
 1 Copyright © 2003 by ASME

 Proceedings of DETC’03
ASME 2003 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
Chicago, Illinois USA, September 2-6, 2003

DETC2003/DTM-48662

ITERATION IN ENGINEERING DESIGN: INHERENT AND UNAVOIDABLE OR PRODUCT OF
CHOICES MADE?

Ramon Costa, Durward K. Sobek II
Montana State University

Mechanical & Industrial Engineering Dept.
Bozeman, Montana, 59717-3800

Tel: 406 994 7140
Fax: 406 994 6292

ramoncosta@montana.edu, dsobek@ie.montana.edu

ABSTRACT

Iteration in design has different meanings, ranging from
simple task repetition to heuristic reasoning processes.
Determining the need to iterate is important to improve the
design process on cost, time, and quality, but currently there is
no categorization of iterations conducive to this goal. After
exploring the possible causes and attempts to address them, we
propose to classify iterations as rework, design, or behavioral.
This framework suggests that design teams should try to
eliminate rework iterations, perform design iterations without
skipping abstraction levels, and do behavioral iterations in
parallel.

Keywords: Engineering Design, Iteration, New Product

Development, Design Process Attributes, Set-based Concurrent
Engineering.

INTRODUCTION

Iteration is a term frequently used to describe design. It is
commonly accepted that design is iterative in nature, but what
do we mean by iteration? And if we are not completely sure of
what iteration is, could we iterate more than needed? Can we
reduce engineering time by identifying unnecessary iterations
and eliminating their root cause, or by performing some
iterations in parallel rather than sequentially? Because
iterations shape the outcomes of design in terms of cost, time,
and quality, exploring the nature of iteration and identifying its
causes and proposed countermeasures may help improve design
methods. Terwiesch, Loch, and De Meyer [1] compared
iterative approaches to design with set-based concurrent
engineering approaches [2], and concluded that iterative
approaches tend to increase both development lead time and
cost (as tooling rework and engineering hours increase).
Krishnan, Eppinger, and Whitney [3] found that sequential

decision-making degrades solution quality because previous
decisions constrain future decisions and limit a person’s ability
to make a decision that meets criteria (in the extreme case
sequential decision-making might make it impossible to meet
the design criteria). To prevent degrading design quality,
Krishnan et al. propose to repeat activities or to decide non-
sequentially.

After reviewing definitions and causes of iteration from the

literature we conclude that a need exists for a new
categorization of iterations that helps answer the question of
need. Is all iteration inevitable, or can some of it be avoided
using different design strategies? Does the nature of different
instances of iteration suggest new and more effective
approaches to design problems? For this purpose, we
developed a framework that classifies iteration as rework,
design, or behavioral iteration.

In the pages that follow, we briefly summarize current

definitions of iteration extant in the design theory literature, and
then present our framework. Ensuing is a discussion of key
root causes of iteration, approaches to minimize the negative
impact of iteration, and how our proposed framework can
potentially address some the issues raised. We conclude with
hypotheses to be tested in future research.

DEFINITIONS OF ITERATION

A common approach in the literature is to consider
iteration as repeating design activity. For example, Ulrich and
Eppinger [4] formally define iteration as repeating an already
completed task to incorporate new information (such as
performing finite element analysis followed by design revision
and repeating the analysis incorporating feedback from the
revision). A second approach defines iterations more broadly

 2 Copyright © 2003 by ASME

as a heuristic reasoning process. Adams and Atman [5], for
example, describe a broad cycle of gathering information,
processing that information, identifying possible design
revisions, and executing those revisions in pursuit of a goal.
This perspective of iteration is less concerned with repeating
design activity, and more focused on the thought process that
justifies the need to perform the activity in the first place.
Further expanding this definition, Ullman, Wood, and Craig (as
cited in [6]), define iterations as the cognitive processes that the
designer uses when performing activities that change the design
state. Emphasis is on how the designer reasons about the
design as opposed to how she performs specific activities.
Thus definitions of iteration focus on designer behavior, and
range from the repetition of activities to more abstract patterns
of designer behavior.

