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ABSTRACT 

Iteration in design has different meanings, ranging from 
simple task repetition to heuristic reasoning processes.  
Determining the need to iterate is important to improve the 
design process on cost, time, and quality, but currently there is 
no categorization of iterations conducive to this goal.  After 
exploring the possible causes and attempts to address them, we 
propose to classify iterations as rework, design, or behavioral.  
This framework suggests that design teams should try to 
eliminate rework iterations, perform design iterations without 
skipping abstraction levels, and do behavioral iterations in 
parallel.   

 
Keywords: Engineering Design, Iteration, New Product 

Development, Design Process Attributes, Set-based Concurrent 
Engineering. 

 
INTRODUCTION 

Iteration is a term frequently used to describe design.  It is 
commonly accepted that design is iterative in nature, but what 
do we mean by iteration?  And if we are not completely sure of 
what iteration is, could we iterate more than needed? Can we 
reduce engineering time by identifying unnecessary iterations 
and eliminating their root cause, or by performing some 
iterations in parallel rather than sequentially?  Because 
iterations shape the outcomes of design in terms of cost, time, 
and quality, exploring the nature of iteration and identifying its 
causes and proposed countermeasures may help improve design 
methods.  Terwiesch, Loch, and De Meyer [1] compared 
iterative approaches to design with set-based concurrent 
engineering approaches [2], and concluded that iterative 
approaches tend to increase both development lead time and 
cost (as tooling rework and engineering hours increase).  
Krishnan, Eppinger, and Whitney [3] found that sequential 

decision-making degrades solution quality because previous 
decisions constrain future decisions and limit a person’s ability 
to make a decision that meets criteria (in the extreme case 
sequential decision-making might make it impossible to meet 
the design criteria).  To prevent degrading design quality, 
Krishnan et al. propose to repeat activities or to decide non-
sequentially. 

 
After reviewing definitions and causes of iteration from the 

literature we conclude that a need exists for a new 
categorization of iterations that helps answer the question of 
need.  Is all iteration inevitable, or can some of it be avoided 
using different design strategies?  Does the nature of different 
instances of iteration suggest new and more effective 
approaches to design problems?  For this purpose, we 
developed a framework that classifies iteration as rework, 
design, or behavioral iteration.   

 
In the pages that follow, we briefly summarize current 

definitions of iteration extant in the design theory literature, and 
then present our framework.  Ensuing is a discussion of key 
root causes of iteration, approaches to minimize the negative 
impact of iteration, and how our proposed framework can 
potentially address some the issues raised.  We conclude with 
hypotheses to be tested in future research. 

 
DEFINITIONS OF ITERATION 

A common approach in the literature is to consider 
iteration as repeating design activity.  For example, Ulrich and 
Eppinger [4] formally define iteration as repeating an already 
completed task to incorporate new information (such as 
performing finite element analysis followed by design revision 
and repeating the analysis incorporating feedback from the 
revision).  A second approach defines iterations more broadly 
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as a heuristic reasoning process.  Adams and Atman [5], for 
example, describe a broad cycle of gathering information, 
processing that information, identifying possible design 
revisions, and executing those revisions in pursuit of a goal.   
This perspective of iteration is less concerned with repeating 
design activity, and more focused on the thought process that 
justifies the need to perform the activity in the first place.  
Further expanding this definition, Ullman, Wood, and Craig (as 
cited in [6]), define iterations as the cognitive processes that the 
designer uses when performing activities that change the design 
state.  Emphasis is on how the designer reasons about the 
design as opposed to how she performs specific activities.  
Thus definitions of iteration focus on designer behavior, and 
range from the repetition of activities to more abstract patterns 
of designer behavior.   

 
Based on these definitions researchers have developed 

taxonomies for iteration to help better understand the nature of 
the phenomenon.  For instance, in conjunction with the 
designer behavioral definitions of iteration, Adams and Atman 
[6] differentiate between diagnostic iterations that define and 
evaluate design tasks, and transformative iterations that 
synthesize new information.   Other approaches classify 
iterations based on information/task interdependence, such as 
Smith and Eppinger’s sequential [7] versus parallel iterations 
[8], or Denker, Steward, and Browning’s [9] interdependent 
task cycles.  

