ENGR 310

Lecture 20 4 April 2008

Exam: April 7

- Closed book, closed journal, closed neighbor, open mind
- 4" x 6" reference card allowed
- Timed
- Short Answer questions
- Covers the course learning objectives
 - www.coe.montana.edu/engr310

What is Engineering Design?

"...systematic, intelligent generation and evaluation of specifications for artifacts whose form and function achieve stated objectives and satisfy constraints."

-Dym & Little, 2004

College of ENGINEERING

Design in Engineering is:

- Ill-structured \rightarrow cannot apply a formula
- Open-ended \rightarrow >1 solution possible
- Complex
- Must integrate many pieces.
- Must integrate with environment

client's statements

Gather information to develop a statement of client wants in engineering terms:

- 1. Clarify objectives
- 2. Establish user requirements
- 3. Identify Constraints
- 4. Define desired functions

A College of ENGINEERING

Who Sets Objectives and Constraints?

Clarify the Design Problem

Observation Interviews Researching existing solutions

Comprehensive list of desired characteristics

College of ENGINEERING

Most initial attribute lists are a mix of:

- Objectives
- Constraints
- Functions
- Means (or implementations)

Objective Tree

Helpful to organize objectives into a hierarchy.

Add Constraints (but differentiate). No functions or means!

THE UNIVERSITI

Functions & Specifications

Functions = what system must do to achieve objectives

Functional Specifications = how well system must do it

Also called "performance specifications" or "functional requirements"

College of ENGINEERING

Black Box Approach

Divide Functions into Subfunctions

problem statement

Conceptual Design

design specs

conceptual design alternatives

Generate concepts of candidate designs:

- 5. Establish design specifications
- 6. Generate ideas

College of ENGINEERING

Functional Specifications

How well must the design accomplish the functions?

- Measurable
- Solution neutral
- Things client/users care about

College of ENGINEERING

"Zone of Interest"

Common Mental Blocks

- Perceptual: define problem too narrowly
- Fixation: can't get past one idea
- Emotional: anxiety, fear of failure, frustration
- Cultural: social patterns that blind us to possible solutions
- Environmental: distractions, poor atmosphere

College of ENGINEERING

Conceptual Blockbusting

- First step is to recognize them.
- Second, use structured techniques to break out of your current thinking pattern

Where do new ideas come from?

- Adaptations of existing ideas to new contexts
 - Generalize the problem, look for others' solutions
- Combining existing ideas
- Analogy

College of ENGINEERING

Technique 1: Brainstorming

- List all ideas
 - individually first, then as a group
- No criticism or evaluation!
 - encourage crazy, outlandish ideas
 - have fun!!

Technique 2: Morphological Chart

	1	2	3	4
Accept Beans	Lid	Door	Gravity chute	
Contain Beans	Canister	Bag	Vacuum	
Grind Beans	Rotating blade	Mortar & pestle	Opposing discs	
Etc.				

ENGINEERING

Technique 3: Group Brain-writing

- 1. Decide on problem to be addressed
- 2. Silently, each person generates 3 ideas.
 - 1. Sketches + labels (minimum of words)
- 3. Rotate ideas to person on the right.
- 4. Build on the ideas just passed to you
 - 1. for a set period of time.
- 5. Repeat until ideas reach originator.
- 6. Review, discuss, evaluate, combine.
 - 1. post on the wall
- 7. Choose a subset to carry forward.

"Pick Best and Iterate" Approach

"Controlled Convergence" Approach

generate concepts

Look at sets of design ideas...

...and eliminate the worst. (rather than pick the best)

College of ENGINEERING

Design Convergence...

...isn't usually smooth.

College of ENGINEERING

Evaluation Matrix

specs + design alt's

system architecture

System-level

Design

Identify principle attributes of leading design concepts:

- 7. Establish system architecture
- 8. Model and evaluate alternatives
- 9. Converge to best alternative

College of ENGINEERING

System-level Design

- Identify subsystems of the concept
- Investigate alternative configurations
- Think through interface issues, in detail
 - between subsystems
 - with user
 - with environment
- Choose configuration based on the best interfaces

College of ENGINEERING

Block Diagram

Identifies key subsystems and interfaces

System Architecture Plan

Adds interface details to block diagram

system architecture

Detail Design

proposed fabrication specifications

Refine and add detail to final design:
10. Create detailed drawings, etc.
11. Optimize through analysis

12. Review design.

College of ENGINEERING

proposed fabrication specifications

Design Communication

Document fabrication specifications and justification

final fabrication specifications

client report

College of ENGINEERING

The Process is Not Linear!

- Phases tend to overlap in practice
- Applications repeat on different:
 - subproblems
 - levels of abstraction
- Problem definition tasks appear in some form in each phase

A Project Management Framework

College of ENGINEERING

The Project Triangle

Schedule

Cost

Performance

College of ENGINEERING

Project Risk Chart

College of ENGINEERING

Project Planning Approach

 Project Manager Sets Multiple "Hard" Milestones

Building the Plan

- Develop work breakdown structure (WBS)
- 2. Define length for each task
- 3. Define dependencies
- 4. Assign resources
- 5. Review for over -allocation

Stages of Team Development

Feedback: An essential element of design reviews

PAUSE Principle

- **Prepare** get the facts, generate options
- Affirm the relationship
- **Understand** the others' issues
 - mutually beneficial options
- Evaluate Have we satisfied the major concerns?

Seek

College of ENGINEERING

Conflict Management Strategies

Keys to Effective Meetings

- Prepare ahead of time.
- Have a written agenda.
- Agree on meeting's objectives.
- Start on time.
- Document decisions made.
- Don't leave without an action plan.
- Establish ground rules.
- Appoint a facilitator.

College of ENGINEERING

Five Sets of Teamwork Skills

- 1. Interpersonal communication and collaboration
- 2. Understanding & communicating trade-offs and empathy for diverse perspectives
- 3. Planning/organization and accountability/reliability
- 4. Common goals/shared outcomes and conflict management, resolution
- 5. Willingness to learn and inclusive decisionmaking

Why do design projects fail?

- 1. Misunderstanding what the customer needs.
- 2. Committing to a solution too early.
- 3. Lack of teamwork: esp. communication & conflict resolution across disciplines.
- 4. Poor system architecture, especially interfaces.
- 5. Poor planning.

College of ENGINEERING

Good Luck on Monday!