Based on these definitions researchers have developed

taxonomies for iteration to help better understand the nature of
the phenomenon. For instance, in conjunction with the
designer behavioral definitions of iteration, Adams and Atman
[6] differentiate between diagnostic iterations that define and
evaluate design tasks, and transformative iterations that
synthesize new information. Other approaches classify
iterations based on information/task interdependence, such as
Smith and Eppinger’s sequential [7] versus parallel iterations
[8], or Denker, Steward, and Browning’s [9] interdependent
task cycles.

Applicability to the Question of Need
The definitions undoubtedly help understand different

aspects related to iteration. But, at the same time, they also
increase the meanings associated with the term and potentially
transform it into an umbrella for all necessary and unnecessary,
value-adding and wasteful, iterations. Further, because these
definitions and categories were attempting to answer other
questions, they complement the image of a particular
occurrence of iteration but do not seem conclusive on the need
to iterate.

A common implicit assumption in these definitions is that

iteration is unavoidable and should be planned into design
processes even though there are some drawbacks, such as
increased development time. Iteration, it seems, is seen as a
necessary evil in design and is not challenged. Such a
perspective may systematize inefficiencies associated with
unnecessary iterations.

An important assumption made in some definitions is

sequential decision-making [7-9]. For instance, parallel
iterations do not indicate simultaneous iterations, but rather
simultaneous execution of interdependent or dependent tasks
that influence each other’s inputs and thus generate task
repetition. Both the sequential and parallel categories assume
sequential decision-making. In dealing with information
interdependency, Denker et al. [9] propose breaking the
interdependency cycle by assuming a value for a parameter and
then sequentially repeating the dependent tasks alternately until
reaching a final value for the different task outputs. It is
important to note this since sequential decision-making is one
of the key inducers to iteration [3].

Proposed Framework
Our research on engineering design identifies design

process attributes along two dimensions, activities and
abstraction levels [10]. We categorize activities into four areas:
problem definition, idea generation, engineering analysis, and
design refinement. And we distinguish three levels of
abstraction, namely concept, system, and detail, to indicate the
progression of design work from ambiguous to specific, with a
middle step focused on system architecture. In addition to
activity and abstraction level, we’ve begun to also include a
third process attribute, scope. Within this framework, scope
refers to the (sub)problem at which a given design activity is
targeted (e.g. the designer might be working on concept design
for overall problem, or the concept design of a subsystem).
Table 1 summarizes activities, abstraction levels, and scope.

Table 1: Activity, Abstraction Level, and Scope

Activity
Problem Definition

Idea Generation
Engineering Analysis
Design Refinement

Abstraction Level

Concept
System
Detail

Scope

Defined by product architecture
and design requirements

To illustrate the three design process attributes, consider a

design team meeting to brainstorm ideas for the
communications network of a motor vehicle’s electrical system
(e.g., using a Controller Area Network or a Local Interconnect
Network). In our framework, we would classify the activity as
idea generation and the abstraction level as concept, and label
the scope as communications network.

Now, if we consider that repetition of an activity is the

basis for defining iteration, it is possible to develop three
iteration types based on whether the abstraction level or scope
change, as shown in Table 2.

When the designer repeats the activity at the same

abstraction level on the same object it is probably rework
iteration –the three process attributes remain the same when the
design task is repeated. The most common reason for repeating
an activity at the same scope and abstraction level is to correct
an error. For instance, when in 1996 the European Space
Agency reused software from Ariane 4 in the Ariane 5 project,
an undetected design error resulted in the loss of the rocket plus
the half a dozen commercial communications satellites it was
supposed to set in orbit [11]. The design work to replace the
rocket would be considered rework iteration because neither
scope (same mission) nor abstraction level (a working rocket)
has changed, yet the design task was repeated.

 3 Copyright © 2003 by ASME

Table 2: Iteration type defined by design process attributes compared to first task performance.

 Design Process Attribute

Iteration Type

Activity Abstraction
Level

Scope

Rework Repeats Repeats Repeats
Design Repeats Changes Repeats
Behavioral Repeats Repeats Changes

Rework iteration should change the design state in the
same manner in the second task execution as it did in the first,
so if a designer executes the activities correctly, there is no
need for this type of iteration. Rework iteration, then, should
receive the same treatment as errors that produce defects in a
manufacturing environment would receive: their causes should
be prevented or detected at the source so errors do not become
defects, or in this case iterations that cost money.

