ 0). The second uses the policy eligibility rule, namely the cutoff point in
terms of test score (s), to define treatment and comparison groups. The considered
policy change is the introduction of a subsidy for advanced education.

We first discuss the use of pilot studies, with the subsidy being available at time
t ¼ 1 in region x ¼ 1 but not in region x ¼ 0 or at time t ¼ 0. The question now
is: Can we explore this regional change in policy to learn about the returns to edu-
cation using DID?

We start by noticing that enrollment into education is not solely determined by the
subsidy. Some individuals decide to enroll into education even if no subsidy is avail-
able or if not eligible, while some eligible individuals will opt out despite the pres-
ence of the subsidy. Thus, there will be some educated individuals even when and

Table 1
Monte Carlo experiment—true effects and selection mechanism

Correlation between u and v

Negative (1) Zero (2)

(1) ATE 0.354 0.354
(2) ATT 0.453 0.471

(3) Proportion investing in education 0.286 0.344
Proportion eligible to subsidy:

(4) Whole population 0.165 0.276
(5) Among educated 0.346 0.649

Mean ability (u):
(6) Whole population 0.492 0.492
(7) Among educated 0.632 0.658

Mean family background (z):
(8) Whole population 0.039 0.039
(9) Among educated 0.559 0.582

Mean region (x):
(10) Whole population 0.396 0.396
(11) Among educated 0.452 0.447

Notes: Results from simulated data using the true individual effects and all the 200 Monte Carlo replica-
tions to represent the population. In whole, results are based on 400,000 simulated individuals. Simulations
for economy with subsidized advanced education and individuals totally aware of its availability and eli-
gibility rules at birth.
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where the subsidy is not available. To put it shortly, there is noncompliance. As a
result, the ATT will not be identified in general. Instead, what may be identified is
the average impact for individuals who change their educational decisions in re-
sponse to the subsidy.

To estimate the returns to education among individuals that change education sta-
tus in response to the subsidy, we further assume a monotonicity condition—that the
chance of assessing subsidized education does not lead anyone to give up education.
Instead, it makes education more attractive for all eligibles and does not change the
incentives to invest in education among noneligibles.11

Define the treatment and control groups as those living in regions affected (x ¼ 1)
and not affected (x ¼ 0) by the policy change and suppose we dispose of information
on education attainment and earnings of both groups before and after the policy
change. We can then compare the two regions over time using DID.

Designate by lnyxt the average log earnings in region x at time t. As before, dit is a
dummy variable indicating whether individual i in cohort t has acquired high educa-
tion, and we define the probabilities

pxt ¼ P dit ¼ 1jx; tð Þ

where again i indexes individuals, x represents the region (x ¼ 0,1) and t represents
time (t ¼ 0,1). Thus, pxt is the odds of participation in region x at time t. The mono-
tonicity assumption, stating that education is at least as attractive in the presence of
the subsidy, implies that di1 $ di0 for all i in region x ¼ 1 and, therefore, p11 $ p10. In
the control region we assume d01 ¼ d00 for simplicity, ruling out macro trends.12

Assuming the decomposition of the error term as in Assumption DID1,

uit ¼ ni + mt + oit

yields, under the DID assumptions,

E lny112lny10

� �
¼ ðm12m0Þ+ ðp112p10ÞE aijdi1 ¼ 1; di0 ¼ 0; xi ¼ 1½ �

The above expression suggests that only the impact on the movers may be identified.
Similarly,

E lny012lny00

� �
¼ ðm12m0Þ

since individuals in the control region do not alter their educational decisions. Thus,
under the DID assumption we identify,

E½âDID� ¼ ðp112p10ÞE½aijdi1 ¼ 1; di0 ¼ 0; xi ¼ 1�:ð23Þ

Equation 23 shows that the mean return to education on individuals moving into ed-
ucation in response to the subsidy can be identified by dividing the DID estimator by
the proportion of movers in the treated region, p112p10. This is the LATE parameter.

11. We discuss this type of monotonicity assumption in more detail later on, along with the LATE param-
eter.
12. Notice that no other factors differentially affecting education investments of cohorts 0 and 1 are con-
sidered.
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Not correcting for the proportion of movers implies that a different parameter is
estimated: The average impact of introducing an education subsidy on the earnings
of the treated, in this case the individuals living in region one. This is a mixture of a
zero effect for individuals in the treated region that do not move and the return to
education for the movers.13

Under homogeneous treatment effects, all average parameters are equal and thus
ATE and ATT are also identified. However, under heterogeneous treatment effects
only the impact on the movers can be identified and even this requires especial con-
ditions. In this example we have ruled out movers in the control regions. If other con-
ditions differentially affect the educational decisions in nontreated regions before
and after the policy intervention, movements are expected among the controls as
well. Whether the monotonicity assumption mentioned above holds for the control
group or not depends on the circumstances that lead these individuals to move.
For simplicity, assume monotonicity holds in control areas such that di1$di0 for i
in the control region. DID will then identify

E½âDID� ¼ ðp112p10ÞE½aijdi1 ¼ 1; di0 ¼ 0; xi ¼ 1�
+ðp012p00ÞE½aijdi1 ¼ 1; di0 ¼ 0; xi ¼ 0�:

Now the ability to single out the returns to education on a subset of the movers (movers
in region x ¼ 1 net of movers in region x ¼ 0) depends on two additional factors: (i)
That movers in region x ¼ 1 in the absence of a policy change would have the same
returns to education as movers in region x ¼ 0, which typically requires that they
are similar individuals; and (ii) that different proportions of individuals move in the
two areas.

Now suppose that instead of a pilot study, we are exploring the use of a global,
country-wide policy change. Instead of using treated and nontreated regions, one
can think of using the eligibility rules as the source of randomization. The treatment
and control groups are now composed of individuals scoring above and below the
eligibility threshold s, respectively. Let s̃ denote eligibility: s̃ is one if s $ s and is
zero otherwise. Again, we assume data is available on two cohorts, namely those af-
fected and unaffected by the policy change.

The use of the eligibility rule instead of regional variation suffers, in this case,
from one additional problem: the identification of the eligibility group before the in-
troduction of the program. The affected generations will react to the new rules,
adjusting their behavior even before their treatment status is revealed (which
amounts to becoming eligible to the subsidy). In our model, future eligibility can
be influenced in anticipation by adjusting effort at age zero. As a consequence, a
change in the selection mechanism in response to the policy reform will affect the
size and composition of the eligibility groups over time. This means that eligibles
and noneligibles are not comparable over time and since we are confined to use re-
peated cross-sections to evaluate the impact of education, it would exclude DID as a

13. In the presence of noncompliance, this result also applies when other criterion is used to define the
treatment groups for as long as the treatment status is well defined before and after the policy change.
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valid candidate to the present evaluation exercise when the only source of variation
to be explored is eligibility.

This problem has been identified by Abbring and van den Berg (2003) for evalu-
ation studies in the presence of dynamic decision processes. Individuals may react in
anticipation of treatment, in an attempt to explore the policy rules. If the rules
change, anticipatory behavior may also change, thus rendering individuals with sim-
ilar characteristics incomparable when such characteristics are affected by the endog-
enous selection behavior that is not explicitly modeled. Reactions in anticipation to
treatment are generally not observable and tend to change over time. Their occur-
rence may create a problem similar to the Ashenfelter dip described above as their
potential impact on the outcome will be absorbed by the transitory unobservable
component. Treated and controls with similar pretreatment characteristics and out-
comes will be inherently different as observables are endogenously affected by the
individuals prospects about treatment.

In our example, individuals may react to the new subsidy by increasing effort in
the test, raising test performance on average and increasing the odds of becoming
eligible to subsidized education. Thus, the ability distribution of eligibles will be af-
fected by the policy change, not only the educational choice.

3. Monte Carlo results: DID

To illustrate the ability of DID to estimate the impact of treatment, we ran a Monte
Carlo simulation. This simulation exercise is a completely controlled experiment, for
which the exact treatment effects are known and the selection mechanisms fully un-
derstood. Such information provides a more insightful view over the evaluation prob-
lems when the aim is to learn about returns to education and allows for a direct
comparison of different methods in what concerns to the nature of their assumptions,
the nature of the identified parameters and their robustness to certain violations of the
underlying assumptions.

In this DID application we tried different assumptions, depending on: (i) Whether
the policy is experimented in some parts of the country before being nationally
implemented; (ii) whether the post-intervention generation is informed about the
new rules at the moment of taking the test and defining eligibility; and (iii) whether
the unobservables v and u are correlated. In each case, we estimate the impact of ed-
ucation using DID correcting and not correcting for noncompliance among the trea-
ted. Thus, the parameters that we aim to identify are the aggregate effect of the
subsidy on the treatment group, where treatment is either being in the pilot region
or being eligible to subsidized education, and the effect of education on the movers
where movers are individuals that become educated only if subsidized.

Table 2 displays the true parameters, DID estimates and respective bias for the
case where the unobservables u and v are negatively related.14 In producing these
estimates we explore two sources of differential eligibility: region and test score.
In the case of region, we assume the policy is first implemented in Region 1 and

14. Similar results were obtained for the case where the unobservables are independent and are available
from the authors under request.
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compare earnings and education take up in Region 1 (treated) with those in Region 0
(controls). In the case of test score, we explore the eligibility rule in terms of test
score by comparing individuals scoring above the threshold (treated) with those scor-
ing below the threshold (controls) over both regions.

The first three columns in Table 2 show true parameters and DID estimates under
the assumption that individuals are totally aware of the policy environment when
making their investment decisions. Results in Rows 1 and 2 show that a pilot study
design identifies the true effect both in aggregate terms, as the impact of the policy
change on the experimental population (Row 1), and in terms of impact on the mov-
ers or LATE, as the returns to education on agents that change educational attainment
in response to the introduction of the subsidy. This result is expected since the pop-
ulation in the treated and control regions does not change over time in response to the
policy.

Rows 3 and 4 show that using eligibility with an expected policy fails to identify
the true parameter. Again this result could be anticipated since optimizing individu-
als will adjust their behavior in advance to becoming eligible in an attempt to affect
their eligibility status. As a consequence, the composition of treated and control
groups will change together with the introduction of the policy.

The next three columns, Columns 4 to 6, display similar results when the individ-
uals are unaware of the policy at the moment of making decisions that may affect
their eligibility status. Thus, they will not have the required information to act in

Table 2
Monte Carlo experiment—DID estimates and bias

Expected policy Unexpected policy

True
Parameter

(1)
Estimate

(2)
Bias
(3)

True
Parameter

(4)
Estimate

(5)
Bias
(6)

Regional variation: region one is pilot
(1) Uncorrected estimates 0.035 0.037 0.044 0.011 0.013 0.133
(2) Corrected estimates 0.520 0.519 0.002 0.486 0.187 0.615

Eligibility variation: eligibles score above s in test
(3) Uncorrected estimates 0.203 0.328 0.612 0.202 0.202 0.000
(4) Corrected estimates 0.516 0.617 0.196 0.487 0.470 0.035

Notes: Simulated data based on 200 Monte Carlo replications of 2000 observations each. Simulations for
economy with subsidized advanced education. Estimates in Columns 1 to 3 (4 to 6) based on the assump-
tion that the post policy generation is fully (not) aware of the availability of the subsidy and eligibility con-
ditions at birth. No time trends were included in the simulations. Results respect to model with negatively
related unobservables, u and v. Estimates in Rows 1 and 2 use region to construct treatment and control
groups for when the policy is piloted ahead of the national roll out; estimates in Rows 3 and 4 use eligibility
status to construct treatment and control groups for when all regions introduce the policy simultaneously.
Uncorrected DID estimates in Rows 1 and 3 are standard DID estimates. Corrected DID estimates in Rows
2 and 4 are rescaled estimates to account for noncompliance (see Equation 23). Bias measured in relative
terms as compared to the true parameter (Columns 3 and 6).
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advance and affect eligibility and the composition of treated and control groups will
remain unchanged over the transition period (from before to after the policy change),
even when eligibility is used as the source of variation. In this case, the eligibility
criterion will correctly identify the true parameters (Rows 3 and 4).

An unexpected policy change will lead very few individuals to change their edu-
cation investment and, given the present design, all the movers will be concentrated
among the eligibles. Thus, the proportion of movers among the treated will be much
smaller if region instead of eligibility is used as the source of variation to construct
treated and control groups. The consequence is that considerable variation is intro-
duced when correcting the DID estimate since it amounts to dividing by a very small
number (see Equation 23). The numbers in Row 2, Columns 4 to 6, show how such
feature is translated in large bias for the DID estimator of the LATE parameter in this
case.

For comparison purposes we notice that the corresponding true ATT presented in
Table 1 is 0.453. This is closer to the LATE parameters when the policy environment
changes unexpectedly. If the agents have prior knowledge of the new policy, the most
able but with least resources (or higher costs) will try harder to obtain a subsidy as
this is will bring them very high returns. If, on the other hand the subsidy is not
expected, individuals will not act to attain eligibility and the movers will be less con-
centrated among very-high-cost/very-high-ability individuals.

V. Matching Methods

A. The matching estimator (M)

The underlying motivation for the matching method is to reproduce the treatment
group among the nontreated, this way reestablishing the experimental conditions
in a nonexperimental setting. Under assumptions we will discuss below, the matching
method constructs the correct sample counterpart for the missing information on the
treated outcomes had they not been treated by pairing each participant with members
of the nontreated group. The matching assumptions ensure that the only remaining
relevant difference between the two groups is program participation.

Matching can be used with cross-sectional or longitudinal data. In its standard for-
mulation, however, the longitudinal dimension is not explored except perhaps on the
construction of the matching variables. We therefore abstract from time in this dis-
cussion but will consider the appropriate choice of the matching variables in what
follows.

As a starting point we incorporate observable regressors X in the outcome equation
in a reasonably general way. The covariates X explain part of the residual term u in
Equation 1 and part of the idiosyncratic gains from treatment:

y1
i ¼ b + uðXiÞ+ aðXiÞ+ ½ðui2uðXiÞÞ + ðai2aðXiÞÞ�

y0
i ¼ b + uðXiÞ+ ðui2uðXiÞÞ

ð24Þ

where uðXÞ is the predictable part of y0, ðu2uðXÞÞ is what is left over of the error u
after conditioning on X, aðXÞ is some average treatment effect over individuals with

Blundell and Dias 593



observable characteristics X and ai is the individual i specific effect, which differs
from aðXiÞ by the unobservable heterogeneity term.

To identify ATT, matching assumes that the set of observables, X, contains all the
information about the potential outcome in the absence of treatment, y0, that was
available to the individual at the point of deciding whether to become treated, d. This
means that the econometrician has all the relevant information, namely the informa-
tion that simultaneously characterizes the participation rule and the nontreated out-
come. This is called the Conditional Independence Assumption (CIA) and can be
formally stated as follows

y0
i ? dijXi:ð25Þ

Since all the information that simultaneously characterize y0and d is in X, condition-
ing on X makes the nontreated outcomes independent from the participation status.
Thus, treated and nontreated sharing the same observable characteristics, X, draw the
nontreated outcome, y0, from the same distribution.

