Do problems 4-7, 4-11, 4-15 from Goodman.

Complete the following problem (former midterm exam problem...)

Problem 1. An opaque screen has two pinholes, located at x = a and x = -a. You may treat the screen transmission function t(x,y) as given by $t(x,y) = \delta(x+a)\delta(y) + \delta(x-a)\delta(y)$. The screen is placed at the z = 0 plane and is illuminated by a *z*-directed unity amplitude plane wave.

a) Write the Fresnel integral relating the observed field $U(x_o, y_o, z)$ in the plane z = z, in terms of the field $U(x_1, y_1, 0)$ in the z = 0 plane, and solve for $U(x_o, y_o, z)$.

b) What is the intensity $I(z) = |U(0,0,z)|^2$ along the *z*-axis (*x*=0, *y*=0) behind the screen?

c) Now assume that a π phase delay element is placed in front of the pinhole located at x = a, so that $t(x,y) = \delta(x+a)\delta(y) - \delta(x-a)\delta(y)$. What is the intensity $I(z) = |U(0,0,z)|^2$ along the *z*-axis behind the screen?

