Do problems 4-7, 4-11, 4-15 from Goodman.
Complete the following problem (former midterm exam problem...)
Problem 1. An opaque screen has two pinholes, located at $x=a$ and $x=-a$. You may treat the screen transmission function $t(x, y)$ as given by $t(x, y)=\delta(x+a) \delta(y)+\delta(x-a) \delta(y)$. The screen is placed at the $z=0$ plane and is illuminated by a z-directed unity amplitude plane wave.

a) Write the Fresnel integral relating the observed field $U\left(x_{o}, y_{o}, z\right)$ in the plane $z=z$, in terms of the field $U\left(x_{1}, y_{1}, 0\right)$ in the $z=0$ plane, and solve for $U\left(x_{o}, y_{o}, z\right)$.
b) What is the intensity $I(z)=|U(0,0, z)|^{2}$ along the \mathbf{z}-axis $(x=0, y=0)$ behind the screen?
c) Now assume that a π phase delay element is placed in front of the pinhole located at $x=a$, so that $t(x, y)=\delta(x+a) \delta(y)-\delta(x-a) \delta(y)$. What is the intensity $I(z)=|U(0,0, z)|^{2}$ along the \mathbf{z}-axis behind the screen?