Within Model 24, Assumption M1-ATT can be restated in terms of the unobserv-
able in the nontreated outcome equation,

ðui2uðXiÞÞ ? dijXi

or, which is the same,

ui ? dijXi

meaning that u is independent of participation into treatment or, in other words, that
there is no selection on the unobservable part of u in Equation 24.

The CIA in M1-ATT obviously implies a conditional version of the randomization
hypothesis that rules out selection on the untreated outcomes (R1),

E½uijdi;Xi� ¼ E½uijXi�:ð26Þ

This weaker version of the CIA is sufficient to estimate the ATT on individuals with
observable characteristics X using matching. Again, nothing like the randomization
hypothesis (R2) is required to identify the ATT, which means that selection on the
unobservable gains can be accommodated by matching.

The implication of M1-ATT or M1#-ATT is that treated and nontreated individuals
are comparable in respect to the nontreated outcome, y0; conditional on X. Thus, for
each treated observation (y1) we can look for a nontreated (set of) observation(s) (y0)
with the same X-realization and be certain that such y0 is a good predictor of the un-
observed counterfactual.

Thus, matching is explicitly a process of rebuilding an experimental data set. Its
ability to do so, however, depends on the availability of the counterfactual. That
is, we need to ensure that each treated observation can be reproduced among the non-
treated. This is only possible if the observables X do not predict participation exactly,
leaving some room for unobserved factors to influence the treatment status. This is
the second matching assumption, required to ensure that the region of X represented
among participants is also represented among nonparticipants. Formally, it can be
stated as follows

ðM1� ATTÞ

ðM10 � ATTÞ
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P½di ¼ 1jXi�, 1:ð27Þ
Given Assumptions M1#-ATT and M2-ATT, we can now define the matching es-

timator. Let S represent the subspace of the distribution of X that is both represented
among the treated and the control groups. S is known as the common support of X.
Under Assumption M2-ATT, S is the whole domain of X represented among the trea-
ted. The ATT over the common support S is

aATTðSÞ ¼ E½y12y0jd ¼ 1;X 2 S�

¼
R

X2S E½y12y0jd ¼ 1;X�d FXjdðXjd ¼ 1ÞR
X2S d FXjdðXjd ¼ 1Þ

where FXjd is the cumulative distribution function of X conditional on d and aATTðSÞ
is the mean of impact on participants with observable characteristics X in S.

The matching estimator is the empirical counterpart of aATTðSÞ. It is obtained by
averaging over S the difference in outcomes among treated and nontreated with equal
X-characteristics using the empirical weights of the distribution of X among the treated.
Formally, the matching estimator of the ATT is

âM ¼ +
i2T

yi2 +
j2C

w̃ijyj

( )
wið28Þ

where T and C represent the treatment and comparison groups respectively, w̃ij is the
weight placed on comparison observation j for the treated individual i and wi

accounts for the reweighting that reconstructs the outcome distribution for the treated
sample.

Identification of ATE requires a strengthened version of Assumption M1#-ATT be-
cause the correct counterfactual needs to be constructed for both the treated and the
nontreated. This means that both ui and ai need to be (mean) independent of d con-
ditional on X. That is, selection on unobserved expected gains must also be excluded
for matching to identify the correct ATE (recovering the second randomization as-
sumption, R2). In its weaker version, the CIA is now

E½uijdi;Xi� ¼ E½uijXi�
E½aijdi;Xi� ¼ E½aijXi�:

ð29Þ

Estimation of ATE also requires a modification of the Overlapping Support As-
sumption M2-ATT to ensure that both the treated and the nontreated are represented
within the alternative group. Formally,

0 , P½di ¼ 1jXi�, 1:ð30Þ
Under Assumptions M1#-ATE and M2-ATE, the ATE over the common support S is

aATEðSÞ ¼ E½y12y0jX 2 S�

¼
R

X2S E½y12y0jX�d FXðXÞR
X2S d FXðXÞ

ðM2� ATTÞ

ðM2� ATEÞ

ðM10 � ATEÞ
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where now the conditional mean effects are weighted using the distribution of the X’s
over the whole population, FXðXÞ.

The choice of the appropriate matching variables, X, is a delicate issue. Too much
information and the overlapping support assumption will not hold. Too little and the
CIA will not hold. The wrong sort of information and neither of the two assumptions
will hold. So what is the right balance?

The appropriate matching variables are those describing the information available
at the moment of assignment and simultaneously explaining the outcome of interest.
This set of variables ensures the CIA holds and forms the minimal information set
defined in Heckman and Navarro (2004). However, the same is not necessarily true
for the overlapping support assumption. It will not hold when participation is deter-
mined with certainty within some regions of the support of X. In this case matching
will identify a different parameter, namely the average impact over the region of
common support. Typically, but not necessarily, individuals gaining the most and
the least from treatment will be excluded from the analysis.

However, it is rarely clear what sort of information is in the information set at as-
signment. What is clear is that matching variables should be determined before the
time of assignment and not after as this could compromise the CIA by having match-
ing variables affected by the treatment status itself. A structural model can shed
some light on what the correct set of matching variables should be. However, such
models are likely to include some unobservable variables and are more naturally
used to motivate Instrumental Variables and Control Function methods described fur-
ther below. Nevertheless, they can suggest possible variables that capture the key
determinants of selection. For example, in studies about the impact of training on
labor market outcomes, previous labor market history could contain all the relevant
information on the unobservable ability and job-readiness as it is partly determined
by such factors.

B. Propensity score matching

A serious limitation to the implementation of matching is the dimensionality of the
space of the matching variables, X. Even if all variables are discrete with a finite do-
main, the dimensionality of the combined space increases exponentially with the
number of variables in X, making it virtually impossible to find a match for each ob-
servation within a finite (even if large) sample when more than a few variables are
being controlled for.

A popular alternative is to match on a function of X. Usually, this is carried out on
the probability of participation given the set of characteristics X. Let P(X) be such
probability, known as the ‘‘propensity score.’’ It is defined as

PðXÞ ¼ Pðd ¼ 1jXÞ:

The use of P(X) has been motivated by Rosenbaum and Rubin’s result on the balanc-
ing property of the propensity score (1983, 1984). The authors have shown that if the
CIA is valid for X it is also valid for P(X):

y0
i ? dijXi 0 y0

i ? dijPðXiÞ:
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The balancing property of the propensity score implies that, if P(X) is known, it
can be used to replace X in the matching procedure.15 But then, knowledge of
P(X) reduces the matching problem to a single dimension, thus simplifying the
matching procedure significantly.

However, P(X) is not known in concrete applications and needs to be estimated.
Whether the overall estimation process is indeed simplified and the computing time
reduced depends on what is assumed about P(X). The popular procedure amounts to
employing a parametric specification for P(X), usually in the form of a logit, probit,
or linear probability model. This solves the dimensionality problem but relies on para-
metric assumptions. Alternatively, a nonparametric propensity score keeps the full flex-
ibility of the matching approach but does not solve the dimensionality problem.
Moreover, Rosenbaum and Rubin’s result was not shown to hold under the weaker ver-
sion of the CIA in Equation 26.

When using propensity score matching, the comparison group for each treated in-
dividual is chosen with a predefined criteria (established in terms of a predefined
metric) of proximity between the propensity scores for treated and controls. Having
defined a neighborhood for each treated observation, the next step is the choice of
appropriate weights to associate the selected set of nontreated observations to each
treated observation. Several possibilities are commonly used. We briefly refer the
most commonly applied alternatives and refer the interested reader to Leuven and
Sianesi (2003) and Becker and Ichino (2002) for more detailed practical guidelines
on alternative matching procedures.

The Nearest Neighbor Matching assigns a weight one to the closest nontreated ob-
servation and zero to all others. A widespread alternative is to use a certain number of
the closest nontreated observations to match the treated, frequently the ten closest
observations. This reduces the variability of the nearest neighbor estimator and is
more reliable specially when the sample of treated individuals is small as each match
may significantly affect the results.

Kernel Matching defines a neighborhood for each treated observation and con-
structs the counterfactual using all control observations within the neighborhood,
not only the closest observation. It assigns a positive weight to all observations
within the neighborhood and a zero weight to the remaining observations. Different
weighting schemes define different estimators. For example, uniform kernel attrib-
utes the same weight to each observation in the neighborhood while other forms of
kernel make the weights dependent on the distance between the treated and the
control being matched, where the weighting function is decreasing in distance.
By using more observations per treated, kernel weights reduce the variability of
the estimator when compared with nearest neighbor weights and produces less bias
then nearest neighbor with many matches per treated. However it still introduces
significant bias at the edges of the distribution of P(X). When this is a problem,
Local Linear Matching will effectively deal with this sort of bias.16

15. More recently, a study by Hahn (1998) shows that P(X) is ancillary for the estimation of ATE. However,
it is also shown that knowledge of P(X) may improve the efficiency of the estimates of ATT, its value lying
on the ‘‘dimension reduction’’ feature.
16. For a discussion of nonparametric matching estimators including Kernel and local linear regression
methods see, Heckman, Ichimura, and Todd (1997).
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Not only do kernel and local linear matching produce more precise estimates than
nearest neighbor matching, it is simpler to compute the precision for these estima-
tors. The complexity of propensity score matching requires bootstrapping to be used
in computing the standard errors for the effect of treatment. The problem with the
nearest neighbor technique is that bootstrapping is not guaranteed to deliver consis-
tent estimates since choosing only one (or a fixed number of) match(es) per treated
individual means that the quality of the match does not necessarily improve as the
sample (of controls) gets bigger. The same is not true for kernel and local linear
matching as with these estimators the sample of matched controls expands with
the sample size (for a thorough discussion of bootstrapping, see Horowitz 2001).

The general form of the matching estimator is not altered by the sort of weights
one decides to apply. As before, it is given by âM in Equation 28.

While propensity score matching is affected by the same problems as fully non-
parametric matching in choosing the right set of controlling variables, it also faces
the additional problem of finding a sufficiently flexible specification for the propen-
sity score to ensure that the distribution of observables is indeed the same among
treated and matched controls. The balancing property of Rosenbaum and Rubin
(1983, 1984) ensures that the true propensity score does balance the observables
but no similar result exists for the estimated propensity score. In general, one wants
to ensure that if the untreated outcome y0 is independent of the participation status
conditional on X, it is also independent of the participation status conditional of P̂ðXÞ
where P̂ðXÞ is the predicted propensity score based on estimation results. The eval-
uation literature has proposed a few balancing tests to assess whether the specification
for the propensity score is statistically sound. For example, Rosenbaum and Rubin
(1985) propose a test based on the comparison of means for each covariate between
treated and matched controls. If the difference in means is too large, the test rejects
the hypothesis that the samples (of treated and matched controls) are balanced with
respect to the covariates when they are balanced with respect to the (predicted) pro-
pensity score.

1. The linear regression model and the matching estimator

In common with the matching estimator, the linear regression model also relies on
selection on the observables. It amounts to impose a fully parametric structure to
Model 24 by assuming that u and a are linear functions of X:

uðXiÞ ¼ Xip

aðXiÞ ¼ j0 + Xij1

where ðp; j0; j1Þ are the unknown coefficients. The model can then be written as

y0
i ¼ b0 + Xip

0 + e0
ið31Þ

y1
i ¼ b1 + Xip

1 + e1
ið32Þ

where
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bd ¼ b + dj0

pd ¼ p + dj1

ed
i ¼ ðui2XipÞ+ dðai2j02Xij1Þ

and d is the treatment indicator.
Estimation of the ATT requires knowledge of the model for the untreated out-

comes only, Equation 31. The strategy to be discussed here consists of comparing
observed outcomes among the treated with the predicted counterfactual based on
the estimates of Equation 31. So in fact this is not a straightforward OLS procedure
as it involves a second step to form the predicted nontreated outcomes among the
treated (Ê½y0jX; d ¼ 1�) and compare them to the observed treated outcomes, y1.

Instead, many empirical applications use the overall model for observed outcomes
y to identify some average treatment effect directly from the OLS regression:

yi ¼ b + Xip + aðXiÞdi + ei where

ei ¼ ðui2XipÞ+ diðai2aðXiÞÞ
¼ ðui2XipÞ+ diðai2j02Xij1Þ:

ð33Þ

However, estimation of (33) is more demanding in ways to be discussed below.
The CIA together with the assumption of exogeneity of the covariates X, that is

E½e0jX� ¼ E½e0�, ensures that the ATT can be obtained from the OLS predictions
of y0 over the range of X’s observed among the treated. The Common Support As-
sumption M2-ATT is not required as the parametric specification can be used to ex-
trapolate y0 outside the observable range of X among the controls when predicting
the counterfactual for each treated observation.

The imposition of a parametric specification is not as restrictive as it might first
seem. In fact, by including many interactions between the variables and higher order
polynomials in the (continuous) regressors, one will closely approximate any smooth
function y0 over the domain of observable X’s (see the Blundell, Dearden, and
Sianesi 2005 application, for example). The main requirement is then to use a flex-
ible enough functional form for y0.

Much more restrictive is the relaxation of the common support assumption. In its
absence, the model needs to be extrapolated over unobservable regions of the distri-
bution of X, where only the true model in the absence of endogenous regressors can
be guaranteed to perform well. Of course, one could always think of imposing the
common support assumption within the parametric linear model and estimate the av-
erage effect of treatment within regions of X simultaneously observed among treated
and controls. However, while this is feasible it is rarely done in the context of para-
metric models given the simplicity of extrapolating outside the observable interval.
Most frequently, researchers seem unaware that a common support problem exists.

Another drawback of the parametric linear model is the requirement of exogeneity
of X in the equation for y0. In a recent paper, Frolich (2006) noticed that an important
and often ignored advantage of nonparametric (as compared to parametric) regres-
sion methods is that endogeneity of regressors that are not of main interest (in our

Blundell and Dias 599



case X) may not affect the estimated relationship between the regressor of interest (in
our case, d) and the outcome (y). While this is true, a couple of considerations are
due in the context of our evaluation problem. First, and as noticed before, nonpara-
metric regression methods, and in particular matching, can cope with endogeneity of
X only as long as these covariates are not determined by the regressor of interest, d.

The second point is slightly more subtle. Start by noticing that the objective of
OLS is not to directly estimate the ATT, which would amount to estimating the Re-
gression Model 33. In such case the endogenous regressors in X not properly instru-
mented for would contaminate the estimates of all other parameters, including those
of a Xð Þ. Instead, the OLS approach we are discussing aims at recovering the unob-
servable counterfactual, E½y0jX; d ¼ 1�, using OLS estimates of the parametric
Model 31.