Applicability to the Question of Need 
The definitions undoubtedly help understand different 

aspects related to iteration. But, at the same time, they also 
increase the meanings associated with the term and potentially 
transform it into an umbrella for all necessary and unnecessary, 
value-adding and wasteful, iterations.  Further, because these 
definitions and categories were attempting to answer other 
questions, they complement the image of a particular 
occurrence of iteration but do not seem conclusive on the need 
to iterate.   

 
A common implicit assumption in these definitions is that 

iteration is unavoidable and should be planned into design 
processes even though there are some drawbacks, such as 
increased development time.  Iteration, it seems, is seen as a 
necessary evil in design and is not challenged.  Such a 
perspective may systematize inefficiencies associated with 
unnecessary iterations.    

 
An important assumption made in some definitions is 

sequential decision-making [7-9]. For instance, parallel 
iterations do not indicate simultaneous iterations, but rather 
simultaneous execution of interdependent or dependent tasks 
that influence each other’s inputs and thus generate task 
repetition.  Both the sequential and parallel categories assume 
sequential decision-making.  In dealing with information 
interdependency, Denker et al. [9] propose breaking the 
interdependency cycle by assuming a value for a parameter and 
then sequentially repeating the dependent tasks alternately until 
reaching a final value for the different task outputs.  It is 
important to note this since sequential decision-making is one 
of the key inducers to iteration [3]. 

Proposed Framework 
Our research on engineering design identifies design 

process attributes along two dimensions, activities and 
abstraction levels [10].  We categorize activities into four areas: 
problem definition, idea generation, engineering analysis, and 
design refinement.  And we distinguish three levels of 
abstraction, namely concept, system, and detail, to indicate the 
progression of design work from ambiguous to specific, with a 
middle step focused on system architecture.  In addition to 
activity and abstraction level, we’ve begun to also include a 
third process attribute, scope.  Within this framework, scope 
refers to the (sub)problem at which a given design activity is 
targeted (e.g. the designer might be working on concept design 
for overall problem, or the concept design of a subsystem).  
Table 1 summarizes activities, abstraction levels, and scope.  

Table 1: Activity, Abstraction Level, and Scope 

Activity 
Problem Definition 

Idea Generation 
Engineering Analysis 
Design Refinement 

 
Abstraction Level 

Concept 
System 
Detail 

 
Scope 

Defined by product architecture 
and design requirements 

 
 
To illustrate the three design process attributes, consider a 

design team meeting to brainstorm ideas for the 
communications network of a motor vehicle’s electrical system 
(e.g., using a Controller Area Network or a Local Interconnect 
Network).  In our framework, we would classify the activity as 
idea generation and the abstraction level as concept, and label 
the scope as communications network.  

 
Now, if we consider that repetition of an activity is the 

basis for defining iteration, it is possible to develop three 
iteration types based on whether the abstraction level or scope 
change, as shown in Table 2. 

 
When the designer repeats the activity at the same 

abstraction level on the same object it is probably rework 
iteration –the three process attributes remain the same when the 
design task is repeated.  The most common reason for repeating 
an activity at the same scope and abstraction level is to correct 
an error.  For instance, when in 1996 the European Space 
Agency reused software from Ariane 4 in the Ariane 5 project, 
an undetected design error resulted in the loss of the rocket plus 
the half a dozen commercial communications satellites it was 
supposed to set in orbit [11]. The design work to replace the 
rocket would be considered rework iteration because neither 
scope (same mission) nor abstraction level (a working rocket) 
has changed, yet the design task was repeated.   
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Table 2: Iteration type defined by design process attributes compared to first task performance. 

 Design Process Attribute 

 
Iteration Type 

Activity Abstraction 
Level 

Scope 

Rework Repeats Repeats Repeats 
Design Repeats Changes Repeats 
Behavioral  Repeats Repeats Changes 

 
 
 

Rework iteration should change the design state in the 
same manner in the second task execution as it did in the first, 
so if a designer executes the activities correctly, there is no 
need for this type of iteration.  Rework iteration, then, should 
receive the same treatment as errors that produce defects in a 
manufacturing environment would receive: their causes should 
be prevented or detected at the source so errors do not become 
defects, or in this case iterations that cost money.   

