Learning Objectives:
By the end of the lecture the student should be able to:

- Apply mathematical models of production performance problems.
- Explain the concepts of fixed and variable manufacturing costs.
Production Concepts and Mathematical Models

- Production rate R_p
- Production capacity PC
- Utilization U
- Availability A
- Manufacturing lead time MLT
- Work-in-progress WIP
Operation Cycle Time

Typical cycle time for a production operation:

\[T_c = T_o + T_h + T_{th} \]

where \(T_c = \) cycle time, \(T_o = \) processing time for the operation, \(T_h = \) handling time (e.g., loading and unloading the production machine), and \(T_{th} = \) tool handling time (e.g., time to change tools)
Production Rate

Batch production: batch time $T_b = T_{su} + QT_c$
Average production time per work unit $T_p = T_b / Q$
Production rate $R_p = 1/T_p$

Job shop production:
For $Q = 1$, $T_p = T_{su} + T_c$

For quantity high production:
$R_p = R_c = 60/T_p$ since $T_{su}/Q \to 0$
Production Capacity

Plant capacity for facility in which parts are made in one operation ($n_o = 1$):

$$PC_w = n \cdot S_w \cdot H_s \cdot R_p$$

where $PC_w = \text{weekly plant capacity, units/wk}$

Plant capacity for facility in which parts require multiple operations ($n_o > 1$):

$$PC_w = \frac{nS_wH_sR_p}{n_o}$$

where $n_o = \text{number of operations in the routing}$
Utilization and Availability

Utilization: \[U = \frac{Q}{PC} \]

where \(Q \) = quantity actually produced, and \(PC \) = plant capacity

Availability: \[A = \frac{MTBF - MTTR}{MTBF} \]

where \(MTBF \) = mean time between failures, and \(MTTR \) = mean time to repair
Availability -

MTBF and *MTTR* Defined

![Diagram showing MTBF and MTTR]

- **MTBF**: Time between breakdowns.
- **MTTR**: Time to repair.

Breakdown

Repairs completed

Equipment operating

Time
Manufacturing Lead Time (Batch)

\[MLT = n_o (T_{su} + QT_c + T_{no}) \]

where \(MLT \) = manufacturing lead time, \(n_o \) = number of operations, \(T_{su} \) = setup time, \(Q \) = batch quantity, \(T_c \) = cycle time per part, and \(T_{no} \) = non-operation time
Work-In-Process

\[
WIP = \frac{AU(PC)(MLT)}{S_w H_{sh}}
\]

where \(WIP \) = work-in-process, pc; \(A \) = availability, \(U \) = utilization, \(PC \) = plant capacity, pc/wk; \(MLT \) = manufacturing lead time, hr; \(S_w \) = shifts per week, \(H_{sh} \) = hours per shift, hr/shift
Costs of Manufacturing Operations

- Two major categories of manufacturing costs:
 1. Fixed costs - remain constant for any output level
 2. Variable costs - vary in proportion to production output level

- Adding fixed and variable costs

\[TC = FC + VC(Q) \]

where \(TC \) = total costs, \(FC \) = fixed costs (e.g., building, equipment, taxes), \(VC \) = variable costs (e.g., labor, materials, utilities), \(Q \) = output level.
Fixed and Variable Costs

\[TC_2 = FC_2 + VC_2(Q) \]

\[TC_1 = FC_1 + VC_1(Q) \]

Production quality, \(Q \)

Method 1: manual

Method 2: automated

Break-even point
Manufacturing Costs

- Alternative classification of manufacturing costs:
 1. Direct labor - wages and benefits paid to workers
 2. Materials - costs of raw materials
 3. Overhead - all of the other expenses associated with running the manufacturing firm
 - Factory overhead
 - Corporate overhead
Typical Manufacturing Costs

- Selling price:
 - Manufacturing cost: 40%
 - Engineering: 15%
 - Research and development: 5%
 - Administration, sales, marketing: 25%
 - Profit: 15%

- Manufacturing cost:
 - Direct labor: 12%
 - Plant and machinery depreciation, energy: 26%
 - Indirect labor: 12%
 - Parts and materials: 50%
Overhead Rates

Factory overhead rate:

\[FOHR = \frac{FOHC}{DLC} \]

Corporate overhead rate:

\[COHR = \frac{COHC}{DLC} \]

where \(DLC = \) direct labor costs