ENGR 310

Project Planning Lecture 18

28 Mar 2008

College of ENGINEERING

Elements of the Project Plan

- Cost
 - Development Cost
- Performance / Scope
 - Functionality
 - Size of the project
- Schedule
 - Time to complete the project

The Project Triangle

Schedule

Cost

Performance

College of ENGINEERING

The Project Triangle

- Changing one element effects the others
- Most projects have one fixed side
- You cannot hold all three sides fixed
- Goal optimize the triangle by looking for trade offs

Project Optimization Graph

Project Planning Approaches

Dictorial

Schedule / Cost / Performance - Dictated from above

- No Buy In from the team
- Tends to fail almost immediately
- Expectations don't match reality

Project Planning Approaches

- Group Consensus
 Schedule / Cost / Performance

 Defined by group think
 - Good Team Buy In
 - Poor Management Buy In
 - Schedules tend to be long and expensive
 - Projects either get cancelled or go Dictorial

Project Planning Approaches

• Diplomatic

Only most important aspects of project set by management

Team optimizes Schedule / Cost / Performance to fit in development window

- Good Team and Management Buy In
- Establishes clear expectations
- Optimizes for best overall result

College of ENGINEERING

Project Planning Approach

- The best plan is one created by the team
 - Managerial input
 - Technical input
 - Market Forces
 - Financial constraints
 - Manufacturing requirements

Project Planning Approach

- Project Manager Sets Multiple "Hard" Milestones
- Defined point in the project
 - Meaningful Stage / Outcome
 - Clearly defined deliverables
 - Clearly defined responsibility
 - Immovable date
 - Review attended by management

Project Planning Approach

"Once your plan is complete the only thing you can be sure of is the plan you created is The One Thing that won't happen."

- Review Often
- Modify as needed

College of ENGINEERING

Negative Effects on Schedule

- Specification Changes
- Faulty Estimates
 - Overly optimistic or pessimistic
 - Unscheduled demands
 - External delays
- Changing Resources

 Loss of people, money, tools
- Technical Issues

College of ENGINEERING

1. Develop Work Breakdown Schedule

- Outline of tasks
- Start with major Task Elements
- Add detailed tasks
 - Do not get too detailed
 - Do not get to broad

Work Breakdown Structure

1.0 Define Specifications

1.1 Power System

1.1.1 Battery Life

1.1.2 Measure Current Draw

1.2 Display System

2.0 Order Materials

2.1 Prototype

2.2 Final Assemblies

3.0 Build Prototype

3.1 Complete drawings

Building the Plan GANTT Chart

2. Define length of each task

3. Define Dependencies

Linking Tasks

Relationship of one task to another

- Finish to Start
- Start to Start
- Finish to Finish
- Start to Finish
- Lead and Lag times

College of ENGINEERING

GANTT Chart - Finish to Start

Date

Task #1

Task #2

- Most Common Dependency
- One task must finish before another can start

GANTT Chart - Start to Start

Date

Task #1

Task #2

• Task #2 cannot start until Task #1 Starts

Leveling the concrete cannot start until you start to pour the foundation.

GANTT Chart - Finish to Finish

Date Task #1 Task #2

Task #2 cannot finish until Task #1 finishes

Inspect house wiring cannot finish until all of the wiring is completed.

College of ENGINEERING

GANTT Chart - Start to Finish

Date

Task #1

Task #2

Task #1 must start before you finish Task #2

Used for Just in Time Scheduling

College of ENGINEERING

Finish to Start (with Lag)

Date

Task #1

Task #2

Lag shows delays in projects that do not use resources

Waiting for supplies to arrive.

College of ENGINEERING

LEAD allows you to show dependency while overlapping tasks

4. Assign Resources

- People, Facilities, Tools
- Every task needs a person assigned

5. Review for Over Allocation

• One person doing multiple things at the same time

- 1. Develop Work Breakdown Schedule
- 2. Define length for each task
- 3. Define Dependencies
- 4. Assign Resources
- 5. Review for Over Allocation

Update the Plan

- Review Often
- Adjust Resources as needed
- Insert Tasks as needed
- Track Progress

Going Forward with your TA

- Build your plans
- Define scope clearly
- Show tasks to solve Risk elements
- Define Hard Milestones
- Show timeline and resources
- Update the plans regularly

College of ENGINEERING

