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Contribution of semi-arid ecosystems to interannual
variability of the global carbon cycle
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The land and ocean act as a sink for fossil-fuel emissions, thereby slow-
ing the rise of atmospheric carbon dioxide concentrations1. Although
the uptake of carbon by oceanic and terrestrial processes has kept
pace with accelerating carbon dioxide emissions until now, atmo-
spheric carbon dioxide concentrations exhibit a large variability on
interannual timescales2, considered to be driven primarily by terres-
trial ecosystem processes dominated by tropical rainforests3. We use
a terrestrial biogeochemical model, atmospheric carbon dioxide inver-
sion and global carbon budget accounting methods to investigate the
evolution of the terrestrial carbon sink over the past 30 years, with a
focus on the underlying mechanisms responsible for the exception-
ally large land carbon sink reported in 2011 (ref. 2). Here we show
that our three terrestrial carbon sink estimates are in good agree-
ment and support the finding of a 2011 record land carbon sink.
Surprisingly, we find that the global carbon sink anomaly was driven
by growth of semi-arid vegetation in the Southern Hemisphere, with
almost 60 per cent of carbon uptake attributed to Australian eco-
systems, where prevalent La Niña conditions caused up to six con-
secutive seasons of increased precipitation. In addition, since 1981,
a six per cent expansion of vegetation cover over Australia was asso-
ciated with a fourfold increase in the sensitivity of continental net
carbon uptake to precipitation. Our findings suggest that the higher
turnover rates of carbon pools in semi-arid biomes are an increas-
ingly important driver of global carbon cycle inter-annual variability
and that tropical rainforests may become less relevant drivers in the
future. More research is needed to identify to what extent the carbon
stocks accumulated during wet years are vulnerable to rapid decom-
position or loss through fire in subsequent years.

Each year, on average, land and ocean carbon sinks absorb the equiv-
alent of about half of the global fossil fuel emissions, thereby providing
a critical service that slows the rise in atmospheric CO2 concentrations1.
Emissions from fossil fuels and land-use change now exceed ten billion
tons or petagrams (Pg) of carbon per year, tracking the most carbon
intense emission scenarios of the Intergovernmental Panel on Climate
Change4. Even with this acceleration, the fraction of anthropogenic
emissions that accumulates in the atmosphere (the airborne fraction)
has remained largely unchanged since 1959 at 44% (ref. 2) (P 5 0.36 for
slope of linear regression). This implies that the uptake of carbon by ocean
and terrestrial processes has, to some extent, kept pace with accelerating
emissions owing to a range of possible factors, such as the fertilization
effect of increased CO2 and atmospheric nitrogen deposition on plant
growth, changes in growing season length, and land management5. In
addition to the continued uptake of CO2, the airborne fraction exhibits
large variability on interannual timescales, ranging between 18% and
79% during the past 54 years (ref. 2). This high interannual variability is
primarily driven by terrestrial processes, which must be better understood

in order for us to be able to forecast long-term biospheric responses to
climate change3.

High uncertainties in quantifying ecosystem processes mean that the
global terrestrial carbon sink is often estimated as the residual between
emissions from the combustion of fossil fuels, cement production and
net land-use change, and sinks combining accumulation in the atmo-
sphere and uptake by the ocean6. Using this method, the Global Carbon
Project reported in their annual assessment a 2011 residual land sink
of 4.1 Pg C yr21 (standard deviation 6 0.9 Pg C yr21), representing an
unusually large increase compared with the 2.6 6 0.8 Pg C yr21 decadal
average and the largest reported residual land carbon sink since mea-
surements of atmospheric CO2 began in 1958. The 2011 residual land
sink is indicative of several aspects of the debate surrounding the fate of
terrestrial ecosystems under environmental change. First, the large uptake
of carbon in 2011 continues a trend of increasing strength in the land
carbon sink over at least one decade1,7. Second, the large annual growth
anomaly in the land carbon sink raises questions regarding the growth
rate of atmospheric CO2 in coming years and how this is affected by the
allocation of sequestered carbon to either labile or more stable pools.
Lastly, increasing uncertainty in other terms of the global CO2 budget
has direct consequences on land sink estimates, for example, an over-
estimate of anthropogenic emissions would be assigned (owing to mass
conservation and current accounting schemes) as an erroneously large
land sink. Thus, attributing changes in net carbon uptake to carbon cycle
processes requires a range of methodological approaches.