Consider the simple case where Equation 31 is correctly specified although (some
of) the regressors X are endogenous and the mean error term is a linear function of X:
E½e0jX� ¼ Xh0 for some set of unknown parameters h0. Then clearly OLS provides
inconsistent estimates of p0 but (asymptotically) correctly predicts E½y0jX; d ¼ 0� to
be b0 + X p0 + h0ð Þ. Under the CIA, the correct counterfactual for a treated individual
with observables X is recovered by Ê½y0jX; d ¼ 1� ¼cb0OLS+Xbðp0+h0ÞOLS.

The common support assumption is not needed in this case as long as linearity
holds over the whole support of X.

The more credible case where E½e0jX� is some unknown, possibly nonlinear, func-
tion of X is more demanding. On the one hand, it strengthens the case for a suffi-
ciently flexible specification of y0 as a function of X to compensate for the global
nature of the OLS estimator. On the other hand, it casts further doubts on extrapola-
tions outside the observable domain of X among the controls, thus calling for a com-
mon support restriction to be explicitly imposed.

C. Weaknesses of matching

The main weaknesses of matching relate to data availability and our ability to select
the right information. The Common Support Assumption M2-ATT ensures that the
missing counterfactual can be constructed from the population of nontreated. Equa-
tion M2-ATT does not ensure the same counterfactual exists in the sample. If some
of the treated observations cannot be matched, the definition of the estimated param-
eter becomes unclear. It is the average impact over some subgroup of the treated, but
such subgroup may be difficult to define. The relevance of such parameter depends,
of course, on the ability to define the population it corresponds to.

Taken together, Assumptions M1-ATT (or M1#-ATT) and M2-ATT show how de-
manding matching is with data: the right regressors X must be observed to ensure that
what is left unexplained from y0 is unrelated with the participation decision; any
more than the right regressors will only contribute to make finding the correct coun-
terfactual harder or even impossible. In particular, variables in the decision rule (in Z)
but not in X should be excluded from the matching procedure as they interfere with
Assumption M2-ATT. To achieve the appropriate balance between the quantity of in-
formation at use and the share of the support covered can be very difficult. In a recent
paper, Heckman and Navarro (2004) show how important and, at the same time, how
difficult it is to choose the appropriate set of variables for matching. Bias results if
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the conditioning set of variables is not the right and complete one. In particular, if the
relevant information is not all controlled for, adding additional relevant information
but not all that is required may increase, rather then reduce, bias. Thus, aiming at the
best set of variables within the available set may not be a good policy to improve the
matching results.

If, however, the right amount of information is used, matching deals well with po-
tential bias. This is made clear by the following decomposition of the treatment
effect

E½y12y0jd ¼ 1;X� ¼ fE½y1jd ¼ 1;X�2E½y0jd ¼ 0;X�g
2fE½y0jd ¼ 1;X�2E½y0jd ¼ 0;X�g

where the second term on the right hand side is the bias conditional on X. Condi-
tional on X, the only reason the true parameter, aATTðXÞ, might not be identified is
selection on the unobservable term u. However, integration over the common support
S creates two additional sources of bias: nonoverlapping support of X and misweight-
ing over the common support. Through the process of choosing and reweighting
observations, matching corrects for the latter two sources of bias and selection on
the unobservables is assumed to be zero by the CIA.

D. Using matching to estimate returns to education

In this section we return to education evaluation example. The earnings specification
in Equation 11 is reproduced here:

ln yi ¼ b0 + b1xi + a0di + a1uidi + ui

where x is region and can be zero or one. The impact of education on earnings is
region-specific given the nonlinear form of the earnings equation. In what follows
we exclude sorting by region meaning that the distribution of ability does not change
by region. So the ATE on log earnings will not depend on region, but the same does
not hold with respect to the ATT due to the selection process.

1. Monte Carlo results

We ran some Monte Carlo experiments under different assumptions about the rela-
tionship between d and u depending on whether the residuals u and v are negatively
correlated or independent. In the former case there is selection on the unobservables
while the latter constraints selection to occur on the observables. In both alternatives
we estimated both the ATT and the ATNT using different sets of conditioning vari-
ables. Table 3 details the results for an economy with an education subsidy.

The first two columns in Table 3 display matching estimates of the ATT (Panel A)
and ATNT (Panel B) when the unobservables u and v are negatively correlated. This
corresponds to the case where (part of) the selection process occurs on a variable un-
observable by the researcher and we have seen that matching is incapable of
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identifying the true parameter under such circumstances as the CIA fails to hold.
Columns 1 and 2 just confirm this result in this specific example, independently of
the set of matching variables being used.

The numbers in Columns 1 and 2 on the table are based on the correlation between u
and v being -0.5. Figure 2 displays the bias in the estimation of the ATT and ATNT for
different levels of correlation when the set of matching variables is x and ðx; uÞ for the
ATTand ATNT, respectively. The bias is quite considerable even for relatively low lev-
els of correlation, particularly for the ATNT but also for the ATT. When selection on
the unobservables is suspected, other methods such as IVand control function are more
adequate than matching. These will be discussed in the next sections. Before that, how-
ever, we also experimented the use of matching when all selection occurs on the
observables. Results are displayed in Columns 3 and 4 of Table 3.

The correct ATT matching estimator conditions on region (x) alone as this is the
only variable simultaneously affecting educational investment and earnings in the
noneducated state. The numbers in Row 2, Columns 3 and 4 show that matching
identifies the ATT in this case. Including additional, unnecessary matching variables
increases bias by reducing the overlapping support in finite samples and increasing

Table 3
Monte Carlo experiment—Matching estimates of the ATT, ATNT, and bias

corr (u,v) < 0 corr (u,v) ¼ 0

Coefficient (1) Bias (2) Coefficient (3) Bias (4)

Panel A: ATT
(1) True ATT 0.453 0.471
Matching estimates based on the covariates:
(2) x 0.971 1.145 0.469 0.005
(3) x,z,s,u 1.284 1.836 0.506 0.074
(4) z,s,u 1.319 1.914 0.567 0.203

Panel B: ATNT
(5) True ATNT 0.293 0.315
Matching estimates based on the covariates:
(6) x 0.971 2.081 0.469 0.597
(7) x,u 1.011 2.209 0.287 0.021
(8) x,z,s 1.265 3.014 0.358 0.221

Notes: Simulated data based on 200 Monte Carlo replications of 2,000 observations each. Simulations for
economy with subsidized advanced education and individuals totally aware of its availability and eligibility
rules at birth. Columns 1 and 2 (3 and 4) display results under the assumption of negatively related (inde-
pendent) residuals u and v. Numbers in Rows 1 and 5 are the true parameters while numbers in Rows 2 to 4
(6 to 8) are matching estimates of the ATT (ATNT) using alternative sets of conditioning variables. Match-
ing based on the propensity score kernel method with Epanechnikov weights and a bandwidth of 0.05. Bias
measured in relative terms as compared to the true ATT or ATNT. x, z, s, and u represent region, family
background, test score, and innate ability, respectively.
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variability of the estimator (Row 3). In this example, however, the amount of bias
introduced by the additional matching variables is small. Excluding the correct
matching variable from the set of covariates increases bias more significantly
(Row 4). Individuals with the same realization of the covariates other than region
may decide differently about education because they expect different gains from
the investment due to residing in different regions: individuals in the high-
returns region are more likely to participate, but they would also enjoy from
higher earnings if remained uneducated than their counterparts in the low-returns
region. Thus, when comparing educated and uneducated individuals conditional
on covariates excluding x we are oversampling treated from the high-returns re-
gion and nontreated from the low-returns/low-earnings region, leading to biased
estimates.

Rows 5 to 8 show how much more difficult it can be estimating ATNT than ATT.
The CIA justifying matching for the estimation of ATNT requires the treated out-
come y1 to be independent of the treatment status d conditional on the matching
variables. It amounts to ruling out selection on the nontreated outcomes, y0, and
gains from treatment, a. y0 depends on region, x, and the gains from treatment de-
pend on ability, u, and region, x. Thus, the correct conditioning set is now ðx; uÞ and
the results on Rows 6 to 8 confirm this. Region alone does not solve the selection prob-
lem (Row 6) but matching is unbiased if ability is added to the conditioning set (Row
7). However, ability is rarely available in empirical studies. For this example, Row
8 shows that matching on alternative observables reduces the selection problem.
This is because the test score is related with ability and is part of the conditioning
set. Nevertheless, the bias is always sizeable if ability is not part of the matching var-
iables.

Figure 2
Relative bias in the matching estimator by level of correlation between the
unobservables u and v
Note: Bias is measured in relative terms, as a percentage of the true treatment effect.
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E. Combining matching and DID (MDID)

In the presence of longitudinal or repeated cross-section data, matching and DID can
be combined to weaken the underlying assumptions of both methods. The CIA is
quite strong if individuals are expected to decide according to their forecasted out-
come as data is rarely rich enough to describe the relevant available information.
However, the combination of matching with DID as proposed in Heckman, Ichimura,
and Todd (1997) can accommodate unobserved determinants of the nontreated out-
come affecting participation for as long as these are constant over time.

To discuss MDID, we start by decomposing the unobservable term ui in Equation
24 into a fixed effect (n), macro shock (m) and an idiosyncratic transitory shock (o).
MDID can be applied when treated and nontreated are observed over time with at
least one observation before and one after the treatment. For simplicity we consider
two time periods, ðt0; t1Þ, where t0 , k , t1 and k is the time of treatment. MDID
compares the evolution of treated outcomes with that of nontreated over the obser-
vation period ðt0; t1Þ and assigns any difference to the impact of treatment. To do
so, MDID makes a common trends assumption—had the treated remained nontreated
and they would have experienced a change in outcomes equal to that observed
among the actual nontreated.

More formally, the model can now be written as

y1
it ¼ b + uðXiÞ+ aðXiÞ+ ½ðni + mt + oit 2 uðXiÞÞ+ ðai 2 aðXiÞÞ�

y0
it ¼ b + uðXiÞ+ ðni + mt + oit 2 uðXiÞÞ

ð34Þ

where yd
it is the outcome for individual i at time t when the his/her treatment status at

that time is d - it is y0 when the individual belongs to the nontreated group or when
the time is t0 and is y1 when the individual is in the treated group and the time is t1.
The MDID assumption states that, conditional on the observables X, the evolution of
the unobserved part of y0 is independent of the treatment status. Thus,

ðuit1 2uit0Þ ? dit1 jXi:ð35Þ

The main matching hypothesis is now stated in terms of the before2after evolution
instead of levels. It means that controls evolve from a pre to a post-program period in
the same way treatments would have evolved had they not been treated. We continue
to consider time invariant covariates, X, even though MDID explicitly explores the
time-series dimension of the data. The discussion on the choice of covariates at
the end of VA, where we argued that the appropriate covariates should reflect the in-
formation available to the individual at the time of making a participation decision,
explains this choice.

Assumption MDID1 is not enough to ensure identification of ATT. Just as in the
matching case, we also need to impose a common support hypothesis. This will be
the same as Equation M2-ATT when longitudinal data is available. If only cross-sec-
tion data is available we will need to strengthen it to ensure that the treated group can
be reproduced in all three control groups characterized by treatment status before and
after the program. This version of the common support assumption states that all
treated individuals have a counterpart on the nontreated population before and after
the treatment.

ðMDID1Þ
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P½dit1 ¼ 1jXi; t�, 1:ð36Þ

where P½dit1 ¼ 1jXi; t� is the probability that an individual observed at time t with
characteristics Xi would belong to the treatment group at time t1.

The effect of the treatment on the treated can now be estimated over the common
support of X, call it S. The following estimator is adequate to the use of propensity
score matching with longitudinal data

âMDID;L ¼ +
i2T

½yit1 2yit0 �2 +
j2C

w̃ij½yjt1 2yjt0 �
( )

wi

where the notation is similar to what has been used before. With repeated cross-
section data, however, matching must be performed over the three control groups:
treated and nontreated at t0 and nontreated at t1.17 In this case, the matching-DID
estimator would be

âMDID;RCS ¼ +
i2T1

yit1 2 +
j2T0

w̃T
ijt0

yit0

" #
2 +

j2C1

w̃C
ijt1

yit1 2 +
j2C0

w̃C
ijt0

yit0

" #( )
wi

where ðT0; T1;C0;C1Þ stand for the treatment and comparison groups before and af-
ter the program and w̃G

ijt represents the weight attributed to individual j in group G
and time t when comparing with treated individual i.

The implementation of the MDID estimator using propensity score matching
requires the propensity score to be estimated using the treated and the controls.
In the presence of longitudinal data, d is set equal to one if the individual is treated
and to zero otherwise. The controls are then matched to the treated and the
reweighted sample is use to compute the ATT using DID. In the presence of repeated
cross-section data, the dependent variable is set to one if the individual is treated and
the period of observation is t1 and to zero otherwise. Each of the control groups (trea-
ted before treatment and nontreated before and after treatment) are then matched to
the treated after treatment separately. The overlapping region of support is now com-
posed of the treated to whom a counterfactual is found in each of the three control
samples. The three sets of weights can then be used to estimate the ATT using DID
(for an empirical application see Blundell et al. 2004).

VI. Instrumental Variables

A. The instrumental variables estimator (IV)

In this section we continue considering the model described by Equations 2–4
with potential outcomes being partly explained by the observables X as in

ðMDID2Þ

17. As with the DID estimator, our ability to correctly separate treated from nontreated at t0 is determinant
for the quality of the estimates.
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Equation 24. The variables Z in the Assignment Rule 4 may include all observ-
ables X in the outcome equation plus additional covariates. For simplicity, we im-
plicitly condition on X and omit it from the discussion below. We also consider
only one additional variable in Z, which we denote by z. Again, the time dimen-
sion will not be explicitly considered since longitudinal or repeated cross-section
data is not necessarily required to estimate the effect of treatment under the IV
assumptions.

In contrast to the matching method, the method of Instrumental Variables (IV)
deals directly with selection on the unobservables. The IV approach requires the ex-
istence of at least one regressor exclusive to the decision rule. In our notation, this is
the variable z, which is known as the instrument. It affects participation only and so is
not included in X. This is known as the exclusion restriction. It implies that the po-
tential outcomes do not vary with z and any difference in the mean observed out-
comes of two groups differing only with respect to z can only be due to
consequent differences in the participation rates and composition of the treatment
group with respect to potential gains from treatment. When the treatment effect is
homogeneous, so that aATE ¼ aATT ¼ ai ¼ a, only differences in participation rates
subsist and these can be used together with resulting differences in mean outcomes to
identify the impact of treatment.

To see this more clearly, we formalize these three assumptions below. The latter
assumption states that the treatment effect is homogeneous:

ai ¼ a for all i:ð37Þ

The first two assumptions define the dependence of the outcome y and the participa-
tion status d on the instrument z. They can be stated as:

P½d ¼ 1jz� 6¼ P½d ¼ 1�:ð38Þ

and

E½ujz� ¼ E½u�:ð39Þ
Under Conditions IV1 to IV3 the instrument z is the source of exogenous variation

used to approximate randomization. It provides variation correlated with the partic-
ipation decision only.