However, if the activity’s abstraction level is not the same

as in the first execution, then we consider this a sign of design
iteration, because as design activity progresses through
abstraction levels [5] the design evolves toward the desired
final state. As an analogy, consider the problem of finding
directions to a specific address in Los Angeles. Consulting a
map of the U.S. will provide information on L.A.’s location,
but is not very helpful for finding directions within the city.
Repeating the activity (looking for directions) at a lower
abstraction level, or from a lower height for this analogy, will
provide different information useful to find the address of
interest. An L.A. street map will ultimately help reach the
address, but it will be of no use if we do not know where L.A.
is. Similarly, design iteration repeats activities to generate
meaningful information at different abstraction levels. Design
iteration indicates the designer is progressing through different
abstraction levels, defining and refining a solution while
moving from the initial concepts to a detailed final design. The
activities repeat on the same scope, but task content differs
significantly as it carries the solution to a different resolution
level.

Finally, behavioral iteration means proceeding through the

same activity at the same abstraction level, but applied to a
different scope. In other words, the behavior repeats but on a
different (sub)problem. Designers often divide a problem into
pieces and proceed with a similar pattern of design activity
performed on each of the subdivisions as object. For example,
if a team works on the design of a vehicle’s power train system
while a different team develops the air conditioning system, the
teams may perform similar design activities but on different
scopes.

To illustrate the potential usefulness of this framework,

consider a common occurrence in product development:
changing customer requirements [12]. Product developers
often assume that customers know exactly what they need,
which creates the notion that design is searching for the right
solution for the perceived customer need. Though changing

requirements is quite common, planners often do not consider it
a likely event and therefore do not plan for it, so that when
product specifications change, customers are blamed for
triggering rework. But the proposed framework helps us think
about it differently.

Imagine a designer presenting the customer with a detailed

design of a multipurpose knife that satisfies the customer’s
need as the designer perceived it, with the unstated but very
real hope that the customer will accept it as-is. After reviewing
the design, the customer points out that, against requirement,
the blades bind when more than one tool is already unfolded.
The observation results in a rework iteration to address the lack
of compliance with requirements. In contrast, consider the
same situation (designer presenting the customer with the
newly designed multipurpose knife) but now, after seeing what
a possible solution looks like, the customer decides that so
much functionality is confusing and sends the designer back
with a shorter list of functional requirements and an additional
requirement for a more user-friendly folding mechanism to
prevent injury when transitioning between tools. The designer
goes back to work thinking the customer holds back
information just to make life miserable, without realizing that
maybe the customer did not understand the implications of the
design requirements until exposed to a possible solution. The
designer has to iterate but under different circumstances: in the
second scenario the scope has changed and triggered a
behavioral iteration.

The process of generating solutions and sharing them with

the customers can trigger the redefinition of the problem [13],
which will drive the designer to accommodate the new
information by repeating the same tasks at their corresponding
abstraction level on the modified problem definition. It is
important to differentiate between the two instances of iteration
because we have no control over the customer changing
requirements upon gaining new information (i.e., about the
solution space), but we can avoid faults in our own design
process. Failure to include information that constrains the
design and is available to the designer does not trigger
behavioral iteration because it is neither a subdivision of the
design space nor a requirement change. For example, ignoring
restrictions on materials use (e.g., lead or asbestos) and having
to repeat design tasks to include this information falls in the
category of rework iteration, not of behavioral iteration. This
differentiation is often used in product development to define
responsibility for the increase in development or product costs
due to design changes – negligence comes at a price.

 4 Copyright © 2003 by ASME

The proposed framework helps identify an alternative

approach to working with customers. Instead of presenting a
single, near-complete design, showing the customer alternative
designs at a higher abstraction level earlier in the process might
help accelerate problem and solution definition, with less
disruption. This approach incorporates design iteration
combined with parallel execution of behavioral iteration at a
given abstraction level.

This classification of iteration also helps identify necessary

iterations in design. Based on the assumption of repeating an
activity, rework iteration does not move the design to an
increased state of completion because there is no evolution on
either abstraction level or scope, and thus might not be
necessary. Design iteration represents design evolution
towards completion through abstraction level, while behavioral
iteration portrays this evolution across scope. Design and
behavioral iteration are performed in tandem to evolve the
design to its final state, as shown in Figure 1.

