ENGR 310

Lecture 7 4 Feb 2008

Announcements

• REMINDER:

– No lecture Wed;

Recitations instead.

• TEAM NOTEBOOKS:

- Use them to keep yourselves organized.

– Use extra tabs is you see fit.

"A problem well-stated is a problem half-solved."

- Charles Kettering

ENGINEERING

client's statements

Gather information to develop a statement of client wants in engineering terms:

- 1. Clarify objectives
- 2. Establish user requirements
- 3. Identify Constraints
- 4. Define desired functions

A College of ENGINEERING

Last Time

Clarify the design problem through:

Observation Interviews Researching existing solutions

Comprehensive list of desired characteristics

College of ENGINEERING

By Asking...

- What features/attributes would client like the system to have?
- What should the system do?
- Are other solutions currently available?

Long list of characteristics

"Safe Ladder" Attributes

With partner, review list of attributes provided. Are all items comparable? If no, identify differences. (3 min.)

Most initial attribute lists are a mix of:

- Objectives
- Constraints
- Functions
- Means (or implementations)

Objectives

What the design strives to achieve.

- "Being" rather than "doing"
- Often more/less is better
- Express preference among feasible ideas

Ex.: convey material rapidly, easily reconfigurable, inexpensive, low maintenance

College of ENGINEERING

Constraints

Restrictions on behavior or performance.

- Clearly binary
- Define feasibility

Ex.: hold 200 lb. static load, fit in 8' x 10' footprint, weigh no more than 45 lbs.

College of ENGINEERING

Functions

Things the designed system must "do."

Ex.: Keep material off ground, convey material without manual intervention, preserve FIFO queue, feed material to next operation

^{College of} ENGINEERING

Means

Ways of executing functionssolution-dependent

Ex.: roller conveyor, gravity chute

Exercise

With a neighbor, divide the "Safe Ladder" attribute list into:

- Objectives
- Constraints
- Functions
- Means

College of ENGINEERING

Objective Tree

Helpful to organize objectives into a hierarchy.

Add Constraints (but differentiate). No functions or means!

THE UNIVERSITI

With your neighbor, create an objective tree for the "safe ladder."