Here, we investigate the evolution of the terrestrial carbon sink over
the past 30 years and the underlying mechanisms of the exceptionally
large 2011 residual land carbon sink in a long-term context using (1) a
‘bottom-up’ process-oriented terrestrial biosphere model, (2) a ‘top-down’
atmospheric CO2 inversion and (3) satellite observations of photosyn-
thetic activity and vegetation structure. We allocate net land carbon
uptake among specific geographic regions and provide a mechanistic
explanation for the climatic and CO2 response of net primary produc-
tion (NPP), heterotrophic respiration (Rh), and disturbance that sum
up to define net ecosystem exchange (NEE).

We find excellent agreement among the three different terrestrial car-
bon sink estimates that robustly support record 2011 land carbon uptake
(Fig. 1a; with uncertainty presented as 61 standard deviation). The
Lund–Potsdam–Jena (LPJ) dynamic global vegetation model (DGVM;
ref. 8) estimates a 2011 land sink of 3.96 1.3 Pg C yr21, a 1.36 0.6 Pg C yr21

anomaly compared to the 2003–2012 mean sink of 2.6 6 0.9 Pg C yr21

(Fig. 1a and Extended Data Table 1). Our atmospheric inversion (using
the Monitoring Atmospheric Composition and Climate (MACC-II)
inversion system; ref. 9) yields a 3.7 6 0.4 Pg C yr21 2011 land sink, equiv-
alent to a 1.0 Pg C yr21 anomaly above the 2.7 6 0.4 Pg C yr21 inversion
average for 2003–2012. The 2011 land sink estimates by the LPJ DGVM

1Montana State University, Institute on Ecosystems and the Department of Ecology, Bozeman, Montana 59717, USA. 2Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CEA CNRS UVSQ,
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and MACC II inversion were greater than the 97.5th percentile over
the period 1981–2012, suggesting a convergence of particularly novel
ecosystem and climate states.

Both the atmospheric inversion and the DGVM demonstrate an
increased contribution from Southern Hemisphere ecosystems to global
net carbon uptake in 2011 (Fig. 1b). These patterns are supported by
a large observed positive anomaly in the 2010–2011 interhemispheric
CO2 concentration gradient between Mauna Loa (19uN) and the Cape
Grim (40u S) monitoring stations10. An increase in global NPP appears
to be the main driving mechanism behind the 2011 land sink. Global
NPP anomalies within the range of 1.7 Pg C simulated from the LPJ model
forced with monthly climatic variables from the Climatic Research Unit
(CRU) TS3.21 data set (ref. 11) and 1.6 Pg C by the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) NPP algorithm (Fig. 2a),
using National Center for Environmental Prediction (NCEP) Reanalysis
climate data and a light use-efficiency model12 provide parallel support
for this conclusion. Further investigation shows 79% (MODIS) to 87%
(LPJ) of the global NPP anomaly is explained by just three semi-arid
regions, Australia, temperate South America and southern Africa, where
ecosystem respiration tends to lag productivity, inducing large net carbon
uptake (regions AUST, SAmTe and SAf in Fig. 2b and Extended Data
Fig. 1)13–15. In Australia, for example, compared with the 2003–2012
average, LPJ simulated a 45% increase in NPP for 2011, from an aver-
age of 1.75 to 2.54 Pg C yr21, but only a 9% increase in Rh (from 1.48 to
1.61 Pg C yr21). Moreover, wetter conditions decreased modelled fire-
emissions by 29% (from 0.13 to 0.09 Pg C yr21) yielding a net 0.84 Pg C
2011 sink. Similarly, we find our conclusions for the greater sensitivity of
NPP to precipitation, and lags in Rh, extend to southern Africa and tem-
perate South America. In fact, 51% of the global 2011 net carbon sink was
attributed to the three Southern Hemisphere semi-arid regions (Extended

Data Table 2), and Australia alone contributed to 57% of the total global
LPJ NEE anomaly.

