Design Philosophy

Class Objectives

- Clear understanding of design, analysis, and validation requirements for aircraft structures
- Exposure to Structures Engineering processes and tools

Lifetime Safety Cycle

Safety Wheel

Sources of Design Criteria

Safety Requires Diligent Performance by All Participants

Principal Guidance Documents

Structural Design Criteria Consist of Ten Major Elements

Loads Are the Foundation of Airplane Design

Center of Gravity/Gross Weight Envelopes

Design Loads Are Based on Load Factors

Flight Profile

Operating Loads Consist of Random Cycles

Boeing Structural Aluminum Alloy Improvements

Material/Process Properties Checklist - Metals

Materials/Processes	Producibility	Static	Damage Tolerance and Fatigue	
Material specification	Forming	Tension	Fatigue crack growth rate	Air Environment
Process specification	Machining	Compression	Residual strength	κ _{ic}
Corrosion property	Trimming	Shear		K _A
Repair specification	Joining	Bearing	Stress corrosion	K _{ISCC}
Safety	Assembly	Buckling		
	Chemical processing	Crippling	Fatigue stength	Incidental damage
	Real time process	Joint		Open hole
	Inspection	Environmental factors		Joints
	Disposal		Estigue festere	Finish
	Cleaning		raligue laciois	Environment

Material/Process Properties Checklist - Composites

Materials/Processes	Reliability	Static	Damage Tolerance and Fatigue	
Material specification	Layup	Laminate	Damage tolerance	
Process specification	Cure	Part specific layup		Delamination
Repair specification	Handling	Joint	Damage growth	Impact
	Finishing	Interlaminar shear		Notch
	Machining	Crippling		Delamination
	Joining	Joining Environment factors Residua	Residual strength	Impact
	Assembly	Sandwich	en en gui	Notch
	Real time process control		Durability	
	Chemical safety		Post impact	
	Inspection		Open hole	
	Disposal		Bearing	
			Environment factors	

Aircraft Must Be Free From Flutter and Service Vibration

Design requirement

 Aircraft is designed to be flutter free up to 1.15 times maximum design dive speed envelope (Vd/Md) up to Mach 1.

Analytical approach

 Unsteady aerodynamics and flutter finite element component and airplane analyses are conducted.

Validation

 Analysis is verified by windtunnel models, ground vibration, and flight tests up to Va/Md.

Structure Must Have Adequate Static Strength

Design requirements

- Structure must remain elastic up to limit loads
- Structure must carry ultimate loads.

Analytical approach

 Margins of safety are computed for all members based on maximum stresses and structural allowables to verify designs.

Validation

 Design is validated by limit loads, ultimate loads, and destruction tests.

Static Margins of Safety (MS) Are Computed Based on Maximum Applied and Allowable Stresses and Structural Allowables

Aircraft Are Designed for 30 Years of Service

Design requirements

 Structure must meet or exceed the design service objective with minimum service corrosion or cracking

Analytical approach

 Margins of safety are computed for all members based on maximum and allowable operating stresses

Validation

 Panel, component, and full scale airplane testing

Economic and Market Conditions Result in Use of Airplanes Beyond Original Economic Design Life Objectives

Boeing Commercial Jet Fleet Summary October 31, 2004 Data

	Total	Minimum service design objectives		High time airplanes	
Model	airplanes	Flights	Hours	Flights	Hours
707	735	20,000	60,000	39,800	98,700
720	153	30,000	60,000	45,000	69,300
727	1,822	60,000	50,000	87,700	93,700
737	4,585	75,000	51,000	97,300	99,700
747	1,336	20,000	60,000	39,100	119,000
757	1,040	50,000	50,000	35,400	74,200
767	916	50,000	50,000	40,300	79,100
777	493	40,000	60,000	18,000	38,100
737NG	1,489	75,000	51,000	16,600	27,500

Configuration Capability Must Meet Operating Requirement

Fatigue Margins of Safety Are Computed Based on the Fatigue Allowables and Maximum GAG Stresses

10-Year Comparison of Service Bulletin Labor-Hours (727, 737, and 757)

Comparison of 767 and 777 Fatigue Test Findings

Aircraft Are Designed for Corrosion Prevention

Design requirement

• The design objective is to be free from significant corrosion during the operational life of the airplane.