Under Assumptions IV1 and IV3, the dependence of y on the instrument arises
through the index (propensity score) PðzÞ ¼ P½d ¼ 1jz� as follows:

E½yijzi� ¼ b + aE½dijzi�+ E½uijzi�
¼ b + aPðziÞ+ E½ui�
¼ E½yijPðziÞ�:

ð40Þ

Assumption IV2 then ensures that two different values of z exist that induce
variation in P(z) and allow for the identification of a. Let ðz�; z��Þ be such values.
Then

ð1V1Þ

ð1V2Þ

ð1V3Þ
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E½yijzi ¼ z��2E½yijzi ¼ z��� ¼ a½Pðz�Þ2Pðz��Þ�

and the treatment effect is identified from the ratio:

a ¼ E½yijzi ¼ z��2E½yijzi ¼ z���
Pðz�Þ2Pðz��Þ :ð41Þ

This is the standard IV (or Wald) identification result. It is designed for discrete
instruments or discrete changes in continuous instruments.

In the continuous instrument case it is more efficient to explore the whole variation
in z. The IV conditions discussed above ensure that

covðy; zÞ ¼ a covðd; zÞ+ covðu; zÞ ¼ a covðd; zÞ

and the IV estimator is

a ¼dcovðy; zÞdcovðd; zÞ:

B. Weaknesses of IV

A key issue in the implementation of IV is the choice of the instrument. It is fre-
quently very difficult to find an observable variable that satisfies Assumption IV3,
in which case IV is of no practical use. This will happen when the observables that
determine participation are also the determinants of potential outcomes. In other
cases, the instrument may have insufficient variation or may cause insufficient vari-
ation in the propensity score. Instruments with this property are known as weak
instruments. Although Assumption IV2 may still hold with a weak instrument, the
consequent (small) size of the denominator in Equation 41 leads to very imprecise
estimates of the treatment effect.

Identification using classical IV still relies on the additional homogeneity assump-
tion in Assumption IV1. If IV1 does not hold, the exclusion restriction is also unlikely
to hold. To see why, notice that the unobservable in the outcome equation is now

ei ¼ ui + diðai2aATEÞ

and the new exclusion restriction needs to be expressed in terms of e:

E½ejz� ¼ E½ujz�+ PðzÞE½ai2aATEjd ¼ 1; z�
¼ E½e�:

But since z explains d, the second equality above is generally not satisfied.
The one exception occurs when there is no selection on the idiosyncratic gains.

This means that the idiosyncratic gain, ai2aATE, and the unobservable in the selec-
tion rule, v, are not related. In such case E½ai2aATEjd ¼ 1; z� ¼ 0 and E½eijz� ¼ E½ei�
under Assumption IV3. Thus, classical IV will still identify ATE (and, which is the
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same, ATT) if individuals do not have or do not act on unobservable information re-
lated to (expected) gains to decide about treatment status.

In the more general case of heterogeneous effects with selection on idiosyncratic
gains, IV will not identify ATE or ATT. If individuals are aware of their own idiosyn-
cratic gains from treatment, they will certainly make a more informed participation de-
cision. The resulting selection process breaks the independence between a and z
conditional on selection since both variables affect the selection process.

To illustrate the problem, consider the education example introduced above. As-
sume that the returns to education are partly determined by the child’s unobservable
ability. Suppose the instrument is some measure of the cost of education (say dis-
tance to college) under the assumption that it is uncorrelated with the child’s poten-
tial earnings and, therefore, ability (this is possibly a strong assumption but serves
only our illustration purposes). However, the selection process will create a relation-
ship between distance to college and returns to college education in the data. This is
because individuals facing a relatively low cost of education (live closer to college)
may be more likely to invest in college education, even if expecting comparatively
small returns, then individuals facing higher education costs. Under our simplistic
setup, this means that the distribution of ability among college graduates who live
far from college is more concentrated on high ability levels than that for college
graduates who live close to college. Such compositional differences will then affect
the distribution of returns to college in the data for the two groups.

If the Homogeneity Assumption IV1 fails to hold, IV will not generally identify
ATE or ATT. This happens because the average outcomes of any two groups differ-
ing only on the particular z-realizations are different for two reasons: (i) different
participation rates and (ii) compositional differences in the treated/nontreated groups
with respect to the unobservables. The later precludes identification of ATE or ATT.
However, a different ‘‘local’’ average parameter can be identified under slightly mod-
ified hypothesis—the LATE parameter, to which we now turn.

C. The LATE parameter

The solution advanced by Imbens and Angrist (1994) is to identify the impact of
treatment from local changes in the instrument z when the treatment effect is hetero-
geneous. The rationale is that, under certain conditions, a change in z reproduces ran-
dom assignment locally by inducing individuals to alter their participation status
without affecting the potential outcomes, y0; y1ð Þ. As with standard IV, the difference
in average outcomes between two groups, differing only in the realization of z,
results exclusively from the consequent difference in participation rates. Unlike stan-
dard IV, the identifiable effect will not correspond to the ATE or the ATT. Instead, it
will depend on the particular values of z used to make the comparison and the iden-
tifiable effect is the average impact on individuals that change their participation sta-
tus when faced with the change in z used to estimate the effect of treatment.

As with classical IV, the validity of an instrument z depends on whether it deter-
mines participation and can be excluded from the outcome equation conditional on
participation. In a heterogeneous effect framework, the exclusion condition requires
that: (i) z has no joint variation with v and (ii) z is unrelated to the unobserved deter-
minants of potential outcomes. The former condition is required or otherwise
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changes in z would not separate changes in participation rates unrelated to outcomes
as simultaneous changes in v could be related with changes in the unobservable com-
ponents of the potential outcomes, particularly gains from treatment.

The LATE assumptions can now be formally established. The first two assump-
tions are identical to the classical IV Assumptions IV2 and IV3:

P½d ¼ 1jz� 6¼ P½d ¼ 1�:ð42Þ

E½ujz� ¼ E½u�:ð43Þ

However LATE requires stronger identification assumptions than standard IV to al-
low for the relaxation of the homogeneity hypothesis. The additional assumption per-
tains to the relationship between z and the remaining unobservables:18

ða; vÞ ? z:ð44Þ
To simplify the notation, define the random variable diðziÞ which represents the

treatment status of individual i when drawing z ¼ zi. Thus dðzÞ assumes the values
one or zero depending on whether the unobservable v is in a range that leads to par-
ticipation or no-participation given z, respectively (that is, dðzÞ ¼ 1ðgðz; vÞ. 0Þ. Un-
der the notation of the selection rule in Equations 3–4, Assumption LATE3 ensures
that

P½d ¼ 1jz� ¼ P½gðz; vÞ. 0jz�
¼ P½gðz; vÞ. 0�
¼ P½dðzÞ ¼ 1�
¼ P½z�

where the second equality means that z is exogenous in the selection rule. Further-
more, joint independence of idiosyncratic gains and v from z also guarantees that

E½ajz; d ¼ 1� ¼ E½ajdðzÞ ¼ 1�:

Taken together, the three LATE Assumptions LATE1 to LATE3 are sufficient to
ensure that d zð Þ contains all the information in z that explains y:

E½yijz� ¼ b + P½di ¼ 1jz�E½aijz; di ¼ 1�
¼ b + P½diðzÞ ¼ 1�E½aijdiðzÞ ¼ 1�:

ð45Þ

The second equality in Equation 45 exploits the Independence Condition 44.
We now use this result to compare the observed outcomes at two distinct values of

the instrument z, say z�; z��ð Þ:

ðLATE1Þ

ðLATE2Þ

ðLATE3Þ

18. A slightly stronger version of Assumptions LATE2 and LATE3 is frequently imposed: u;a; vð Þ ? z or,
which is the same y0; y1; vð Þ ? z.
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E½yijz ¼ z���2E½yijz ¼ z�� ¼ P½diðz��Þ ¼ 1�E½aijdiðz��Þ ¼ 1�
2P½diðz�Þ ¼ 1�E½aijdiðz�Þ ¼ 1�
¼ P½diðz��Þ ¼ 1; diðz�Þ ¼ 0�E½aijdiðz��Þ ¼ 1; diðz�Þ ¼ 0�

2P½diðz��Þ¼ 0; diðz�Þ ¼ 1�E½aijdiðz��Þ ¼ 0; diðz�Þ ¼ 1�:
The intuition behind the above expression is that any change in the average out-

come y when z changes is solely due to changes in the treatment status of a subset
of the population. The last equality shows two treatment parameters that one may
be willing to identify: the impact of treatment on the treated under z�� but not treated
under z� and the impact of treatment on the treated under z� but not treated under z��.
In practice there are frequently strong arguments to eliminate one of the alternatives.
For example, it may be the case that every participant at z� also participates at z�� but
not the reverse. This is the substance of the monotonicity assumption, the last of the
LATE assumptions. Formally:

dðzÞ is a monotonic function of z:ð46Þ
Suppose Condition LATE4 holds. In particular, suppose d is increasing in z and

z��. z� so that

P½dðz��Þ ¼ 0; dðz�Þ ¼ 1� ¼ 0:

In such case P½dðz��Þ ¼ 1; dðz�Þ ¼ 0� ¼ Pðz��Þ2Pðz�Þ and

E½yijz���2E½yijz�� ¼ ½Pðz��Þ2Pðz�Þ�E½aijdiðz��Þ ¼ 1; diðz�Þ ¼ 0�

and this equation can be rearranged to obtain the LATE parameter:

aLATEðz�; z��Þ ¼ E½aijdiðz��Þ ¼ 1; diðz�Þ ¼ 0�

¼ E½yijz���2E½yijz��
Pðz��Þ2Pðz�Þ

ð47Þ

The first equality clarifies the meaning of the LATE parameter: it measures the im-
pact of treatment on individuals that move from nontreated to treated when z changes
from z� to z��.

The LATE approach can also be illustrated within our running example on education
investment. As before, suppose z is a measure of cost, say distance to college, with par-
ticipation assumed to become less likely as z increases. To estimate the effect of college
education, consider a group of individuals that differ only in z. Among those that invest
in further education when distance z equals z� some would not do so if z ¼ z�� where
z�, z��. In this case, LATE measures the impact of college education on the ‘‘movers’’
by assigning any difference on the average outcomes of the two groups to the different
enrollment rates caused by the difference in the cost of investing.19

ðLATE4Þ

19. Abadie, Angrist, and Imbens (2002) extend this approach to the evaluation of quantile treatment
effects. The goal is to assess how different parts of the outcome’s distribution are affected by the policy.
As with LATE, a local IV procedure is used, making the estimated impacts representative only for the sub-
population of individuals changing their treatment status in response to the particular change in the instru-
ment being considered.
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1. The LATE assumptions

The Independence Assumptions LATE2 and LATE3 are required to establish the re-
sult in Equation 45, on which derivation of LATE hinges. It states that z is indepen-
dent of the unobservable components in the outcomes and participation rules, namely
ui (mean independent), ai2aATE and vi. This means that z should not affect the ob-
served outcomes through any effect on the potential outcomes or any relation with
the unobserved components of the model. While the former is easy to understand,
the latter requires some explanation. Suppose z is related with v in the participation
rule and v is related with u in the outcome equation. Then the potential outcome will
generally be related with z.

The education example can be used again to illustrate the conditions under which
the independence assumption may not apply. As before, suppose z is a measure of the
cost of education, say distance to college. A family that values education may take
some steps to facilitate the investment, for example by taking it into account when
deciding about residence. Such family may also be particularly interested in encour-
aging learning. So children raised in such environment may benefit both from lower
education costs and higher taste for education. The latter is unobservable, included in
v, and is likely to be related with the future taste for working, also unobservable and
included in u. In this case, although z has no direct impact on potential outcomes, the
selection of home location will create a dependence between z and the potential out-
comes arising through a dependence between v and u. That is, if z is not exogenous in
the participation equation then two groups with different realizations of z will repre-
sent two different populations in terms of the distribution of v and, thus, two different
populations in terms of the distribution of u (a similar argument could be constructed
in relation to a). In such case, even if one could observe both potential outcomes, they
would not be independent of z in the data.

The monotonicity assumption is required for interpretation purposes. It is usually
justified on theoretical grounds as it is generally unverifiable.20 Under monotonicity of
d with respect to z, the LATE parameter measures the impact of treatment on indi-
viduals that move from nontreated to treated as z changes. If monotonicity does not
hold, LATE measures the change in average outcome caused by a change in the in-
strument, which is due to individuals moving in and out of participation, but cannot
separate the effect of treatment on individuals that move in from that on individuals
that move out as a consequence of a change in z (see Heckman 1997).

Notice that the LATE assumptions are local: they only need to hold in the neigh-
borhood of specific values of z used in the estimation process. As a consequence,
LATE is a local parameter, specific to the population defined by the instrument. This
is further discussed in the next section.

20. However, in a recent paper Ten Have et al. (2004) studied the presence of defiers in a particular medical
treatment (individuals that behave against the monotonicity rule) and the consequences of assumptions
about this group on estimated effects. In the context of their study they show evidence that defiers may exist
and that estimated effects are sensitive to the assumptions about this group of individuals even with only a
small number of defiers.
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2. What does LATE measure?

Although the LATE estimator is analytically equivalent to the IV estimator in Equa-
tion 41, LATE is intrinsically different. LATE depends on the particular values of z
used to evaluate the treatment and on the particular instrument chosen. The group of
‘‘movers’’ is not in general representative of the whole treated or, even less, the
whole population. Whether the parameter is of policy interest or not depends on
the instrument and the specific values of the instrument used in the estimation
(see, for example, the discussion in Heckman, Lalonde, and Smith 1999). When a
discrete variable, namely a change in policy, is used to instrument participation,
LATE will measure the effect of treatment on individuals changing their treatment
status in response to the policy change. In this case, LATE focuses on an important
subpopulation and may provide an important measure of the impact of the policy. If,
on the other hand, a continuous variable measuring some individual characteristic is
used to instrument participation, LATE will generally be much less informative.

In our returns to education example, notice that we discussed two alternative
instruments to measure a local effect. In the first case, in the context of DID, we
used a change in policy to measure the impact of education on individuals moving
into education. DID differs from the standard LATE estimator based on a change in
policy only by allowing the aggregate conditions to vary over time (although it
requires treated and controls to be similarly affected by the market conditions).
In the second case, we discussed the use of family background or cost of education
to instrument participation. Clearly, the former is much more informative for the
policymaker then the latter. The estimated parameter based on our continuous vari-
able will depend on the specific values being compared, may not represent a spe-
cific population that can be easily targeted and is more likely to raise arguments
about the validity of the instrument (just as illustrated by the discussion in the pre-
vious section).

D. The Marginal Treatment Effect

Heckman and Vytlacil (1999, 2001, 2006) and Carneiro, Heckman, and Vytlacil
(2005) provide important new insights for local IV methods and local treatment ef-
fect parameters. They consider the estimation of the whole distribution of treatment
effects. To do so, they use infinitesimal changes in the participation probabilities to
measure the limit of LATE as the change in these probabilities becomes arbitrarily
small. As the whole distribution of local treatment effects is possibly identified, all
more aggregate parameters can also be recovered by integration over the distribution
of the probability of participation.

