ENGR 310

Lecture 22 14 April 2008

Announcements

- Assignment 7 due this week
- Journal check the week
- Exams nearly graded

"Every engineering decision is a business decision."

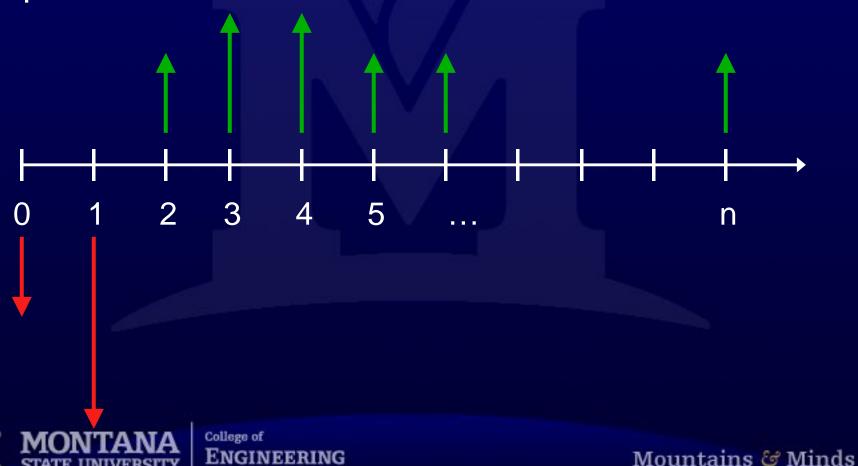
- Jean Sweeney, VP, 3M Corp.

Engineering and Economicsare inextricably linked

- Can the user afford to buy it?
- Can the builder afford to make it?
- Can the client afford the product?
- Engineering is supposed to benefit society
 - by increasing our well-being
 - by fueling the economic engine

"Engineering is the art of doing that well with one dollar than any bungler can do with two."

- Arthur Wellington



Key Economic Concepts

- Fixed versus variable costs
- Time value of money
- Cost estimation
- Costing versus pricing

Invest now for future benefit

Most engineering projects have upfront costs with expected later benefits.

Fixed Costs

- Costs not proportional to amount of product made. Examples:
 - facilities construction
 - purchased equipment
 - equipment installation
 - engineering costs
 - working capital

Variable costs

- Costs that are proportional to amount of product made. Examples:
 - raw materials / purchased components
 - direct labor
 - maintenance
 - utilities

Overhead costs

- Costs not attributable to a specific product or project. Examples:
 - administrative costs
 - janitorial services

Exercise

In your teams:

- Make a list of the fixed costs of your designed system
- Make a list of the variable costs.
- Project out to full implementation / market introduction

Time Value of Money

- A dollar today is worth more than a dollar tomorrow.
- \$100 a year from now is worth \$91 today, at 10% discount rate.
 - to compensate for opportunity cost
- Therefore, we must account for:
 - Amount of expense, and
 - Timing of the expense

Basic Economic Analysis Equation

$$F = P (1 + i)^n$$

where: F = future value

P = present value

i =discount rate per time period

n = number of time periods

Alternatively

$$P = F (1 + i)^{-n}$$

Simply discount all future cash flows to present value, and sum.

If comparing alternatives, projected usable life must be the same.

Return on Investment

Interest rate at which benefits = costs

Exercise

For your project, create a timeline of projected expenses for implementation / market introduction

Label the cash flows (don't worry about values for now).

Estimating Costs

- Bill of Materials
 - specifies all the parts for the system
 - quantities
 - hierarchical by subsystems
- Labor
 - direct
 - indirect
- Overhead

Estimating costs, cont.

- Economies of scale
- Rules of thumb
 - discipline specific
 - e.g., cost per pound or cost per ft²

Costing versus Pricing

- Pricing is determined more by market value than product cost.
- Profit = Revenue cost

Exercise

 With your team, plan out what information you need to gather to complete a cost analysis of your project

 Note: a cost analysis is required in the final notebook submission.