

ENGR 310

Lecture 16 17 Mar 2008

College of ENGINEERING

Announcements

- No class Friday.
- Recitations meet this week
- Assignment 5 due next week
 - convergence process
 - system architecture plan

Review: What's the problem with this approach?

generate concepts

_pick one

`synthesize → analyze improve

Review: Controlled Convergence Approach

generate concepts

Look at sets of design ideas...

...and eliminate the worst. (rather than pick the best)

College of ENGINEERING

Design Convergence...

...isn't usually smooth.

College of ENGINEERING

Example

Design Thinking class at Stanford http://www.youtube.com/watch?v=JZH70qhmEso

(already watched first 3:45)

Recommended Design Approach

- 1. Lots of ideas!
- 2. Narrow through elimination, not selection.
 - Pugh evaluation matrix
- 3. Eliminate only when you have enough knowledge to do so.
 - additional research
 - engineering analysis
 - system architecture design

Recommended Design Approach

- 4. Combine and revise ideas to generate improved designs.
- 5. Plan system architecture before doing detailed design work.
- 6. Establish feasibility before commitment.

Why do design projects fail?

- 1. Misunderstanding what the customer needs.
- 2. Committing to a solution too early.
- 3. Lack of teamwork: esp. communication & conflict resolution, and across disciplines.
- 4. Poor system architecture, especially interfaces.
- 5. Poor planning.

Why do design projects fail?

- 1. Misunderstanding what the customer needs.
- 2. Committing to a solution too early.
- 3. Lack of teamwork: esp. communication & conflict resolution, and across disciplines.
- 4. Poor system architecture, especially interfaces.
- 5. Poor planning.

specs + design alt's

system architecture

System-level

Design

Identify principle attributes of leading design concepts:

- 7. Establish system architecture
- 8. Model and evaluate alternatives
- 9. Converge to best alternative

College of ENGINEERING

System-level Design

- Identify subsystems of the concept
- Investigate alternative configurations
- Think through interface issues
 - between subsystems
 - with user
 - with environment

System-level Design, cont.

- Choose configuration based on the best interfaces
- Plan the system architecture
 - subsystem configuration / layout
 - interface design / specifications (detailed!)

http://www.youtube.com/watch?v=8J6gv0vtdVk

Block Diagram

Identifies key subsystems and interfaces

System Architecture Plan

Adds interface details to block diagram

System Architecture Plan

Exercise

In your teams, for one of your top concept alternatives:

- Create a block diagram
- Brainstorm the best way to interface:
 - between subsystems
 - with users
 - with environment

College of ENGINEERING