These authors consider a version of the Selection Model 3-4 which assumes addi-
tive separability of the unobservable, v. As before, selection follows a latent variable
specification where

d�i ¼ gðziÞ2vi

and
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di ¼
1 if vi # gðziÞ
0 otherwise:

�
The propensity score as a function of z is,

PðziÞ ¼ P½di ¼ 1jzi�
¼ P½vi # gðziÞ�
¼ FvðgðziÞÞ

where Fv is the distribution function of the unobservable v. Heckman and Vytlacil
(1999) use a general alternative representation of the above preferences when v is
an absolutely continuous random variable (meaning that v has no mass points). This
is obtained by transforming the selection rule

vi # gðziÞ

by a monotonically increasing function such as Fv to yield:

FvðviÞ # FvðgðziÞÞwhich can be written as ṽi # PðziÞ:

Given continuity of v, the transformed unobservable ṽ will follow a uniform distribu-
tion in ½0,1� and the data-equivalent selection model is

d̃�i ¼ PðziÞ2ṽið48Þ

with

di ¼
1 if ṽi # PðziÞ
0 otherwise:

�
ð49Þ

The advantage of the latter representation is the connection between the propensity
score and the newly defined unobservable ṽ: an individual with characteristic z is in-
different about participation when drawing ṽ ¼ P zð Þ and will participate with prob-
ability P(z) or when drawing ṽ # PðzÞ.

Using this representation of the decision process, the marginal treatment effect
(MTE) at a point p of the distribution of ṽ as defined Section IIA can now be re-writ-
ten as the expected gains from treatment for individuals drawing ṽ ¼ p,

aMTEðṽ �Þ ¼ E½ajṽ ¼ p�:

This parameter measures the impact of treatment on individuals with unobservable
ṽ ¼ p affecting the decision process. Under the LATE Assumptions LATE2-LATE3,
which are now used in the analysis of identification and estimation of the MTE pa-
rameter, the instrument z does not bring further information about the expected
gains from treatment after conditioning for ṽ. This is because ṽ contains all the in-
formation in d that may be related with the potential outcomes. So, individuals with
the same ṽ but experiencing different values of z expect to gain the same from treat-
ment. Thus,
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aMTEð pÞ ¼ E½ajṽ ¼ p; z�

for any possible value of z. In particular, one may try to evaluate the MTE at the
point(s) in the distribution of z where individuals are indifferent about participation
under the assumption that P(z) is a nontrivial function of z:

aMTEð pÞ ¼ E½ajṽ ¼ p; PðzÞ ¼ P�:

This specification explains the alternative definition of MTE, namely the average ef-
fect of treatment on individuals just indifferent about participation at P(z) (this is the
definition of Bjorklund and Moffitt 1987 when first introducing the MTE and pre-
sented in Section IIA; see also the recent nonparametric application by Moffitt
2007). It is this definition that is used in our exploration of the identification of
the MTE. As will be discussed, MTE allows us to potentially recover all the various
parameters of interest in the treatment effects model.

Assumptions LATE2-LATE3 together with the additive separability of v can be
used to show:

E½yjz� ¼ b + PðzÞE½ajz; d ¼ 1�
¼ b + PðzÞE½ajṽ # PðzÞ�
¼ E½yjPðzÞ�:

Using this formulation under LATE1, the LATE parameter can be expressed as:

aLATEðz�; z��Þ ¼ E½yjz���2E½yjz��
Pðz��Þ2Pðz�Þ

¼ E½yjPðz��Þ�2E½yjPðz�Þ�
Pðz��Þ2Pðz�Þ

¼ aLATEðPðz�Þ; Pðz��ÞÞ

Within this framework, LATE measures the impact of treatment on individuals
with unobservable characteristics ṽ in the interval ½Pðz�Þ; Pðz��Þ�. Again, this param-
eter does not change with the particular values of z selected for as long as ṽ remains
on the interval ½Pðz�Þ; Pðz��Þ�.

The MTE can be defined from LATE by considering an arbitrarily small interval in
ṽ. The limit can also be taken on the estimator of LATE to define an estimator for
MTE. Notice that the definition of LATE in Equation 47 determines the LATE esti-
mator by identifying the movers using the instrument z. This will not be independent
of z because it relies on the specific variation used to assess the impact, which will
determine the specific population of movers under scrutiny (or the margin to which
the parameter corresponds to).

The Local Instrumental Variables (LIV) is precisely an estimator of the MTE
obtained by taking the limit of the LATE estimator in Equation 47 as Pðz�Þ becomes
arbitrarily close to Pðz��Þ:
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aLIVðPðzÞÞ ¼ @E½yjṽ ¼ PðzÞ�
@PðzÞ

This estimator also depends on z in the sense that, for a particular selected value of
the instrument, the specific margin at which MTE is being estimated is the specific
value of the unobservable at the indifference point, namely ṽ ¼ PðzÞ. In comparison
to LATE, however, the use of MTE is usually associated with the intention to recover
the full distribution of treatment effects. MTE uses a continuous instrument to re-
cover the whole (or an interesting part) of the distribution of participation probabil-
ities from zero to one for as long as all individuals have strictly positive probabilities
of being treated and nontreated (that is, for as long as z is able to move all individuals
in and out of treatment).

If data are rich enough to explore changes in treatment status over the whole dis-
tribution of ṽ then all the average parameters, namely ATE, ATT, ATNT, and LATE,
can be expressed as averages of MTE using different weights (see Appendix 3 for
details). For example, the estimation of ATT using MTE with a continuous instru-
ment z requires the space of ṽ, ½0,1�, to be finely discretized using the distribution
of P(z). Estimation may use some nonparametric regression procedure to identify
the slope of y with respect to P(z) at each of the points on the grid—say a Local
Quadratic Regression. This is the MTE at each point ṽ. The ATT among individuals
with a probability of participation equal to p, aATTðpÞ, may then be obtained by in-
tegrating the MTE’s over the space of ṽ up to p—these are the participants among
those with a probability of participation equal to p. The overall ATT may now be
obtained by integrating aATTðpÞ over the whole distribution of p (see Carneiro
and Lee 2007; Carneiro, Heckman, and Vytlacil 2005).

However, data may not be rich enough to allow for the estimation of MTE over
the whole distribution of ṽ, in which case LATE may be the best available option.
This is clearly the case when the instrument is binary as, for example, a specific
change in policy, in which case LATE can be well suited to identify a parameter
of interest.

E. Using IV to estimate returns to education

Under the IV conditions, the variables in the selection process which do not enter the
outcome equation may be used to instrument the endogenous participation variable.
Within the returns to education example, this amounts to use the variable(s) deter-
mining education investment to instrument education attainment when ability is
not observed. In our simple model this means that family background (z) is a valid
instrument while the test score (s) is not since it is correlated with ability, which di-
rectly affects earnings.

Table 4 displays estimates of the ATT using standard and local IV. All numbers are
for an economy with subsidized advanced education available to agents performing
well at the basic education level. We consider both negatively correlated (Columns 1
and 2) and independent (Columns 3 and 4) unobservables, u and v.

Rows 2 and 3 in the table display classical IV estimates. We expect these to be
biased as the Homogeneity Assumption IV1 is not met. Given this, the estimator
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based on the instrument z does surprisingly well (Row 2). As expected, the invalid
instrument s produces more bias (Row 3).

Similar local IV estimates are presented in Rows 4 and 5 and show an interesting
pattern. Under uncorrelated residuals, the instrument z used with local IV correctly
identifies the ATT, just as expected (Columns 3 and 4). However, the bias is consid-
erably larger in the case of correlated unobservable terms even when education is
instrumented with z (Columns 1 and 2). To understand the source of bias in the case
of correlated residuals, notice that the local IV technique estimates the ATT by in-
tegrating the MTE over the population of participants (see Appendix 3). The MTE
at ṽ measures the impact of treatment on individuals that draw this specific value
for the unobservable component of the selection rule. Because this unobservable con-
tains all information about potential outcomes in the selection rule, changing z con-
ditional on ṽ will not change (expected) gains. So the MTE can, in particular, be
interpreted as the impact on individuals with observable characteristics z that make
them indifferent about participation at ṽ. These are the individuals that draw
ṽ ¼ PðzÞ.

Estimation of the MTE relies on these movers for identification. However, the ATT
cannot be recovered if P(z) is not observed to vary over the whole unit interval. More
precisely, the identification of the ATT will be affected in the absence of observations
for P(z) in ½0; p� for some p significantly larger than zero. In this case, we know that
individuals experiencing ṽ , p will always prefer to participate within the observable
range of P(z). But then we never observe these individuals at their indifference point
between participation and nonparticipation. Unfortunately, these individuals are un-
likely to be a random sample of the population: they prefer to participate even at low
levels of P(z), which may indicate they expect to earn more from participation than

Table 4
Monte Carlo experiment— IV and LIV estimates of the ATT and bias

corr (u,v) < 0 corr (u,v) ¼ 0

Coefficient (1) Bias (2) Coefficient (3) Bias (4)

(1) True parameters - ATT 0.453 0.471
Classical IV using as instruments:

(2) z (family background) 0.418 0.039 0.404 0.120
(3) s (test score) 0.583 0.343 0.537 0.170

Local IV using as instruments:
(4) z (family background) 0.384 0.152 0.484 0.028
(5) s (test score) 0.382 0.157 0.401 0.147

Notes: Simulated data based on 200 Monte Carlo replications of 2,000 observations each. Simulations for
economy with subsidized advanced education and individuals totally aware of its availability and eligibility
rules at birth. Columns 1 and 2 (3 and 4) display results under the assumption of negatively related (inde-
pendent) residuals u and v. Estimates in Rows 2 and 3 (4 and 5) obtained using classical (local) IV with the
detailed instruments. Local IV estimates the marginal treatment effect (MTE) over the support of the pro-
pensity score based on a local quadratic regression using Epanechnikov kernel weights and a bandwidth of
0.4. Bias measured in relative terms as compared to the true ATT (Columns 2 and 4).
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most of the population. Thus, the estimated effect will not be the ATT but the aver-
age treatment for individuals indifferent between participation and nonparticipation
at the values of ṽ in the observable interval, ½p . 0; �p�.

The lack of support affects the results in Columns 1 and 2, when the disturbances
are correlated, where only values of P(z) above 0.06 are observable. The expected
outcome is that the obtained estimates are downward biased. In the uncorrelated dis-
turbance case, however, the range of observable P(z) starts very close to zero. In this
case, displayed in Columns 3 and 4, we are able to identify the impact of education
even among individuals that show a strong preference towards education. As pre-
dicted, estimates based on LIV for correlated residuals tend to be lower than the true
value of this parameter (Row 4, Column 1 and 2) while uncorrelated residuals pro-
duce unbiased estimates (Row 4, Columns 3 and 4).21

The above discussion is closely related to the literature on the ability of IV to pro-
duce interpretable parameters (see Heckman 1997; Heckman and Vytlacil 1998).
The local parameters estimated by IV depend on the ability of the used instrument
to induce a change of treatment status in each individual. Even the estimation based
on the MTE, which explicitly attempts to run over the whole distribution of ṽ and
uses the correct weights to aggregate the local parameters, may produce estimates
that are not global. Instead, such estimates may depend on the particular instrument
being used and apply only to the subpopulation of individuals that would switch
treatment status at observable values of the instrument. Whether or not the identified
parameter is of interest depends on the specific policy/evaluation question.

VII. Discontinuity Design

A. The discontinuity design estimator (DD)

Certain nonexperimental policy designs provide sources of randomization that can be
explored to estimate treatment effects under relatively weak assumptions. This is the
motivation for the natural experiment approach discussed earlier. However, a special
case that has attracted recent attention occurs when the probability of enrollment into
treatment changes discontinuously with some continuous variable z. The variable z is
an observable instrument, typically used to determine eligibility. It is, therefore, in-
cluded in matrix Z in the Selection Model 3–4. The discontinuity design estimator
(DD) uses the discontinuous dependence of d on z to identify a local average treat-
ment effect even when the instrument does not satisfy the IV assumptions discussed
above. Instead of some exclusion or independence assumption like LATE2 (or IV3)
and LATE3, DD relies on a continuous relationship between the instrument z and all
the determinants of the outcome except participation in treatment. Any discontinuity
in y as a function of z is, therefore, attributed to a discontinuous change in the par-
ticipation rate as a function of z. As will be discussed, the parameter identified by DD

21. Not observing the top of the distribution of P(z) does not affect the identification of ATT since agents
with ṽ . �p will never participate for the range of P(z) observable. They are always nonparticipants and for
as long as this is also true in the population (as it happens to be the case in our example) they just do not
belong to the population of interest for the evaluation of the ATT.
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is a local average treatment effect like the LATE parameter discussed under IV but is
not necessarily the same parameter.22

As before, we assume participation d is determined by z and the unobservables v in
a completely flexible way: d ¼ 1ðgðz; vÞ$ 0Þ. The dependence of d on z means that
the participation probability changes with z. The main source of identification used
by DD is a discontinuity in this probability at a given point in the distribution of z.
The discontinuity may be sharp or fuzzy, depending on whether participation is a de-
terministic function of z or not. We now discuss these two cases.

1. The sharp design

The most popular case for discussion, although empirically less frequent, is what is
known by sharp design. This occurs when z fully determines participation on the basis
of a threshold, z�. The treated (nontreated) are individuals with values of z, say, above
(below) the threshold. In this case, participation status changes at z� for all individuals,
from being deterministically equal to zero to being deterministically equal to one.

Thus the probability of participation changes discontinuously at z� from zero to
one. The identification condition with sharp design can be stated as follows,

limz~z�2 Pðd ¼ 1jzÞ ¼ Pðz�2Þ ¼ 0

limz~z�+ Pðd ¼ 1jzÞ ¼ Pðz�+Þ ¼ 1:
ð50Þ

where, to simplify the notation, Pðz�2Þ (Pðz�+Þ) represents the limit of the propensity
score (Pðd ¼ 1jzÞ ¼ PðzÞ) as z approaches z� from below (above). Both limits are as-
sumed to exist.

The fact that participation is locally a deterministic function of z means that indi-
viduals do not contribute to the decision process.23 The sharp design implies that the
decision process is exogenously determined by z and all the selection is on the
observables. Thus, the impact of treatment is probably independent from the selec-
tion process, at least locally. Although selection occurs only on the observables,
matching is not feasible given the absence of overlap between treated and controls
once z is included in the set of covariates. Instead of the common support assumption
used in matching, DD is based on the additional hypothesis of continuity of the
remaining determinants of outcomes as functions of z at z�. Under sharp design,
all that is required is continuity of y0 at z� to ensure that the nontreated on one side
of the threshold are the correct counterfactual for the treated on the opposite side.
Within our model of outcomes, Equations 1-2, this is equivalent to the condition

E uijz�
+� �
¼ E uijz�

2� �
:ð51Þ

where E½uijz�
+ � and E½uijz�

2 � are the limits of E½uijz� when z approaches z� from
above and below, respectively.