 
However, if the activity’s abstraction level is not the same 

as in the first execution, then we consider this a sign of design 
iteration, because as design activity progresses through 
abstraction levels [5] the design evolves toward the desired 
final state.  As an analogy, consider the problem of finding 
directions to a specific address in Los Angeles.  Consulting a 
map of the U.S. will provide information on L.A.’s location, 
but is not very helpful for finding directions within the city.  
Repeating the activity (looking for directions) at a lower 
abstraction level, or from a lower height for this analogy, will 
provide different information useful to find the address of 
interest.  An L.A. street map will ultimately help reach the 
address, but it will be of no use if we do not know where L.A. 
is.  Similarly, design iteration repeats activities to generate 
meaningful information at different abstraction levels.  Design 
iteration indicates the designer is progressing through different 
abstraction levels, defining and refining a solution while 
moving from the initial concepts to a detailed final design.  The 
activities repeat on the same scope, but task content differs 
significantly as it carries the solution to a different resolution 
level.   

 
Finally, behavioral iteration means proceeding through the 

same activity at the same abstraction level, but applied to a 
different scope.  In other words, the behavior repeats but on a 
different (sub)problem.  Designers often divide a problem into 
pieces and proceed with a similar pattern of design activity 
performed on each of the subdivisions as object.  For example, 
if a team works on the design of a vehicle’s power train system 
while a different team develops the air conditioning system, the 
teams may perform similar design activities but on different 
scopes. 

 
To illustrate the potential usefulness of this framework, 

consider a common occurrence in product development: 
changing customer requirements [12].  Product developers 
often assume that customers know exactly what they need, 
which creates the notion that design is searching for the right 
solution for the perceived customer need.  Though changing 

requirements is quite common, planners often do not consider it 
a likely event and therefore do not plan for it, so that when 
product specifications change, customers are blamed for 
triggering rework.  But the proposed framework helps us think 
about it differently.   

 
Imagine a designer presenting the customer with a detailed 

design of a multipurpose knife that satisfies the customer’s 
need as the designer perceived it, with the unstated but very 
real hope that the customer will accept it as-is.  After reviewing 
the design, the customer points out that, against requirement, 
the blades bind when more than one tool is already unfolded.  
The observation results in a rework iteration to address the lack 
of compliance with requirements.  In contrast, consider the 
same situation (designer presenting the customer with the 
newly designed multipurpose knife) but now, after seeing what 
a possible solution looks like, the customer decides that so 
much functionality is confusing and sends the designer back 
with a shorter list of functional requirements and an additional 
requirement for a more user-friendly folding mechanism to 
prevent injury when transitioning between tools.  The designer 
goes back to work thinking the customer holds back 
information just to make life miserable, without realizing that 
maybe the customer did not understand the implications of the 
design requirements until exposed to a possible solution.  The 
designer has to iterate but under different circumstances: in the 
second scenario the scope has changed and triggered a 
behavioral iteration.   

 
The process of generating solutions and sharing them with 

the customers can trigger the redefinition of the problem [13], 
which will drive the designer to accommodate the new 
information by repeating the same tasks at their corresponding 
abstraction level on the modified problem definition.  It is 
important to differentiate between the two instances of iteration 
because we have no control over the customer changing 
requirements upon gaining new information (i.e., about the 
solution space), but we can avoid faults in our own design 
process.  Failure to include information that constrains the 
design and is available to the designer does not trigger 
behavioral iteration because it is neither a subdivision of the 
design space nor a requirement change.  For example, ignoring 
restrictions on materials use (e.g., lead or asbestos) and having 
to repeat design tasks to include this information falls in the 
category of rework iteration, not of behavioral iteration.  This 
differentiation is often used in product development to define 
responsibility for the increase in development or product costs 
due to design changes – negligence comes at a price. 
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The proposed framework helps identify an alternative 

approach to working with customers.  Instead of presenting a 
single, near-complete design, showing the customer alternative 
designs at a higher abstraction level earlier in the process might 
help accelerate problem and solution definition, with less 
disruption.  This approach incorporates design iteration 
combined with parallel execution of behavioral iteration at a 
given abstraction level.   

