ENGR 310

Lecture 20 4 April 2008

Exam: April 7

- Closed book, closed journal, closed neighbor, open mind
- 4" x 6" reference card allowed
- Timed
- · Short Answer questions
- Covers the course learning objectives
 - www.coe.montana.edu/engr310

What is Engineering Design?

"...systematic, intelligent generation and evaluation of specifications for artifacts whose form and function achieve stated objectives and satisfy constraints."

-Dym & Little, 2004

Design in Engineering is:

- Ill-structured → cannot apply a formula
- Open-ended → >1 solution possible
- Complex
- · Must integrate many pieces.
- Must integrate with environment

Observation Interviews Researching existing solutions Comprehensive list of desired characteristics

Most initial attribute lists are a mix of:

- · Objectives
- · Constraints
- Functions
- Means (or implementations)

Functions & Specifications

Functions = what system must do to achieve objectives

Functional Specifications = how well system must do it

Also called "performance specifications" or "functional requirements"

Functional Specifications

How well must the design accomplish the functions?

- Measurable
- Solution neutral
- Things client/users care about

Common Mental Blocks

- · Perceptual: define problem too narrowly
- Fixation: can't get past one idea
- Emotional: anxiety, fear of failure, frustration
- Cultural: social patterns that blind us to possible solutions
- Environmental: distractions, poor atmosphere

Conceptual Blockbusting

- · First step is to recognize them.
- Second, use structured techniques to break out of your current thinking pattern

Where do new ideas come from?

- Adaptations of existing ideas to new contexts
 - Generalize the problem, look for others' solutions
- · Combining existing ideas
- Analogy

Technique 1: Brainstorming

- · List all ideas
 - individually first, then as a group
- · No criticism or evaluation!
 - encourage crazy, outlandish ideas
 - have fun!!

Technique 2: Morphological Chart				
	1	2	3	4
Accept Beans	Lid	Door	Gravity chute	
Contain Beans	Canister	Bag	Vacuum	
Grind Beans	Rotating blade	Mortar & pestle	Opposing discs	
Etc.				

Technique 3: Group Brain-writing

- 1. Decide on problem to be addressed
- 2. Silently, each person generates 3 ideas.
 - 1. Sketches + labels (minimum of words)
- 3. Rotate ideas to person on the right.
- 4. Build on the ideas just passed to you 1. for a set period of time.
- 5. Repeat until ideas reach originator.
- Review, discuss, evaluate, combine.post on the wall
- 7. Choose a subset to carry forward.

System-level Design

- · Identify subsystems of the concept
- · Investigate alternative configurations
- · Think through interface issues, in detail
 - between subsystems
 - with user
 - with environment
- Choose configuration based on the best interfaces

System Architecture Plan • Adds interface details to block diagram Electrical Circuit Battery 12v Voltage Regulator 12v Port B Bit 1 Bit 2 Bit 1 Bit 2 Bit 2 Bit 3

The Process is Not Linear!

- · Phases tend to overlap in practice
- · Applications repeat on different:
 - subproblems
 - levels of abstraction
- Problem definition tasks appear in some form in each phase

Project Planning Approach • Project Manager Sets Multiple "Hard" Milestones Effort per Week HM1 HM2 HM3 Final

Building the Plan 1. Develop work breakdown structure (WBS) 2. Define length for each task 3. Define dependencies 4. Assign resources 5. Review for over -allocation

PAUSE Principle

Prepare – get the facts, generate options

Affirm – the relationship
Understand – the others' issues

Seek – mutually beneficial options

Evaluate – Have we satisfied the major

concerns?

Keys to Effective Meetings

- · Prepare ahead of time.
- · Have a written agenda.
- · Agree on meeting's objectives.
- · Start on time.
- · Document decisions made.
- · Don't leave without an action plan.
- · Establish ground rules.
- · Appoint a facilitator.

Five Sets of Teamwork Skills

- 1. Interpersonal communication and collaboration
- 2. Understanding & communicating trade-offs and empathy for diverse perspectives
- 3. Planning/organization and accountability/reliability
- Common goals/shared outcomes and conflict management, resolution
- Willingness to learn and inclusive decisionmaking

Why do design projects fail?

- 1. Misunderstanding what the customer needs.
- 2. Committing to a solution too early.
- 3. Lack of teamwork: esp. communication & conflict resolution across disciplines.
- 4. Poor system architecture, especially interfaces.
- 5. Poor planning.

Good Luck on Monday!