ðDD1Þ

ðDD2Þ

22. For an insightful discussion of DD see Hahn, Todd, and Van der Klaauw (2001); more recently, Imbens
and Lemieux (2007), provide a detailed discussion of DD together with implementation issues.
23. The possibility that individuals adjust z in response to the eligibility criteria in the intent of changing
participation status is ruled-out from the DD analysis.
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Under Assumptions DD1 and DD2, any observed discontinuity in y at z� results
exclusively from the discontinuity in the participation rate. The DD parameter is
in this case:

aDDðz�Þ ¼ E½yijz�
+ �2E½yijz�

2 �

where E½yijz�
+ � and E½yijz�

2 � are the limits of E½yijz� when z approaches z� from above
and below, respectively. aDDðz�Þ measures the impact of treatment on a randomly
selected individual with observable characteristics z just above z�:

aDDðz�Þ ¼ E½ajz�+ �:

This is not necessarily the same as E½ajz�� because nothing was said about the con-
tinuity of this object at z�. If we now impose this additional assumption

E ajz�+� �
¼ E ajz�2

� �
¼ E½ajz��:ð52Þ

the DD parameter can be more naturally interpreted as being the impact of treatment
on a randomly selected individual at the cutoff point (z�):

aDDðz�Þ ¼ E½ajz��:
There are a few examples of economic studies that fall in the category of sharp

design. They typically involve some exogenously imposed eligibility rule with a cut-
off point. One example is the New Deal evaluation discussed above in which eligi-
bility is based on age. In particular, eligibles are those individuals that have not
completed 25 years of age when reaching six months in unemployment. De Giorgi
(2005) used this rule to estimate the impact of the New Deal on the oldest partici-
pants using a sharp regression discontinuity approach. Results in De Giorgi (2005)
confirm the findings in Blundell et al. (2004) that employment probabilities increase
by 4 to 5 percentage points among the treated as a consequence of treatment. Another
recent empirical application by Card and Shore-Sheppard (2004) studies the impacts
of expansions of the Medicaid system to cover children in low-income families
where the eligibility rules were based on age or date of birth.

2. The fuzzy design

Possibly more common in economics is the fuzzy design. It refers to the situation in
which the conditional probability of participation, Pðd ¼ 1jzÞ ¼ PðzÞ, is discontinu-
ous at z� but does not completely determine participation so the jump at z� is of
smaller magnitude than one. A fuzzy design occurs when dimensions other than z,
particularly unobserved dimensions, also affect participation. In the general fuzzy
design case, participation and nonparticipation occur on both sides of the threshold.
Thus, Assumption DD1 needs to be adjusted accordingly

Pðz�2Þ 6¼ Pðz�+Þ:ð53Þ

To illustrate a possible fuzzy design, consider our education example and suppose
a subsidy is available for individuals scoring above a certain threshold in a test. The

ðDD3Þ

ðDD4Þ
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university intake will include both subsidized and unsubsidized individuals. How-
ever, the threshold-rule is expected to create a discontinuity in the probability of en-
rollment given the discontinuous change in the cost of education at the threshold.

Just as in the sharp design case, identification of the treatment effect parameter
requires continuity of the remaining determinants of the outcomes. But since treated
and nontreated exist on both sides of the threshold in a general fuzzy design, conti-
nuity of the outcomes is now required for both y0 and y1. Thus, both Assumptions
DD2 and DD3 are required. Under Conditions DD2-DD4, any discontinuity of y
at z� can only be linked to the discontinuous change in the participation rate at that
point.

Unfortunately, regression discontinuity under fuzzy design loses much of its sim-
plicity and appeal. The additional problem here is that only a subpopulation moves
treatment status at the discontinuity point and the selection of movers is likely to be
related with potential outcomes. This is a similar problem to that discussed under
LATE, where the distribution of the unobservables in the selection rule could con-
ceivably be related with z, thus rendering the two comparison groups different with
respect to unobservables possibly related with potential outcomes. Fuzzy DD relies
on the following additional local (mean) independence assumption to identify a local
treatment effect parameter:

Eðaijd; zÞ ¼ EðajzÞ for z in a small neighborhood of z�:ð54Þ

This assumption rules out selection on idiosyncratic gains at the local level. It states
that the mean gain from treatment for a population with a fixed value of z does not
depend on the treatment status. Condition DD5 is required for fuzzy DD to closely
reproduce sharp DD, where selection is locally excluded given the deterministic par-
ticipation rule. But it is a strong assumption, even at the local level, as it locally
excludes the possibility of unobserved factors related with gains locally determining
participation along with z.

In terms of our running education example, where z is the test score determining
eligibility to subsidized education, Assumption DD5 excludes the possibility of abil-
ity factors not totally captured in the test score to affect participation and outcomes
simultaneously conditional on the test score.

Under Assumption DD5, the conditional mean outcome y at a point z close to z�

(specifically, z 2 ½z�2

; z�
+ �) can be written as:

E½yijz� ¼ b + E½aijz�PðzÞ+ E½uijz�:
The additional (dis)continuity assumptions in Equations DD2-DD4 will suffice to

identify the DD parameter:

aDDðz�Þ ¼ E½yijz�
+ �2E½yijz�

2 �
Pðz�+Þ2Pðz�2Þ :ð55Þ

As before, aDDðz�Þ is the local average treatment effect, Eðaijz ¼ z�Þ. Under
Equation DD5, it measures the mean impact of treatment on a randomly selected in-
dividual with characteristic z�. This is an average treatment effect at the local level
since selection on idiosyncratic gains is locally excluded.

ðDD5Þ
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The local continuity and independence assumptions recover randomization under
discontinuity in the odds of participation at the discontinuity point. The indepen-
dence assumption is precisely a local version of randomization on gains (Assumption
R2), meaning that ATE is identifiable locally by DD. Note also that, under the Inde-
pendence Assumption DD5, ATE and ATT are locally equal. Randomization on un-
treated outcomes (corresponding to Assumption R1) is not guaranteed to hold but
instead the error term for the nontreated, u, is required to be a continuous function
of z at z�. Continuity ensures that it vanishes by differencing on the limit, thus ceas-
ing to be a problem.

The DD estimator is the sample analog of Equation 55:

âDDðz�Þ ¼ �y +2�y 2

P̂ðz�+Þ2P̂ðz�2Þ
:ð56Þ

where �y + and �y 2 are sample averages of the observed outcomes at each side of the
threshold and P̂ðz�+Þ and P̂ðz�2Þ are estimators of the participation probability at each
side of the threshold.

A nonparametric version of DD is simple to implement. It only requires running
nonparametric regressions of y and d on z locally, separately on each side of the dis-
continuity point. The predicted limits can then be used to estimate the impact of
treatment using Expression 56 (for more details and alternative procedures see van
der Klaauw 2008 and citations therein).

3. A simple special case

One case that is empirically relevant is that of a treatment only available but not man-
datory on one side of the threshold (say z�

+
). This is the case, for example, of the

Swedish Youth Practice, a subsidized employment program available for unem-
ployed individuals under the age of 25.24 Participation is not compulsory among eli-
gibles but is not possible for anyone aged 25 or above. This is a special case of fuzzy
design which turns out to be identical to the sharp design in terms of necessary iden-
tification assumptions (for more details see Battistin and Rettore 2007). The simplic-
ity of this case stems from the fact that, at the noneligible side of the threshold (say
z�

2

), the expected outcome conditional on z is b + E½ujz�2 �, which does not depend on
gains. Thus, under the continuity assumption

aDDðz�Þ ¼ E½aijdi ¼ 1; z�
+ �

¼ E½yijz�
+ �2E½yijz�

2 �
Pðz�+Þ :

Under the additional Continuity Assumption DD3, the DD parameter is more natu-
rally interpreted as the impact of treatment on participants at the margin,
aDDðz�Þ ¼ E½aijdi ¼ 1; z��.

24. See Larsson (2003) for further details on this program.
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B. The link between DD and IV

Interestingly, we have discussed the average treatment effect at a local level before, un-
der IV. This was the LATE parameter or, when taking the limits using a continuous in-
strument, the MTE. To understand the similarities and differences between DD and
local IV, we consider the fuzzy design case and notice that both methods will identify
the same parameter in a sharp design framework, namely the mean effect of treatment
on a randomly selected individual among the treated close to the eligibility cutoff point.

The fuzzy design case is slightly more complex. DD relies on continuity and the
local independence assumption in Equation DD5. The latter determines the param-
eter identified by DD as being the average impact of treatment on a randomly se-
lected individual with a value of z at the threshold.

In turn, LATE relies on the Independence Assumptions LATE2-LATE3 and on the
Monotonicity Assumption LATE4 under LATE1. Under these conditions, LATE
identifies the average impact of treatment on a randomly selected individual from
the group of agents that change participation status as the value of the instrument
changes from z�

2

to z�
+
.

The empirical estimates of LATE and DD when applied to the same neighborhood
of z� coincide exactly, what differs is the interpretation. The preferred interpretation
should be justified on the grounds of the specific application and policy design. If
individuals are believed to have no decision power at the local level, then estimates
may represent local effects on randomly selected individuals (DD interpretation). Al-
ternatively, if the policy provides clear participation incentives on one side of the
threshold and individuals are expected to make informed participation decisions,
then a local impact on the movers becomes a more credible interpretation (LATE).25

C. Weaknesses of DD

An obvious drawback of DD is its dependence on discontinuous changes in the odds
of participation. In general this implies that only a local average parameter is identifi-
able. As in the binary instrument case of local IV, the DD analysis is restricted to the
discontinuity point dictated by the design of the policy. As discussed before under
LATE with continuous instruments, the interpretation of the identified parameter
can be a problem whenever the treatment effect, a, changes with z.

To illustrate these issues, consider the context of our educational example. Sup-
pose a subsidy is available for individuals willing to enroll in high education for
as long as they score above a certain threshold �s in a given test. The subsidy creates
a discontinuity in the cost of education at the threshold and, therefore, a discontinuity
in the participation rates. On the other hand, the test score, s, and the returns to

25. If one was to relax the DD Independence Assumption DD5 for fear of local selection on idiosyncratic
gains and replace it for a monotonicity assumption like the LATE Condition LATE4, then it can be showed
that additional independence assumptions would be required to establish Equation 55. These additional in-
dependence conditions are of a similar sort of those required by LATE (see Condition LATE3). At the local
level, they exclude the possibility of endogeneity of z in the selection rule and limit the information content
of z in explaining gains from treatment to what it reveals about the location of the unobservables in the
decision rule together with the observed participation status. For further details see Hahn, Todd, and van
der Klaauw (2001).
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education, a, are expected to be (positively) correlated if both depend on, say, ability.
But then, the local analysis will only consider a specific subpopulation with a partic-
ular distribution of ability which is not that of the whole population or of the treated
population. That is, at best the returns to education are estimated at a certain margin
and other more general parameters cannot be inferred.

However, we also could suspect that neither the DD nor the LATE assumptions
hold in this example. The former requires local independence of the participation de-
cision from the potential gains conditional on the test score. But at any given level of
the test score there is a nondegenerate distribution of ability levels. If higher ability
individuals expect to gain more from treatment and are, for this reason, more likely
to participate, then the local independence assumption of DD, DD5, cannot be sup-
ported. The latter requires exogeneity of the instrument (test score) in the decision
rule. But again, if both the test score and the gains from treatment depend on ability
and individuals use information on expected gains to decide about participation, then
the instrument will not be exogenous in the selection rule. However, while this may
be a serious problem to the use of LATE more generally, the infinitesimal changes
considered here will reduce its severity when applied in the context of DD.

Related with the previous comment, there is also the possibility that individuals
manipulate z in order to avoid/boost the chances of participation. Such behavior
would in general invalidate the DD and LATE identification strategies by rendering
the two comparison groups incomparable with respect to the distribution of unob-
servables. In a recent paper, Lee (2008) notices that this is only a problem if the indi-
viduals can perfectly control z, thus positioning themselves at one or the other side of
the threshold at will. But even with imperfect control over z, the interpretation of the
identified parameter may change, particularly when a change in policy is being ex-
plored. This is because an endogenous reaction to the eligibility rule by manipulating
z will affect the composition of the group on the neighborhood of the threshold.
Thus, the estimated effects may correspond to a margin very different from what
would be expected in the absence of such behavior.

In the context of the education illustration being recurrently used in this paper, no-
tice that agents will certainly react to the existence of an education subsidy and to the
eligibility rules. If eligibility is based on a test score they may put extra effort on pre-
paring for it if willing to continue investing in education. Thus, for sure the group of
individuals scoring above the eligibility threshold will differ from that of individuals
scoring below not only due to ability but also because preparation effort is endoge-
nously selected. However, the ex-ante random nature of the test score implies that
any two groups scoring just infinitesimally differently will be compositionally iden-
tical as such small differences in test scores are random. Thus, the local DD/LATE
will still identify the treatment effect at the threshold margin. However, the introduc-
tion of a subsidy policy will affect effort in preparation for the test and thus change
the distribution of test scores and the composition of students in the neighborhood
of the threshold. Thus, the postpolicy marginal student in terms of eligibility will
not be the same as the prepolicy one, particularly perhaps with respect to ability,
and this will determine the estimated impact.

A final downside of DD, which is also common with local IV, relates to the imple-
mentation stage. By restricting analysis to the local level, the sample size may be in-
sufficient to produce precise estimates of the treatment effect parameters.
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D. Using DD to estimate the returns to education

Estimation using the discontinuity design method is only possible when a discontin-
uous change in participation can be used. Within the returns to education example,
such discontinuity is introduced by the criterion defining eligibility to subsidized ad-
vanced education. This is based on the test score and classifies as eligibles those indi-
viduals scoring above s ¼ 4.

Table 5 displays the Monte Carlo results using discontinuity design to estimate the
impact of education at the eligibility threshold. We present estimates under the as-
sumption of no correlation and negative correlation between the error components
in the selection and outcome equations.

We expected this method to work well, its robustness arising from the weak set
assumptions on which it is based. However, being a local method based on a small
number of observations, it can become very sensitive to small changes in a few obser-
vations. Moreover, DD with imperfect compliance requires dividing by the difference
in participation rates as shown in Equation 55. If the difference is relatively small, it
introduces important variation in the estimation process. For these reasons, some care
should be exerted during estimation regarding the choice of weights and bandwidth.

Table 5 displays DD estimates using two of the most commonly applied kernel
weights, Epanechnikov (Row 1) and Gaussian (Row 2), together with a range of pos-
sible bandwidths. Bias is measured against the local ATE, the parameter that DD
identifies in ideal conditions. For comparison purposes, notice that the ATT as
reported in Table 1 is 0.453, very close to the local ATE of 0.469. This is a feature
of this example and does not necessarily extend to other cases. Quite on the contrary,
the local parameter estimated by DD can be very different from the ATT. Like LATE,
DD is especially well suited to address the questions related with potential extensions
of the policy to a wider group by partially relaxing the eligibility rules.