 
This classification of iteration also helps identify necessary 

iterations in design.  Based on the assumption of repeating an 
activity, rework iteration does not move the design to an 
increased state of completion because there is no evolution on 
either abstraction level or scope, and thus might not be 
necessary.  Design iteration represents design evolution 
towards completion through abstraction level, while behavioral 
iteration portrays this evolution across scope.  Design and 
behavioral iteration are performed in tandem to evolve the 
design to its final state, as shown in Figure 1. 
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Figure 1:  Direction of design and behavioral iteration 
on abstraction – scope plane 

 
 

CAUSES OF ITERATION 
It is necessary to identify the causes of iteration because 

while categorizing helps understand the phenomena it does 
little in directing action to improve the design process.  There 
are two approaches to consider: information characteristics and 
design process.  Certain characteristics of information have 
been found to influence iteration, such as new information that 
surfaces during design [4], stability or probability to change 
and information precision [1], information interdependency that 
results in interdependent tasks [9], information overload due to 
human bounded rationality or cognitive limitations that do not 
allow a designer to consider all design details at once [14], and 

finally information that is wrong due to design error.  The last 
characteristic is the only one triggering rework iteration.   

 
The causes for the other two types of iteration, design and 

behavioral, also have their roots in information characteristics.  
In particular both iteration types can be seen as strategies to 
deal with information overload.  The cognitive limitations that 
do not allow human designers to process all relevant 
information at all abstraction levels motivates design iteration – 
one cannot find out how to get to L.A. and to the address within 
it at the same time.  As Ullman (as quoted in [15]) indicates, it 
is necessary to develop solutions at different abstraction levels 
because the alternative solutions are too complex for human 
cognition to cope with at a detail level.  Designers often 
differentiate the design scope to make the design manageable 
by breaking it up into sub-problems and then performing 
behavioral iteration on each of them.  Problem and solution co-
evolution that triggers changes in the definition of the scope, 
and its corresponding behavioral iteration, seem to also derive 
from bounded rationality.  

 
The literature identifies information characteristics as 

either important to understand iteration or directly as its cause, 
but the design process can still influence iteration by shaping 
the nature of the information.  Some design processes might 
create an environment conducive to behavioral iteration 
because they impose a sequential decision-making approach, as 
in communicating information that is precise but unstable [3].  
Or, the design team may take a depth-first approach 
characterized by diving into the details of the design early in 
the process and resolving interface issues as they arise at the 
detailed level [15].  Behavioral iteration might also occur by 
not developing the system’s architecture before diving into 
details, or by planning design activities without taking into 
account information dependencies and interdependencies.   

 

MINIMIZING THE IMPACT OF ITERATION 
To counterbalance the effects of unstable information, 

Krishnan, Eppinger, and Whitney [16] define iterative 
overlapping as the problem of interchanging preliminary 
information to reduce lead time.  To perform interdependent 
tasks simultaneously, the authors suggest starting with value 
intervals (less precise, more stable information [1]) and 
iteratively narrow the range until reaching a final value.  
Krishnan et al. [3] present two characteristics of design 
parameters to be taken into account to reduce iteration: task and 
sequence invariance.  The objective is to iterate on parameters 
that are dependent on both the task performed and task 
sequence.   

 
Krishnan et al. [3] suggest an alternative countermeasure to 

iteration in dealing with loss of quality due to sequential 
decision-making, which is to decide in a way other than 
sequentially.  There are several process countermeasures that 
deal directly with the assumption of sequential decision-
making. 

 
Sobek, Ward, and Liker [2] argue that Toyota’s 

development system follows three principles that differentiate it 
from some of its competitors: they map the design space, 
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integrate by interception of feasible spaces, and establish 
feasibility before commitment.  Based on these principles, set-
based concurrent engineering (SBCE) breaks from the 
paradigm of deciding sequentially in a point-to-point solution 
search.  In SBCE, engineers refrain from making design 
decisions at a detail level before exploring alternatives at higher 
abstraction levels to determine whether the solutions are 
feasible when considered against downstream task constraints 
[19].  This evolution along abstraction levels to determine 
solution feasibility seems to indicate design iteration.  At the 
same time, SBCE also involves behavioral iteration in that the 
sets of alternatives allow for the simultaneous evaluation of a 
range of problem definitions, which with our framework we 
could potentially identify as sets of scopes.  The authors also 
indicate that a set-based approach reduces backtracking the 
design, i.e., rework iteration. 

 
Similarly, Ball, Evans, and Dennis [15] argue that taking a 

breadth-first approach, in which we perform all design activity 
at all abstraction levels (design iteration with behavioral 
iteration at each abstraction level), reduces rework iteration 
because it allows for a better exploration of interactions at 
higher abstraction levels (Anderson, as quoted in [15]).  The 
breadth-first approach performs behavioral iteration at different 
abstraction levels considering scope only as the subdivision of 
the design into modules.  Both SBCE and breadth-first 
approach involve the execution of behavioral and design 
iterations, avoiding sequential decision-making that leads to 
performing behavioral iterations sequentially. 