In addition to MODIS, the fraction of photosynthetic active radiation
(FPAR) determined from the satellite-borne Advanced Very High Reso-
lution Radiometer (AVHRR), AVHRR-FPAR3g (ref. 16), provides a
long-term record of space-borne observations of the fraction of pho-
tosynthetic active radiation absorbed. Vegetation greening was wide-
spread globally in 2011, with austral winter (June–August; JJA) FPAR
reaching the highest values ever observed in the entire satellite period
(1982–2011). In the Southern Hemisphere, record greening (Fig. 1c) was
centralized over the same three Southern Hemisphere semi-arid regions
(AUST, SAmTe and SAf) and was sustained for nine months spanning
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Figure 2 | Global anomalies of NPP and NEE, and the precipitation effect.
a, Annual NPP anomaly, as z score (defined in Fig. 1), estimated by the
MOD17A3 algorithm that uses the MODIS leaf area index (MOD15 Collection
5)12. b, Annual NEE anomaly, as z score, estimated by the LPJ DGVM, where a
positive z score equals a larger sink; the reference period is 2000–2011. c, Spatial
pattern of the contribution of precipitation to net ecosystem exchange in 2011
calculated as the difference between NEE with the all climate forcing varied and
NEE simulated with the precipitation climatology (see Extended Data Fig. 6a
and b for the NPP and Rh component fluxes).
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Figure 1 | Interannual variability of NEE and FPAR anomalies. a, Annual
NEE, where positive values represent carbon uptake, blue is LPJ, red is MACC-
II, and the residual land sink is in grey. The standard deviations are
60.58 Pg C yr21 for LPJ, 60.4 Pg C yr21 for the inversion, and 60.8 Pg C yr21

for the residual (see Methods). b, Average, 2003–2012, annual NEE for the
Northern and Southern hemispheres, estimated by LPJ and the inversion.
c, AVHRR FPAR anomalies for the southern (S) and northern (N) hemispheres
with respect to the 1982–2011 long-term average where the seasonal anomalies
were calculated as the z score for each season (s) and each grid cell (i,j) for each

year (y); AVHRRanomaly,ys i,jð Þ~
AVHRRy,s i,jð Þ{AVHRR1982{2011,s i,jð Þ

sAVHRR1982{2011,s i,jð Þ
.
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2010 to 2011 (December–February, DJF; March–May, MAM; and JJA).
Seasonal FPAR increases over Australia ranged from 4.6% in DJF and
8.7% in MAM to 5.1% in JJA, with all anomalies being prominent extremes
in the context of an observed 0.8–1.9% interannual variability over the
past 30 years. Notably, 46% (or 34%) of the land area in Australia experi-
enced increases in FPAR in 2011 of more than 2.5 (or 3.0) standard
deviations from normal in MAM, with positive FPAR anomalies first
developing in eastern Australia in DJF, extending to all of Australia in
MAM, then remaining in northern Australia in JJA (Extended Data Fig. 2).

To identify proximate causes for the role of semi-arid regions in the
2011 global sink, we performed a full set of LPJ factorial model simula-
tions to isolate the temperature, precipitation, cloud cover and CO2 con-
tribution to NEE (Extended Data Table 1; Methods). An additional
‘memory’ simulation was conducted to evaluate previous-year climate
effects that might have contributed to the extraordinary sink in 2011;
the 2010 climate was replaced with a near-neutral year (2009) for the
El Niño Southern Oscillation (Extended Data Fig. 3). With respect to pre-
industrial CO2 concentrations (287 parts per million, p.p.m.), the LPJ
simulations suggest that CO2 fertilization enhanced the 2011 net carbon
uptake by 4.8 Pg C. High precipitation during 2010 and 2011 contrib-
uted to 0.62 Pg C and 0.52 Pg C of the global sink, respectively (Fig. 2c),
or about 12%, thereby helping to offset land-to-atmosphere CO2 fluxes
driven by long-term negative temperature (20.84 Pg C) and direct radi-
ative contributions (20.32 Pg C). In addition, ‘memory’ effects from
2010 added to the 2011 sink, with the largest difference being a three-
fold increase in tropical South American NEE when using 2009 climate
before 2011. The increase in Amazonian NEE in 2011 was mainly due
to recovery from the 2010 Amazon drought17, which caused a reduc-
tion in LPJ NPP and an increase in LPJ Rh in 2010, leading to reduced
short-lived litter carbon pools available for respiration and fire in 2011.
Although 2011 precipitation explained most of the NEE increase in Aus-
tralia (a 0.56 Pg C yr21 contribution), the climate memory effect also
explained 0.21 Pg C of the 2011 Australian sink because of high precip-
itation in 2010 that recharged soil moisture and plant carbohydrate
reserves to the benefit of NPP in 2011. Among an ensemble of climate
indices, the Multivariate El Niño Index (MEI; ref. 18) consistently ex-
plained the highest amount of year-to-year variability over Australia
for annual carbon uptake (correlation coefficient r 5 20.49, P , 0.01)
and DJF FPAR greening (r 5 20.52, P , 0.01) between 1981 and 2011
(Extended Data Fig. 4a–d). This extends earlier findings that found Pacific
sea surface temperature as a significant predictor of precipitation-driven
greening anomalies as far as South Africa and Australia19,20. Notably,
the 2010/2011 La Niña—that is, the MEI negative phase—took place
over an especially long time period, as observed from multiple satellite,
rain gauge and reanalysis data sources (the Tropical Rainfall Measure-
ment Mission (TRMM), CRU and NCEP-DOE; Extended Data Fig. 5a

and b), and even lowered global sea levels21, in addition to altering
global carbon uptake12.