SCOPE

A
B

S
TR

A
C

TI
O

N

IN
FEASIBLE D

UE TO BOUNDED R
ATIO

NALIT
Y BELO

W THIS
 LI

NE

SMALLER LARGER

D
E

TA
IL

C
O

N
C

E
P

T

BEHAVIORAL ITERATION

D
E

S
IG

N
 IT

E
R

A
TI

O
N

Figure 1: Direction of design and behavioral iteration
on abstraction – scope plane

CAUSES OF ITERATION
It is necessary to identify the causes of iteration because

while categorizing helps understand the phenomena it does
little in directing action to improve the design process. There
are two approaches to consider: information characteristics and
design process. Certain characteristics of information have
been found to influence iteration, such as new information that
surfaces during design [4], stability or probability to change
and information precision [1], information interdependency that
results in interdependent tasks [9], information overload due to
human bounded rationality or cognitive limitations that do not
allow a designer to consider all design details at once [14], and

finally information that is wrong due to design error. The last
characteristic is the only one triggering rework iteration.

The causes for the other two types of iteration, design and

behavioral, also have their roots in information characteristics.
In particular both iteration types can be seen as strategies to
deal with information overload. The cognitive limitations that
do not allow human designers to process all relevant
information at all abstraction levels motivates design iteration –
one cannot find out how to get to L.A. and to the address within
it at the same time. As Ullman (as quoted in [15]) indicates, it
is necessary to develop solutions at different abstraction levels
because the alternative solutions are too complex for human
cognition to cope with at a detail level. Designers often
differentiate the design scope to make the design manageable
by breaking it up into sub-problems and then performing
behavioral iteration on each of them. Problem and solution co-
evolution that triggers changes in the definition of the scope,
and its corresponding behavioral iteration, seem to also derive
from bounded rationality.

The literature identifies information characteristics as

either important to understand iteration or directly as its cause,
but the design process can still influence iteration by shaping
the nature of the information. Some design processes might
create an environment conducive to behavioral iteration
because they impose a sequential decision-making approach, as
in communicating information that is precise but unstable [3].
Or, the design team may take a depth-first approach
characterized by diving into the details of the design early in
the process and resolving interface issues as they arise at the
detailed level [15]. Behavioral iteration might also occur by
not developing the system’s architecture before diving into
details, or by planning design activities without taking into
account information dependencies and interdependencies.

MINIMIZING THE IMPACT OF ITERATION
To counterbalance the effects of unstable information,

Krishnan, Eppinger, and Whitney [16] define iterative
overlapping as the problem of interchanging preliminary
information to reduce lead time. To perform interdependent
tasks simultaneously, the authors suggest starting with value
intervals (less precise, more stable information [1]) and
iteratively narrow the range until reaching a final value.
Krishnan et al. [3] present two characteristics of design
parameters to be taken into account to reduce iteration: task and
sequence invariance. The objective is to iterate on parameters
that are dependent on both the task performed and task
sequence.

Krishnan et al. [3] suggest an alternative countermeasure to

iteration in dealing with loss of quality due to sequential
decision-making, which is to decide in a way other than
sequentially. There are several process countermeasures that
deal directly with the assumption of sequential decision-
making.

Sobek, Ward, and Liker [2] argue that Toyota’s

development system follows three principles that differentiate it
from some of its competitors: they map the design space,

 5 Copyright © 2003 by ASME

integrate by interception of feasible spaces, and establish
feasibility before commitment. Based on these principles, set-
based concurrent engineering (SBCE) breaks from the
paradigm of deciding sequentially in a point-to-point solution
search. In SBCE, engineers refrain from making design
decisions at a detail level before exploring alternatives at higher
abstraction levels to determine whether the solutions are
feasible when considered against downstream task constraints
[19]. This evolution along abstraction levels to determine
solution feasibility seems to indicate design iteration. At the
same time, SBCE also involves behavioral iteration in that the
sets of alternatives allow for the simultaneous evaluation of a
range of problem definitions, which with our framework we
could potentially identify as sets of scopes. The authors also
indicate that a set-based approach reduces backtracking the
design, i.e., rework iteration.