Rows 1 and 2 in Table 5 show that there is considerable variation in the amount of
bias by shape of the kernel function and bandwidth. In general, small bandwidths
perform better in terms of bias but can introduce large variability on the estimates.
In our example, smaller bandwidths are better for the Gaussian kernel weights
(Row 2), which use all the observable domain to estimate the effect of treatment.
Epanechnikov weights, however, work better with slightly bigger bandwidths in this
example as it concentrates more weight in fewer observations, becoming more sen-
sitive to small variations particularly on the participation probabilities.

VIII. Control Function Methods

A. The Control Function Estimator (CF)

When selection is on the unobservables, one attractive approach to the evaluation
problem is to take the nature of the Selection Rule 3–4 explicitly into consideration
in the estimation process (see Heckman 1976, 1979). The control function estimator
(CF) does exactly this, treating the endogeneity of d as an omitted variable problem.

Consider the Outcome Equation 9 together with the selection rule in Equations 3-4.
In the following discussion we again abstract from time as it is not a determinant
factor for CF. For simplicity of notation and exposition, we also drop the regressors
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X in the outcome equation (considered under matching), implicitly assuming that all
the analysis is conditional on the observables X.

CF is based on the assumption that all relevant selection information is contained
in v. It can be formally stated as

ðu;aÞ ? ðd; ZÞjv:ð57Þ

This assumption states that, were we be able to control for v, d would be exogenous
in the outcome equation (see, for example, Blundell and Powell 2003). Assumption
CF1 also states that Z is independent of ðu;aÞ conditional on v, an exclusion restric-
tion in the spirit of IV. However it explicitly states that, conditional on v and d, Z
has no effect on potential outcomes. Thus, changes in Z lead to changes in the dis-
tribution of observable outcomes that can be rooted to changes in the composition
of the treated population since Z has no effect on the distribution of potential out-
comes.

Often it is only a weaker conditional mean restriction that is required. After con-
ditioning on other possible regressors in the outcome equation, X, (or, alternatively, if
d is additively separable from X) all that is required is mean independence of (u, a)
from d and Z conditional on v, that is:

E½ujv; d; Z� ¼ E½ujv� ¼ huðvÞ
E½ajv; d; Z� ¼ E½ajv� ¼ haðvÞ:

ð58Þ

where ðhu; haÞ is a pair of functions of v, the control functions.
CF is close to a fully structural approach in the sense that it explicitly incorporates

the decision process in the estimation of the impact of the treatment. The problem is
how to specify and identify the unobservable term, v.

Table 5
Monte Carlo esperiment—DD estimates of the local ATE and bias

Bandwidth ¼ 0.5 Bandwidth ¼ 1.0 Bandwidth ¼ 1.5

Kernel weights
True Local

ATE (1)
Coefficient

(2)
Bias
(3)

Coefficient
(4)

Bias
(5)

Coefficient
(6)

Bias
(7)

(1) Epanechnikov
0.469

0.306 0.347 0.457 0.025 0.500 0.065
(2) Gaussian 0.477 0.018 0.524 0.117 0.542 0.156

Notes: Simulated data based on 200 Monte Carlo replications of 2000 observations each. Simulations for
economy with subsidized advanced education and individuals totally aware of its availability and eligibility
rules at birth. Results refer to negatively related unobservables, u and v. Estimation of the DD parameter at
the eligibility cutoff point (score s ¼ 4) based on local linear regression using Epanechnikov (Row 1) or
Gaussian (Row 2) kernel weights. Estimates based on alternative values for the bandwidth ranging from
0.5 (Columns 2 and 3) to 1.5 (Columns 6 and 7). The true local ATE represents the impact of education
for agents scoring around the threshold, between 3.99 and 4.01. Bias measured in relative terms as com-
pared to the true local ATE (Columns 3, 5, and 7).

ðCF1Þ

ðCF10Þ
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If d is a continuous variable and the decision rule g is known and invertible, then d
and Z are sufficient to identify v. In such case, v is a deterministic function of (d,Z),
making conditioning on v equivalent to conditioning on (d,Z), which is observable.26

The regression equation would then be

E yijZi; vi½ � ¼ b + diE aijZi; vi½ �+ E uijZi; vi½ �
¼ b + diE aijvi½ �+ E uijvi½ �

where the remaining error

ri ¼ ðui2E½uijvi�Þ+ diðai2E½aijvi�Þ
¼ ðui2E½uijZi; di�Þ + diðai2E½aijZi; di�Þ

is mean independent of (d,Z). The above equations suggest a solution to the endoge-
neity of d, namely to explicitly include E½uijvi� in the the regression equation while
simultaneously specifying a as a flexible function of v (or (Z,d)) to avoid further
parametric assumptions.27

However, if d is discrete, and in particular if it is a dummy variable, all that can be
identified under typical assumptions is a threshold for v as a function of d and Z. This
is made clear from the parametric specification for the selection rule in Equation 5,
where all that can be inferred when the parameters g are known is whether v is above
or below 2Zg depending on whether d ¼ 1 or d ¼ 0. The following additional index
restriction and exogeneity of Z on the selection rule univocally identifies the partic-
ipation region

d�i ¼ 1ðgðZiÞ+ vi $ 0Þwith Z ? v:ð59Þ
Together with Condition CF1#, Assumption CF2 ensures that the conditional

expectations of ðu;aÞ on (Z,d) are functions of the index only. Under Assumptions
CF1# and CF2, the regression equation is

E½yijdi; Zi� ¼ b + diE½aijdi ¼ l; Zi�+ E½uijdi; Zi�
¼ b + dia

ATTðPðZiÞÞ + diE½uijvi . 2gðZiÞ�
+ ðl2diÞE½uijvi,2gðZiÞ�:

ð60Þ

where aATT (P(Zi)) is the average treatment effect on those who would be treated at
that given value of P(Z) (see Appendix 3 for the formal definition of this parameter as
a function of the MTE). If Z is continuous and P(Z) ranges from zero to one, then the
ATE (given by aATT(1)) is identified. As mentioned above, these parameters are con-
ditional on the covariates in the outcome equation, X. Under heterogeneous treatment

ðCF2Þ

26. For a continuous d and invertible decision rule, v can be obtained as v ¼ g21 d; Zð Þ.
27. Nonparametric estimators of models with continuous d (triangular systems of equations) have been
proposed in the literature and are simple to implement. See, for example, Newey, Powell, and Vella
(1999). Florens et al. (2008) establish and discuss the conditions for identification of average treatment ef-
fect parameters within a CF approach with a continuous endogenous regressor, d, and heterogeneous
effects.
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effects with respect to X, the population ATT at P(Z) is the mean over the distribution
of X at that specific point of P(Z) (see Heckman and Vytlacil 2005, and Moffitt 2007,
for an explicit treatment of covariates, X).28

Early applications of the control function approach use a parametric assumption
on the joint distribution of the error terms, u and v, and a functional form assumption
for the decision rule. The most commonly encountered set of assumptions impose
joint normality and linearity. The selection model of outcomes becomes:

yi ¼ b + aidi + ui

di ¼ 1ðZig + vi $ 0Þ
ðu; vjZÞ; Nð0;SÞ:

Under this parametric specification, the first part of Assumption CF1# can be re-
written as

E½ujd ¼ 1; Z� ¼ rl1ðZgÞ
E½ujd ¼ 0; Z� ¼ rl0ðZgÞ

ð61Þ

where r ¼ sucorrðu; vÞ, su is the standard error of u, and the control functions are
(adopting the standardization sv ¼ 1 where sv is the standard error of v):

l1ðZgÞ ¼ nðZgÞ
FðZgÞ and l0ðZgÞ ¼ 2nðZgÞ

12FðZgÞ

for n and F to stand for the standard normal pdf and cdf, respectively. Thus, joint
normality implies that the conditional expectation of u on d and Z is a known func-
tion of the threshold, Zg, that determines the assignment propensity:
Pðdi ¼ 1jZiÞ ¼ Pðvi $ 2ZigjZiÞ.

This model is typically estimated using the Heckit procedure, Heckman (1976,
1979). This is a two-step estimator. The first step generates predictions of the control
functions specified above from a regression of d on Z. The second step estimates the
enlarged outcome equation by OLS:

yi ¼ b + dia
ATTðPðZiÞÞ+ dirl1ðZiĝÞ+ ð12diÞrl0ðZiĝÞ+ rið62Þ

where r is what remains of the error term in the outcome equation and is mean in-
dependent of d:

28. Notice that identification of these functions usually requires at least one variable in Z to be excluded
from the outcomes equation (this is part of Assumption CF1 as discussed earlier). This means that the ex-
cluded z affects untreated outcomes through the information it contains about v when combined with the
observed participation status. One exception to this rule is that of a fully parametric model where the de-
cision rule is sufficiently nonlinear to separate variation if E½ujd; Z� from that on the regressors in the out-
comes equation. Although the functional form may identify E½ujd;Z�, it is strongly advised to avoid relying
on this source of identification alone.
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ri ¼ ½ui2Êðuijdi; ZiÞ�+ di½ai2Eðaijdi ¼ 1; ZiÞ�:

With the normality assumption, P(Z) can be treated as known and aATT (P(Z)) can be
identified.29

B. Weaknesses of CF

The relative robustness of the classical parametric CF method comes from the struc-
ture it imposes on the selection process. This makes this approach particularly infor-
mative for the policymaker by allowing for selection on the unobservables and
supporting the extrapolation of results to alternative policy scenarios. However, this
same feature has been strongly criticized for being overly restrictive. A number of
semiparametric CF estimators have been proposed that deal (at least partially) with
this problem (see the review by Powell 1994 and also Ahn and Powell 1993;
Andrews and Schafgans 1998; Das, Newey and Vella 2003).

In its nonparametric setup, the CF approach has been shown to be equivalent to the
LATE approach. We now turn to this comparison and notice that, while such advances
deal with the main criticism to CF, they also reduce the usefulness of the CF approach
to inform about possible policy changes.

C. The link between CF and IV

There are two key assumptions underlying the selection model specified in the pre-
vious section: (i) the parametric assumption on the joint distribution of unobserv-
ables and (ii) the linear index assumption on the selection rule. As noted above,
important recent developments have proposed new semiparametric estimators that
relax these assumptions. More recently, Vytlacil (2002) has shown that the LATE ap-
proach can be seen as an application of a selection model. To see this, we first com-
pare the two methods and then briefly discuss the equivalence result of Vytlacil.

Nonparametric CF relies on Assumptions CF1 and CF2 when Z has a nonzero im-
pact on participation to establish and estimate the regression equation as specified in
Equation 60, which we repeat here to highlight the differences to IV:

E½yijdi; Zi� ¼ b + diE½aijdi ¼ 1; Zi�+ E½uijdi; Zi�:

The three CF assumptions can be equivalently written as

• d is a nontrivial function of Z;

• Z is independent of u;a; vð Þ and

• Index restriction: di ¼ 1ðgðZiÞ + vi $ 0Þ.
In turn, the LATE approach is based on the following regression model

29. An additional joint normality assumption between the idiosyncratic gains ai and the unobservable v
would further allow for the identification of the ATE but this assumption is not required to estimate the
ATT and is not usually imposed.
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E½yijZi� ¼ b + Pðdi ¼ 1jZiÞE½aijdi ¼ 1; Zi�

based on the LATE assumptions discussed in section VI.B. We repeat them here:

• d is a nontrivial function of Z;

• Z is independent of ðu;a; vÞ and

• Monotonicity assumption: as with LATE, let diðZÞ be the random variable rep-
resenting individual i treatment status if drawing Z; the monotonicity assump-
tion states that dðZ�Þ$ dðZ��Þ (or dðZ�Þ# dðZ��Þ for all individuals.

Both sets of assumptions have been discussed before and so we skip any more
comments on them here. Instead we notice that the first and second assumptions
in each set are equivalent, but not the third one. The difference is that LATE does
not impose additive separability in the selection model to identify the treatment ef-
fect. It does not require any functional form or distributional assumptions, instead
relying on the general form for the decision process as specified in Equations 3–4
together with the monotonicity assumption. The additive separability of the unob-
servable term in the selection rule implies the monotonicity assumption of LATE
since the decision process is based on a threshold rule: gðZ�Þ is either greater or
smaller than gðZ��Þ and so everyone that participates under the lowest one also will
participate under the highest one.

The reverse implication is not necessarily true. However, the LATE assumptions
are equivalent to the CF assumptions if taken all together. Vytlacil (2002) shows that
under the LATE assumptions it is always possible to construct a selection model d̃ðZÞ
of the type described in the third CF assumption and such that d̃ðZÞ ¼ dðZÞ almost
everywhere. This means that under the LATE assumptions stated above, we can
always find a selection model satisfying an index restriction that rationalizes the data
at hand. This equivalence result shows that the LATE approach can be seen as an
application of a nonparametric version of the CF method.

Also notice that the local IV method of Heckman and Vytlacil (1999 and 2001)
discussed earlier withdraws the monotonicity assumption of LATE and is instead
based on the additive separability of the selection rule, as in Condition CF2. Thus,
it is explicitly a CF method.

D. Using parametric CF to estimate the returns to education

Table 6 displays estimates of the ATT using the fully parametric CF approach applied
to the running returns to education example (nonparametric CF estimates can be
found in Section VIE on local IV). We adopt the typical specification in empirical
applications of the parametric CF estimator by assuming that log earnings depend
linearly on education and region while selection into education is a probit with a lin-
ear index on the covariates listed in the first column of Table 6.

In all cases, the parametric model is misspecified in two important dimensions.
The first relates to the selection rule. In the theoretical model, participants are the
individuals for whom the following inequality holds:
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½expðb0 + b1x + a0 + a1uÞ2 expðb0 + b1xÞ�E½expðuÞjv�. cðz; sÞ+ v

There are three problems with this rule as compared to the linear index probit spec-
ification: (i) the observable x enters the relationship nonlinearly; (ii) the unobservable
u also determines participation nonlinearly; and (iii) even though v is normally dis-
tributed, participation is nonlinear in v through its dependence on the expected gains
and, therefore, on the conditional expectation of the exponential of u, not u itself.
The second specification problem relates to the returns to education, which are mod-
elled as homogeneous instead of allowing for dependence on ability as in the true
model, (a0 + a1u).

The estimation exercise considers two alternative selection rules depending on
whether the unobservables u and v are correlated or not. Under independence of u
and v there is one less reason for misspecification of the selection rule, namely the
nonlinearity on v as argued in (iii) above. Thus, one would expect milder bias in this
case although some bias is expected in all cases as misspecification affects all esti-
mates in the table.

Rows 2 to 4 in the table display estimates using alternative sets of variables and
interactions in the selection rule. Given the important misspecifications in the para-
metric specification discussed above, the CF estimator shows a quite good perfor-
mance. Overall, the bias is not large, especially in the absence of correlated
residuals, (u,v). However, introducing further relevant information like (generally
unobservable) ability and eligibility to subsidised education does not help in reduc-
ing bias.