The available evidence points towards an enhanced climatic effect
of the 2010/2011 La Niña from interactions with long-term semi-arid
region greening trends since the early 1980s at the latest. For example,
since 1982, we found an expansion of vegetation across the Australian
landscape (P , 0.01 for one-sided Kolmogorov–Smirnov test) where
land area with FPAR .20% (or 30%) increased by 5.6% (or 3.5%) in
the MAM growing season. The greening trend in semi-arid regions has
been previously associated with a range of drivers that include altered
precipitation frequency and intensity22, increased water-use efficiency
due to elevated CO2 effects on leaf stomatal conductance23, and woody
encroachment following land-use and grazing22,24. Over the same 1982–
2011 time period, we observed a statistically significant increase in the
sensitivity of LPJ net carbon uptake (P , 0.001) and AVHRR-FPAR3g
vegetation activity (P , 0.02) to austral-autumn precipitation for the
Australian continent (Fig. 3a). The observed change in ecosystem sen-
sitivity over Australia meant that an additional 100 mm of growing sea-
son (MAM) precipitation led to a fourfold increase in net carbon uptake
when comparing sensitivities before (0.2 Pg C yr21 per 100 mm) or after
(0.8 Pg C yr21 per 100 mm) 1997, the midpoint of current observational
records (1982–2011). An independent data-driven model of net eco-
system production25, which excluded disturbance processes, confirmed
the same statistically robust increase over time in carbon uptake per unit
precipitation for Australia (Fig. 3b, P , 0.001). Long-term observa-
tions from passive-microwave vegetation optical depth (VOD)26 sug-
gest that the enhanced sensitivity of vegetation to climate is a result of
both increases in grass cover as well as from woody encroachment (Fig. 3c).

The 2011 land carbon sink anomaly indicates a novel climate-driven
response of the biosphere where interactions between extremes in aus-
tral precipitation27 and changes in land cover23 (both possibly caused by
humans) are contributing to non-analogue ecosystem behaviour with
global biogeochemical significance. We propose that the current para-
digm, whereby tropical rainforest El Nino/Southern Oscillation coup-
ling dominates interannual variability of the atmospheric CO2 growth
rate3,28, may become less relevant in the future. We explored whether
semi-arid carbon-cycle climate sensitivity feedbacks exist among an
ensemble of 15 Earth system models contributed to the Coupled Model
Intercomparison Project Phase 5 (CMIP5; ref. 29). In contrast to our
observations, we found that for semi-arid regions, modelled carbon
uptake and precipitation sensitivity remains relatively stable over the 1990
to 2090 period for the CMIP5 ensemble (P 5 0.33, one-sided Student’s
t-test, Fig. 4). This suggests that processes contributing to the novel eco-
system dynamics identified here may be overlooked in future climate
change scenarios. As the dynamics of dryland systems, which cover
45% of the Earth’s land surface, increase in global importance, more
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Figure 3 | Change in climate sensitivity of observations for Australia.
a, Climate sensitivity of annual LPJ NEE anomalies to MAM precipitation
anomalies for Australia. The open circles and dashed line are the points and
regression line for 1982–1996 (b1) and the closed circles and solid line are for
1997–2011 (b1 1 b3), from the following linear regression model using NEE
and precipitation anomalies (Panomaly) where A is an indicator variable for the

different time periods: (NEEanomaly~b0zb1Panomalyzb2Azb3PanomalyA).
b, Climate sensitivity of annual NEE from the MACC-II inversion (black
symbols) and the upscaled NEP product (grey symbols) using the same linear
model as in a. c, Climate sensitivity of annual VOD (light green symbols) and
MAM FPAR (dark green symbols) also using the model described in a.
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research is needed to identify whether enhanced carbon sequestration
in wet years is particularly vulnerable to rapid decomposition or loss
through fire in subsequent years, and is thus largely transitory. Such
behaviour may already be reflected by the larger-than-average atmo-
spheric growth rate in 2012 (ref. 30) that was associated with a return
to near-normal terrestrial land sink conditions (Fig. 1a).

