ENGR 310

Lecture 21 11 April 2008

Announcements

- No office hours today.
- Assignment 7 due ahead of recitation next week.
- Journal check next week.
- Exam graded (hopefully) by next week.

Assignment 8: Design Fair

- May 1, 12:00 6:00 p.m., SUB Ballrooms
- Let me know if you need power, other.
- Poster and Model will be evaluated
- Team & individual presentations expected
- Some at table all the time
- Everyone there for one hour minimum

Assignment 9: Final Package

- Team binders
 - updated assignments under each tab
- Design Journals
 - final check
- Due 5:00 p.m., Monday, May 5
- Grading Sheet

Lifecycle Engineering

Design

Fabrication or Construction

Distribution

Use

Service

Disposal

Design with the entire lifecycle in mind.

Mountains & Minds

Early decisions have biggest effect on lifecycle costs.

Early decisions have biggest effect on lifecycle costs.

Early decisions have biggest effect on lifecycle costs.

Modern engineering design practice

- Takes the full lifecycle into account.
- Current trends:
 - manufacturability / constructability
 - reliability / robustness
 - disposal / recyclability

Concurrent Engineering

Design Engineering

Concurrent Engineering

Design Engineering

Manufacturing Engineering

Concurrent Engineering

Fabrication Design

- In Manufacturing
 - equipment specifications, layout, assembly sequence, material flow, etc.
- In Construction
 - construction methods, sequence, timing

Some Design Principles

- Use standard parts and sizes.
- Modularize the design.
- Minimize the number of parts.
- Minimize part variation.
- Maximize tolerances.
- Allow access

Robust Design

- Design so that the system is NOT sensitive to variations in:
 - manufacture
 - environment
 - use
 - etc.
- Taguchi methods

Design for Recyclability, Disassembly, Reuse

- Materials selection
- Fabrication techniques: allow disassembly?
- Packaging
 - marketing and aesthetics
 - product protection
 - storage
 - waste