 
Another approach to minimizing the impact of iteration is 

to reduce information interdependence between modules at 
their interfaces.  The designer needs to perform system level 
activity in order to define the boundaries for the modules.  
Standardizing and making these interfaces explicit can aid in 
keeping the information transfer across boundaries low, as well 
as synchronizing or integrating the modules frequently [17], 
thus possibly extending the limits to concurrency as 
Hoedemaker et al. present [18].    

 
Denker et al. [9] present the use of design structures matrix 

to limit the number of iterative cycles through better task 
planning and sequencing.  Smith and Eppinger [8] extend the 
model to include strength of coupling, and present advice on 
how to better plan activity execution based on the information 
obtained.  In essence, the results indicate that designers should 
not execute a task until all the tasks that strongly influence it 
are finished, and should perform long tasks later so there is less 
chance of repeating them.  

 

FUTURE WORK 
The framework this paper presents helps address the 

question of need because it induces the designer or manager to 
think about the causes of iteration and how they affect 
progression on either scope exploration or abstraction level.  
The next step is to validate framework.  We have collected 
engineering design journals from students who keep them as 
part of their requirements for engineering capstone design 
courses [20].  Recognizing iteration types in the design journals 
and associating them to time spent on the design (as a measure 

of development time or cost) and on the quality of the outcome 
design might provide insight into the validity of the framework. 

 
In the context of our research effort, the proposed 

framework intends to help answer three related questions.  
First, what is the relationship between design process and 
project success as measured by achieving a quality outcome at 
a low cost?  The framework provides attributes for coding 
design journals and grouping them under similar process 
attribute profiles to then determine the association between 
design process, quality of the design, and hours spent on the 
project (a proxy for engineering development cost).  

 
Second, we hypothesize that accelerating the parallel 

definition of problem and solution spaces leads to a higher 
quality fit between problem and solution space. It seems that 
the complete definition of a problem entails the complete 
definition of the solution.  Furthermore, decisions made while 
designing often determine which problems are encountered in 
the future.  Thus the problem space changes as decisions are 
made.  If design decisions at least partially define the problem 
space, how we inform these decisions ultimately affects 
solution feasibility and complexity.  For example, converging 
on a solution without determining first the feasibility or 
complexity of alternative solutions may lead to selecting and 
pursuing an infeasible solution, or an unnecessarily complex 
one.  Because of the interdependence of problem and solution 
spaces, it seems that the focus should be on exploring design 
space as a combination of both spaces, similar to focusing on 
the coin rather than one of its sides, before committing to a 
single solution.   

 
After acknowledging the phenomenon of problem/solution 

co-evolution, the third question deals with how to accelerate it.  
In what ways do representations of ideas and information affect 
designers’ ability to explore the design space before 
committing to a solution?  Thorough exploration of the design 
space might better inform decisions and prevent executing 
behavioral iterations sequentially, which increases lead time.  
Exploration should occur at abstraction levels that provide 
enough ambiguity to evaluate feasibility of alternative solutions 
without expending resources to develop them completely.  As a 
tool for this exploration, representations might provide the 
ambiguity needed to design at different abstraction levels [21].   

CONCLUSION 
The extant literature on iteration provides insightful 

definitions and categorizations useful to better understanding 
the phenomenon.  However, the taxonomies do not seem very 
helpful in answering the question of whether iteration is 
absolutely necessary, and if so under what conditions and with 
what consequence.  In an effort to further explore iteration, this 
article presents a new classification to directly address this 
question that delineates rework from design and behavioral 
iteration types.  It also sheds new light on the causes of 
iteration, which potentially could result in guidelines to 
improve design practice.  

 
Rework iteration does not help the design evolve towards 

the intended goal because it focuses on recovering from 
previous design errors.  Design iteration focuses on the 
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evolution of the design through abstraction levels while 
behavioral iteration explores design space through alterations 
on scope.  A possible recommendation is avoiding the causes of 
rework iterations (identifying errors at source) and performing 
both design and behavioral iterations to evolve both in terms of 
design definition and breadth of design space exploration, but 
performing behavioral iterations in parallel to reduce design 
lead time. 
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