Table 6
Monte Carlo experiment—parametric CF estimates of the ATT and bias

Corr (u,v) < 0 Corr (u,v) ¼ 0

Coefficient (1) Bias (2) Coefficient (3) Bias (4)

(1) True parameter – ATT 0.453 0.471
CF estimates using the selection variables:

(2) (x,z,s) +interactions 0.528 0.166 0.506 0.074
(3) (x,z,s,u) +interactions 0.554 0.223 0.513 0.089
(4) (x,z,ds$s,u) + interactions 0.555 0.227 0.509 0.081

Notes: Simulated data based on 200 Monte Carlo replications of 2,000 observations each. Simulations for
economy with subsidized advanced education and individuals totally aware of its availability and eligibility
rules at birth. Columns 1 and 2 (3 and 4) display results under the assumption of negatively related (inde-
pendent) residuals u and v. Estimates based on the parametric CF approach under the assumption of joint
normality of the residuals (Heckit estimator). Variables in the outcomes� equation are education and region.
Selection into education is modeled as a linear index model with explanatory variables as described in the
first row of the table. z, x, s, ds$s, and u stand for family background, region, test score, test score above s(¼
4) (eligible to subsidised advanced education), and ability, respectively. The interactions include second or-
der terms of each continuous variable and the product of each combination of two different variables. Bias
in relative terms as compared with ATT (Columns 2 and 4).
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IX. Summary

This paper has presented an overview of alternative methods for the
evaluation of policy interventions at the microeconomic level. The choice of appro-
priate evaluation method has been shown to depend on three central considerations:
the policy parameter to be measured, the data available, and the assignment mecha-
nism. Through studying a combination of the econometric underpinnings and the ac-
tual implementation of each method we hope to have convinced the reader that no
method dominates. Indeed the requirements placed on the design of any evaluation
study to fully justify the use of any of the standard evaluation methods are typically
difficult to satisfy.

One key to the appropriate choice of method has been shown to be a clear under-
standing of the ‘‘assignment rule’’ or the mechanism by which individuals participate
in the policy or program. In a sense this is a precursor to the choice of appropriate
evaluation method. At one end of the spectrum, in a perfectly designed social exper-
iment, assignment is random and at the other end of the spectrum, in a structural mi-
croeconomic model, assignment is assumed to obey some (we hope, plausible)
model of economic decisionmaking. Perfect experimental designs and structural al-
location theories that command wide acceptability are rare. We have shown how al-
ternative methods exploit different assumptions concerning assignment and differ
according to the type of assumption made.

Unless there is a convincing case for the reliability of the assignment mechanism
being used, the results of the evaluation are unlikely to convince the thoughtful skep-
tic. Just as an experiment needs to be carefully designed, a structural economic
model of assignment needs to be convincingly argued.

We have also seen that knowledge of the assignment mechanism alone is not
enough. Each method will have a set of possible policy parameters it can recover. That
is, even if the arguments behind the assumed assignment rule are convincing, any par-
ticular method will typically only permit a limited set of policy questions to be an-
swered. For example, we have seen that ex ante evaluations that seek to measure
the impact of policy proposals place inherently more stringent demands on the re-
search design than ex post measurements of existing policies. Similarly, measuring
distributional impacts rather than simple average impacts typically rests on stron-
ger assumptions. Even where the randomization assumption of an experimental
evaluation is satisfied and is fully adopted in implementation, a randomized exper-
iment can only answer a limited set of questions. In the end any reasonable eval-
uation study is likely to adopt a number of approaches, some being more robust
but recovering less while others answering more complex questions at the cost
of more fragile assumptions.

Appendix 1

A simple dynamic model of investment in education

Consider an economy of heterogeneous individuals indexed by i facing lifetime
earnings y that depend on the highest level of education achieved. We distinguish
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between two levels of education, low and high. The prototypical individual in this
model lives for three periods, which we denote by age being zero, one, or two.
At age zero all individuals are in school. At age one some individuals will enrol
in college and at age two all individuals are working. The problem of the individual
is to decide optimally about educational investment when there is uncertainty
about the future returns to the investment. We will now explain the model in more
detail.

At birth (age zero) each individual is characterized by three variables, which we
denote by u; x; zð Þ. For interpretation purposes, we assume u measures ability and
is observable to the individual but unobservable to the econometrician. z is observ-
able to the individual and econometrician and measures the conditions faced by the
individual while young that affect the cost of education. It will be interpreted as some
measure of family background or some measure of cost like distance to college. Fi-
nally, x is another observable variable to both the individual and econometrician. It
measures market conditions and we interpret it as region. All three variables are as-
sumed to remain unaltered throughout the individuals life.

Based on this information, the individual decides at age zero about the level of
effort in school. Combined with ability, u, the endogenous effort will determine per-
formance in school. This is measured as a score in a test and is denoted by s:

si ¼ g0 + g1uiei + qið63Þ

where e is effort, q is the unpredictable component of the score and ðg0; g1Þ are the
parameters.

The test score is revealed in the next period, at age one, after the effort choice be-
ing made. Depending on its value, it may give access to subsidized education if such
subsidy exists. Eligibility is defined on a threshold rule: students scoring above s will
be eligible while students scoring below this level will not.

Investment in high education has a (utility) cost, denoted by c. c depends on the
individual’s characteristics as well as on the test score if an education subsidy is
available. In the presence of a subsidy, c is defined as

ci ¼ d0 + d1zi21ðsi . sÞS + við64Þ

where S is the education subsidy available to eligible individuals, the function
1ðAÞ is the characteristic function, assuming the value one if A is true and zero oth-
erwise, v is the unpredictable part of the cost of education, and ðd0; d1Þ are the
parameters.

The decision of whether or not to invest in education occurs at age one. The test
score, s, and the unpredictable part of the cost of education, v, are revealed at the start
of this period and used to inform the decision process. Thus, the precise cost of ed-
ucation is known at the time of deciding about the investment. What is not known
with certainty at this stage is the return to education as it depends on an unpredictable
component as viewed from age one. Only at age two is this uncertainty resolved,
when the individual observes lifetime earnings. These are specified as:

632 The Journal of Human Resources



ln yi ¼ b0 + b1xi + ða0 + a1uiÞdi + uið65Þ

where y is earnings, d is a dummy variable representing the education deci-
sion, ða0;a1;b0;b1Þ are the parameters of the earnings function, and u is the unpre-
dictable component of earnings. Notice that the returns to education are not
known in advance, at age one, because u is unknown and y is nonlinear in its argu-
ments.

We now formalize the problem of the individual in a dynamic framework. The in-
dividual chooses effort at age zero to maximize lifetime utility. His/her choice is con-
ditional on how effort affects the test score (Equation 64) and the impact of the test
score on the cost of education (Equation 65). It can be formalized as

V0iðui; zi; xiÞ ¼ max
ei

2lei + rEs;v½V1iðui; zi; xi; si; viÞ�
� �

ð66Þ

where Vai represents the discounted value of present and future utility for individual i
when aged a, r is the discount factor, and the index in the expectations operator lists
the random variables at the moment of selecting effort, with respect to which the
expected value is to be computed. From the above equation the optimal level of effort
is a function of u, z, and x, e�ðu; z; xÞ.

The problem of the individual at age one is that of choosing the educational level
without knowing the returns to the investment with certainty. Conditional on the
(known) form of the Earnings Equation 65, the problem can be formalized as

V1iðui; zi; xi; si; viÞ ¼ max
di

f2cidi + rEu½yiðui; di; xi; uiÞjvi�gð67Þ

where we allow for v and u to be related and thus condition the expected value on v.
Under the model specification in Equation 67, the education decision follows a

reservation rule defined in the cost of education. The optimal decision is a function
of the information set at age one, d ¼ d�ðu; z; x; s; vÞ. Formally:

di ¼
1 if E½yijdi ¼ 1; xi; ui; vi�2E½yijdi ¼ 0; xi; ui; vi�. ci

0 otherwise

�
ð68Þ

Finally, at age two the individual works and collects lifetime earnings as defined in
Equation 65. There is no decision to be taken at this stage.

Average parameters

The impact of high education on the logarithm of earnings for indi-
vidual i is ai ¼ a0 + a1ui. We can use this expression to specify the ATE on log earn-
ings as

aATE ¼ a0 + a1E½ui� ¼ a0+a1

Z
Q

ufuðuÞdu
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where fuðuÞ is the probability density function of u and Q is the space of possible
realizations or domain of u.

In a similar way, the ATT on log earnings is just

aATE ¼ a0 + a1E½uijdi ¼ 1�:

However, it is now more difficult to derive the exact expression E½uijdi ¼ 1� as it
depends on the endogenous individuals’ choices. To do this, we will assume that v
and u are not positively correlated, thus corrðu; vÞ# 0. In particular, we take u to
be a linear random function of v,

ui ¼ mvi + ri

where m # 0 is the slope parameter and r is a iid shock. In this case, the reservation
policy described in Equation 68 in terms of the cost of education c can now be
expressed in terms of the unobservable component, v. We denote it by ṽ and note that
it is a function of the variables known at age one that impact either on the cost of
education or on the expected future earnings. Thus, the reservation policy is
ṽðu; z; x; sÞ but, since s ¼ g0 + g1ueðu; z; xÞ+ q, it is equivalent to write it as
ṽðu; z; x; qÞ. The reservation policy ṽ fully characterizes the educational decision:
whenever the individual draws a shock v . ṽ the decision will be not to participate while
the opposite happens when v , ṽ. Thus, the decision rule (68) can be rewritten as,

di ¼
1 if vi , ṽðui; zi; xi; qiÞ
0 otherwise:

�

Conditional on the set of variables ðu; z; x; qÞ, the size of the population investing
in education will be given by,

P½d ¼ 1ju; z; x; q� ¼ Fvðṽðu; z; x; qÞÞ ¼
Z ṽðu;z;x;qÞ

2N

fvðvÞdv

which is just the cumulative density function of v at the reservation point, ṽðu; z; x; qÞ.
Notice that to derive the above expression it is being assumed that the v is indepen-
dent of ðu; z; x; qÞ.

We can now integrate ability over the whole educated population to obtain
E½ujd ¼ 1�:

E½ujd ¼ 1� ¼
Z

Q

Z
DðzÞ

Z
DðxÞ

Z +N

2N

uFvðṽðu; z; x; qÞÞfðu;z;x;qÞðu; z; x; qÞdqdxdzdu

where ðQ;DðzÞ;DðxÞÞ stand for the domains of ðu; z; xÞ and fðu;z;x;qÞðu; z; x; qÞ is the
joint density function of ðu; z; x; qÞ.
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Parameters used in the simulations

• Discount parameter: r ¼ 1;

• Utility cost of effort to prepare test: l ¼ 0:9;

• Test score (Equation 63): g0 ¼ 1:0, g1 ¼ 2:5, q ; Nð0; 1Þ;
• Cost of education (Equation 64): d0 ¼ 3:0, d1 ¼ 21:2, s ¼ 4:0, S ¼ 2:5,

v ; N 0; 1ð Þ;
• Earnings (Equation 65): b0 ¼ 0:7, b1 ¼ 0:3, a0 ¼ 0:01, a1 ¼ 0:7, u ¼ mv+r

where m ¼ 20:5 in the correlated case and m ¼ 0:0 in the noncorrelated case,
r;N 0;s2 ¼ 0:75ð Þ in the correlated case and r ; N 0; 1ð Þ in the noncorrelated case;

• State variables: u ; N 0:5;s ¼ 0:25ð Þ truncated at zero and one, z ; N 0; 1ð Þ
truncated at -2 and 2, x is a Bernoulli with p ¼ 0.4.

Appendix 2

STATA Data Sets and .do files

The individual lifecycle model of education investment and earnings, described in
Appendix 1, is used to construct simulated data under alternative assumptions about
the policy environment and the nature of the decision process. The two main STATA
data sets, MCdta-corr.dta and MCdta-nocorr.dta, contain 200 Monte Carlo replica-
tions of data sets of 2000 simulated observations each. The first data set represents
the case of unobservable (to the econometrician) information related to expected
gains used to inform individual decisions on education investment. The second data
set represents the case where all relevant information used to decide about education
is observable. Both data sets include lifecycle information under 3 alternative policy
scenarios: unsubsidized advanced education, subsidized advanced education, and
subsidized advanced education when individuals are unaware of the existence of a
subsidy one period ahead of deciding about the investment.

Two additional auxiliary data sets are also available, required only for the DID es-
timator, MCdta-corr-noS.dta and MCdta-nocorr-noS.dta. These also contain 200
Monte Carlo replications of data sets of 2000 observations each. They are used to-
gether with MCdta-corr.dta and MCdta-nocorr.dta, respectively, to construct repeated
cross-sections of education and earnings information corresponding to periods before
(MCdta-corr-noS.dta and MCdta-nocorr-noS.dta) and after (MCdta-corr.dta and
MCdta-nocorr.dta) a policy change amounting to the introduction of a subsidy to ad-
vanced education. Both data sets contain information for an economy with no edu-
cation subsidy only.

A set of STATA .do files was created to run alternative estimation procedures using
each of the discussed methods and to produce the Monte Carlo results. There are two
.do-files for each method, labelled ‘‘name-of-the-method.’’do and ‘‘name-of-the-
method’’-programs.do. The former contains the the main routine, which defines
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the data set and variables being used, calls the estimation routines and displays the
results. The latter contains two main estimation routines (accompanied by other aux-
iliary routines in some cases). The first routine implements the respective estimator
in a given data set for a certain set of variables provided by the user. The second rou-
tine repeatedly applies the estimator procedure in the first one to a series of data sets
to produce the Monte Carlo results. The .do-files can be used together with the data
sets to reproduce all the results in the paper.

All data sets and .do-files can be can be found free online at http://www.ifs.org.uk/
publications.php?publication_id¼4326.

Appendix 3

Average treatment parameters

All the average parameters can be expressed as averages of the MTE using different
weights. Consider the ATT. Participants at any point p of the distribution of ṽ are
those that draw ṽ , p. Thus,

aATTðpÞ ¼
Z p

0

aMTEðṽÞfṽðṽjṽ , pÞdṽ

¼ 1

p

Z p

0

aMTEðṽÞdṽ

where the second equality results from the fact that ṽ is uniformly distributed. Inte-
grating over all the support of p yields the overall ATT,

aATT ¼
Z 1

0

aATTðpÞfpðpjd ¼ 1Þdp

¼
Z 1

0

Z p

0

aMTEðṽÞ
fpjdðpjd ¼ 1Þ

p
dṽdp:

Similarly, the ATE, ATNT, and LATE are,

aATE ¼
Z 1

0

Z 1

0

aMTEðṽÞfpðpÞdṽdp

aATNT ¼
Z 1

0

Z 1

p

aMTEðṽÞ
fpjdðpjd ¼ 0Þ

12p
dṽdp

aLATEðp�; p��Þ ¼ 1

p��2p�

Z p��

p�
aMTEðṽÞdṽ:
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