ENGR 310

Lecture 11 22 Feb 2008

Texas A&M student project: The Creative Process

http://www.youtube.com/watch?v=JiM2j0z72GU

Announcements

- Assignment 4 due the week after next
- Journals
 - integrate them into your work
 - review the instructions
 - improve

problem statement

Conceptual Design

design specs

conceptual design alternatives

Generate concepts of candidate designs:

- 5. Establish design specifications
- 6. Generate ideas

College of ENGINEERING

Questions

- What is creativity?
- Are some people born naturally creative?
- Should the rest of us be resigned to the mundane?
- Where do great ideas come from?
- What keeps us from being more creative?

College of ENGINEERING

Draw four straight lines that pass through all the dots, without picking up your pencil.

Why is this hard?

College of ENGINEERING

Mountains & Minds

Mental Blocks

Did you limit yourself unnecessarily?

Did you limit yourself unnecessarily?

Common Mental Blocks

- Perceptual: define problem too narrowly
- Fixation: can't get past one idea
- Emotional: anxiety, fear of failure, frustration
- Cultural: social patterns that blind us to possible solutions
- Environmental: distractions, poor atmosphere

College of ENGINEERING

Conceptual Blockbusting

- First step is to recognize them.
- Second, use structured techniques to break out of your current thinking pattern

Idealistic Learning Curve

Realistic Learning Curve

Where do ideas come from?

Stanford Professor on Creativity

http://www.youtube.com/watch?v=yPLxf2ynmMU

Where do new ideas come from?

- Adaptations of existing ideas to new contexts
 - Generalize the problem, look for others' solutions
- Combining existing ideas
- Analogy

College of ENGINEERING

Technique 1: Brainstorming

- List all ideas
 - individually first, then as a group
- No criticism or evaluation!
 - encourage crazy, outlandish ideas
 - have fun!!

Build on Ideas by Asking...

- Adapt?
- Modify?
- Magnify?
- Minimize?
- Substitute?
- Rearrange?
- Combine?

College of ENGINEERING

Lateral Thinking

Stimulate thinking by picking a random word, and free associate.

Technique 2: Morphological Chart

	1	2	3	4
Function A				
Function B				
Function C				
Etc.				
MONTANA STATE UNIVERSITY	College of ENGINEERING		Mou	ntains & Mind

Example

	1	2	3	4
Accept Beans	Lid	Door	Gravity chute	
Contain Beans	Canister	Bag	Vacuum	
Grind Beans	Rotating blade	Mortar & pestle	Opposing discs	
Etc.	College of			

Example

Accept Beans Lid Door Gravity chute	
Contain Beans Canister Bag Vacuum	
Grind Beans Rotating blade Pestle Opposing discs	
Etc.	

Example

	1	2	3	4
Accept Beans	Lid	Door	Gravity chute	
Contain Beans	Canister	Bag	Vacuum	
Grind Beans	Rotating blade	Mortar & pestle	Opposing discs	
Etc.				
MONTANA STATE UNIVERSITY	College of ENGINEERING		Mou	ntains & Mind

Exercise

- In your teams, identify the 5 or so primary functions of your design problem.
- For each function, think of 4 or more ways that function could be accomplished.
 – Ignore all other functions!!
- What combinations of ideas look interesting?

College of ENGINEERING