Similarly, Ball, Evans, and Dennis [15] argue that taking a

breadth-first approach, in which we perform all design activity
at all abstraction levels (design iteration with behavioral
iteration at each abstraction level), reduces rework iteration
because it allows for a better exploration of interactions at
higher abstraction levels (Anderson, as quoted in [15]). The
breadth-first approach performs behavioral iteration at different
abstraction levels considering scope only as the subdivision of
the design into modules. Both SBCE and breadth-first
approach involve the execution of behavioral and design
iterations, avoiding sequential decision-making that leads to
performing behavioral iterations sequentially.

Another approach to minimizing the impact of iteration is

to reduce information interdependence between modules at
their interfaces. The designer needs to perform system level
activity in order to define the boundaries for the modules.
Standardizing and making these interfaces explicit can aid in
keeping the information transfer across boundaries low, as well
as synchronizing or integrating the modules frequently [17],
thus possibly extending the limits to concurrency as
Hoedemaker et al. present [18].

Denker et al. [9] present the use of design structures matrix

to limit the number of iterative cycles through better task
planning and sequencing. Smith and Eppinger [8] extend the
model to include strength of coupling, and present advice on
how to better plan activity execution based on the information
obtained. In essence, the results indicate that designers should
not execute a task until all the tasks that strongly influence it
are finished, and should perform long tasks later so there is less
chance of repeating them.

FUTURE WORK
The framework this paper presents helps address the

question of need because it induces the designer or manager to
think about the causes of iteration and how they affect
progression on either scope exploration or abstraction level.
The next step is to validate framework. We have collected
engineering design journals from students who keep them as
part of their requirements for engineering capstone design
courses [20]. Recognizing iteration types in the design journals
and associating them to time spent on the design (as a measure

of development time or cost) and on the quality of the outcome
design might provide insight into the validity of the framework.

In the context of our research effort, the proposed

framework intends to help answer three related questions.
First, what is the relationship between design process and
project success as measured by achieving a quality outcome at
a low cost? The framework provides attributes for coding
design journals and grouping them under similar process
attribute profiles to then determine the association between
design process, quality of the design, and hours spent on the
project (a proxy for engineering development cost).

Second, we hypothesize that accelerating the parallel

definition of problem and solution spaces leads to a higher
quality fit between problem and solution space. It seems that
the complete definition of a problem entails the complete
definition of the solution. Furthermore, decisions made while
designing often determine which problems are encountered in
the future. Thus the problem space changes as decisions are
made. If design decisions at least partially define the problem
space, how we inform these decisions ultimately affects
solution feasibility and complexity. For example, converging
on a solution without determining first the feasibility or
complexity of alternative solutions may lead to selecting and
pursuing an infeasible solution, or an unnecessarily complex
one. Because of the interdependence of problem and solution
spaces, it seems that the focus should be on exploring design
space as a combination of both spaces, similar to focusing on
the coin rather than one of its sides, before committing to a
single solution.

After acknowledging the phenomenon of problem/solution

co-evolution, the third question deals with how to accelerate it.
In what ways do representations of ideas and information affect
designers’ ability to explore the design space before
committing to a solution? Thorough exploration of the design
space might better inform decisions and prevent executing
behavioral iterations sequentially, which increases lead time.
Exploration should occur at abstraction levels that provide
enough ambiguity to evaluate feasibility of alternative solutions
without expending resources to develop them completely. As a
tool for this exploration, representations might provide the
ambiguity needed to design at different abstraction levels [21].

CONCLUSION
The extant literature on iteration provides insightful

definitions and categorizations useful to better understanding
the phenomenon. However, the taxonomies do not seem very
helpful in answering the question of whether iteration is
absolutely necessary, and if so under what conditions and with
what consequence. In an effort to further explore iteration, this
article presents a new classification to directly address this
question that delineates rework from design and behavioral
iteration types. It also sheds new light on the causes of
iteration, which potentially could result in guidelines to
improve design practice.

Rework iteration does not help the design evolve towards

the intended goal because it focuses on recovering from
previous design errors. Design iteration focuses on the

 6 Copyright © 2003 by ASME

evolution of the design through abstraction levels while
behavioral iteration explores design space through alterations
on scope. A possible recommendation is avoiding the causes of
rework iterations (identifying errors at source) and performing
both design and behavioral iterations to evolve both in terms of
design definition and breadth of design space exploration, but
performing behavioral iterations in parallel to reduce design
lead time.