Maintenance

• Specified preventive maintenance must be performed.

Validation

 Operator feedback is used to improve prevention measures.

Design Features for Corrosion Prevention

Comet Accident

707-300 Horizontal Stabilizer Rear Spar Failure

Safety Is the Most Important Goal

FAR 25.571 Amendments Related to Fail Safety and Damage Tolerance

Amendment Level and Date	Title	Summary of Changes to section 25.571(b) or (c)
25-0 (12/24/64)	Fatigue evaluation of flight structure	(c) Fail safe strength "It must be shown by analysis, tested, or both, that catastrophic failure or excessive deformation, that could adversely affect the flight characteristics of the airplane, are not probable after fatigue or obvious partial failoure of a single PSE.
25-45 (12/1/78)	Damage-tolerance and fatigue evaluation of structure	(b) Damage-tolerance (fail-safe) evaluation. "The evaluation must include a determination of the probably locations and modes of damage due to fatigue, corrosion, or accidental damage. The residual strength evaluation must show that the remaining structure is able to withstand loads corresponding to"
25-96 (4/30/98)	Damage-tolerance and fatigue evaluation of structure	(b) Damage-tolerance evaluation. Initial flaw of maximum probable size from manufacturing defect or service induced damage used to set inspection thresholds; sufficient full scale fatigue test evidence must demonstrate that WFD will not occur within DSO (no airplane may be operated beyond cycles equal to ½ the cycles on fatigue test article until testing is completed).

Monolithic Structure is Used to Improve Producibility

Two-Bay Crack in the Wing Lower Surface

Example of Safe Fuselage Decompression

Example of Save Wing Penetrations

Damage Tolerance Regulation Comparison

Analysis	FAR 25.571 (before 1978)	FAR 25.571 (after 1978)	
Residual strength	Single element of obvious failure	Multiple active cracks	
Crack growth	• No analysis required	 Extensive analysis required <u>المحمد</u> 	
Inspection program	 Based on service history FAA air carrier approval 	 Related to structural damage characteristics and past service history Initial FAA engineering and air carrier approval 	

Safety is Maintained by Damage-Tolerant / Fail-Safe Structures

Structure Must Be Damage Tolerant

Design requirement

• Structure must have capability to withstand damage until detected and repaired.

Analytical approach

 Damage tolerance is verified by analytical assessment of damage growth, residual strength, and surveillance.

Validation

- Damage tolerance is validated by panel and component tests.
 - Residual strength
 - Crack growth
 - Qualification
 - Inspection program

Damage Detection Evaluation

Structural Classification and Damage Tolerance Requirements

Structural category		Required design attributes	Analysis requirements	Structural classification examples
Other structure	Secondary structure ①	Design for loss of component or safe separation	Continued safe flight	Flap track canoe fairings (safe separation or safe loss or segment)
Primary structure (Structurally significant items or principal structural elements)	Damage obvious or malfunction evident ②	Design for faioure or partial failure of a principal structural element with continued structural integrity	Residual strength	Wing fuel leaks
	Damage detection by plannd inspection 3	Inspection program matched to structural characteristics	Residual strengthCrack growthInspection program	All primary structure not included in categories and
	Safe life design ④	Design for conservative ratigue life (damage tolerant design is impractical)	Fatigue analysis verified by test	Landing gear structure

Residual Strength Versus Damage Size or Notch Length

Probabilistic Life Cycle

Local Versus Widespread MSD or MED

Widespread Fatigue Damage Detection

Service period, flight cycles

Aging Fleet Programs

Landing Gear is an Example of Safe-Life Structure

Airplane Designed to Survive Minor Crashes

Strut Design and Structural Fuses

Floor Structure is Often Designed by Crash Conditions

KBE Evolution and Implementation History

External Criteria That Affect the Design of the Structure

Bird strike

Engine blade loss

Tire burst

Tire tread

Fan Bladeout Test

4-53

Summary

- Regulatory requirements have evolved over the years based on significant service and test experience
- Validation and certification approach is primarily analytical supported by test evidence
- Supporting evidence includes testing through a "building block" approach
- The environmental effects are characterised by test and are accounted for in the analysis
- Process and tools are continually improved to enhance accuracy and reduce design cost and cycle time

Appendix