ACKNOWLEDGMENTS
The National Science Foundation grant entitled "CAREER:

The Role of Representation in the Synthesis Process" (NSF
Award # REC-9984484) provides funding for this research.

REFERENCES

[1] Terwiesch, C. Loch, C.H. De Meyer, A. 2002. Exchanging
Preliminary Information in Concurrent Engineering:
Alternative Coordination Strategies. Organization Science.
July-August, 13(4): 402-419

[2] Sobek II, D.K., Ward, A. Liker, J.K. 1999. Toyota’s
Principles of Set-Based Concurrent Engineering. Sloan
Management Review, Winter, 40(2): 67-82.

[3] Krishnan, V. Eppinger, S.D. Whitney, D.E. 1997.
Simplifying Iterations in Cross-Functional Design Decision
Making. Journal of Mechanical Design. December. 119: 485-
493

[4] Ulrich, K. Eppinger, S. 2000. Product Design and
Development. 2nd Ed. Irwin McGraw-Hill, Boston.

[5] Adams, R.S. Atman, C.J. 1999. Cognitive Processes in
Iterative Design Behavior. Proceedings of the 29th
ASEE/IEEE Frontiers in Education Conference, Session 11a6.
November 10-13, San Juan de Puerto Rico.

[6] Adams, R.S. Atman, C.J. 2000. Characterizing
Engineering Student Design Processes – An Illustration of
Iteration. Proceedings of the ASEE Annual Conference,
Session 2330. June 18-21, St. Louis, MO.

[7] Smith, R.P. Eppinger, S.D. 1997a. A Predictive Model of
Sequential Iteration in Engineering Design. Management
Science. August. 43(8): 1104-1120

[8] Smith, R.P. Eppinger, S.D. 1997b. Identifying Controlling
Features of Engineering Design Iteration. Management
Science. March. 43(3): 276-293

[9] Denker, S. Steward, D.V. Browning, T.R. 2001. Planning
Concurrency and Managing Iterations in Projects. Project
Management Journal. September. 32(3): 31-38

[10] Sobek II, D.K. 2002. Preliminary Findings from Coding
Student Design Journals. Proceedings of the 2002 American
Society for Engineering Education Annual Conference.
Montreal, Canada.

[11] Press release from the European Space Agency’s Inquiry
Board at ESA’s official web site:
http://www.esa.int/export/esaLA/Pr_33_1996_p_EN.html. Also
find in http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf the
official report.

[12] Karlsson, C. Nellore, R. Soderquist, K. 1998. Black Box
Engineering: Redefining the Role of Product Specifications.
Journal of Product Innovation Management 15: 534-549

[13] Busby, J.A. Lloyd P.A. 1999. Influences on Solution
Search Processes in Design Organizations. Research in
Engineering Design. 11: 158-171

[14] March, J.G. Simon, H.A. 1958. Organizations. New York,
John Wiley

[15] Ball, L.J. Evans J. St. B. T. Dennis, I. 1994. Cognitive
processes in engineering design: a longitudinal study.
Ergonomics. 37(11): 1753-1786.

[16] Krishnan, V. Eppinger, S.D. Whitney, D.E. 1995.
Accelerating Product Development by the Exchange of
Preliminary Product Design Information. Journal of Mechanical
Design. December. 117: 491-498

[17] Cusumano, M. 1997. How Microsoft Makes Large Teams
Work Like Small Teams. Sloan Management Review. Fall, 9-
20.

[18] Hoedemaker, G.M. Blackburn, J.D. Van Wassenhove, L.N.
1995. Limits to concurrency. INSEAD R&D Working Papers.
January, 95(27): 1-21

[19] Ward, A. Liker, J.K. Cristiano, J.J. Sobek II, D.K. 1995.
The Second Toyota Paradox: How Delaying Decisions Can
Make Better Cars Faster. Sloan Management Review, Spring,
36: 43-61.

[20] Sobek II, D.K. 2002. Use of Journals to Evaluate Student
Design Process. Proceedings of the 2002 American Society for
Engineering Education Annual Conference. Montreal, Canada.

[21] Busby, J.S. 2001. Practices in Design Concept Selection as
Distributed Cognition. Cognition, Technology & Work. 3:140-
149