METHODS SUMMARY
We use multiple data sources, including carbon accounting methods, carbon-cycle
model simulations, and satellite-based vegetation products to investigate the mag-
nitude and mechanisms driving variability in the terrestrial carbon sink. NPP (the
total photosynthesis minus plant autotrophic respiration losses) is simulated by
the LPJ DGVM and also estimated independently with the MODIS NPP algorithm,
MOD17A3. The balance between carbon uptake from NPP and losses from soil
respiration and disturbance (NEE) is quantified from the Global Carbon Project,
the LPJ DGVM, and the MACC-II atmospheric inversion system (http://www.
copernicus-atmosphere.eu/). NEP (the balance between gross carbon inputs from pho-
tosynthesis and losses from ecosystem respiration, excluding disturbance) is estimated
from upscaled gridded flux tower observations. Optical and passive microwave satel-
lite data are employed to assess vegetation greenness trends (AVHRR FPAR3g) and
vegetation structure or vegetation optical depth (VOD). Monthly and seasonal pre-
cipitation fluctuation is quantified from TRMM 3B43v7 (http://mirador.gsfc.nasa.gov)
and NCEP-DOE Reanalysis II (http://www.esrl.noaa.gov), and the Climatic Research
Unit (CRU) TS3.21 (http://www.cru.uea.ac.uk/). Regional summaries of the glo-
bal gridded data followed boundaries from the eleven land regions specified in the
TRANSCOM atmospheric inversion experiment. We further differentiate North
and South Africa to distinguish between wet and semi-arid climates with the ratio of
precipitation to potential evaporation set to 0.7. Historical (1860–2005) simulations of
net biome production, equivalent to NEE, from the Fifth Coupled Model Intercompar-
ison Project (CMIP5) are merged with the Representative Concentration Pathway 8.5
(RCP8.5) to create temporal composites spanning 1860–2099 for 15 Earth systemmodels.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Carbon fluxes and their uncertainties. We follow the carbon-cycle definitions
summarized by ref. 31 when describing the net land carbon sink in terms of NEE
or NEP and associated component fluxes. Data for estimating the airborne frac-
tion, the residual land sink and its anomalies were obtained online from the Global
Carbon Project2 (version 1.5) for the years 1959–2011. Uncertainties are presented
as 61 standard deviation (s), assuming Gaussian error and a 68% likelihood that
the true value is within this range. The LPJ DGVM was run with the GlobFirm fire
module enabled and fully prognostic dynamic natural vegetation (excluding land-
cover change). The CRU TS3.21 climate data set11 was used for LPJ model simula-
tions starting in 1901 and ending in 2012 with observed rising CO2 concentrations
from ice-core measurement of CO2 and then the Mauna Loa Observatory after 1958.
Uncertainty in LPJ NEE was estimated using a Latin hypercube approach to generate
200 parameter sets and corresponding simulations at 1-degree spatial resolution for
13 of the most important parameters32. The observed linear relationship between the
Latin hypercube model ensemble global mean NEE and its standard deviation (R2 5

0.62) was used to predict the 2011 land sink uncertainty for the 0.5-degree simulation.
Uncertainty from climate forcing was considered by comparing different climate
data sets (see below) and is not likely to affect annual anomalies or trends in carbon
fluxes33. LPJ simulates semi-arid plant functional types by a mix of grasses with C3

and C4 photosynthetic pathways and, in lesser abundance, tropical and temperate
trees. Carbon cycle fluxes simulated by LPJ were in close agreement with regionally
parameterized models for Australia, such as CABLE14, and regional NPP from satellite-
based estimates of MODIS (Extended Data Table 2). Simulated losses of carbon from
fire and their anomalies were benchmarked with the GFAS v1.0 (ref. 34) and GFED
v3.1 (ref. 35) data sets that use satellite-observed fire radiative power and burned
area, respectively, to estimate carbon emissions (Extended Data Table 3). The atmo-
spheric inversion was based on the MACC-II inversion system version 12.1, described
in ref. 9, using atmospheric CO2 data sets from a global network (NOAA/ESRL,
WDCGG, CarboEurope and RAMCES) of continuous and discrete flask samples,
with a climatological prior for NEP land-surface carbon fluxes from the ORCHIDEE
DGVM9 and fire emissions from GFED v2.1 (ref. 36) until 2011, and the long-term
mean substituted for 2012. The inversion is applied on a 3.75 3 2.5 degree grid with
fluxes inverted at weekly resolution and night-time and daytime fluxes separated.
The MACC-II inversion minimizes a Bayesian objective function, assuming errors
are Gaussian (posterior errors presented here as 61 standard deviation), and error
correlation implied by off-diagonal elements in the posterior error covariance matrix.
Upscaled flux tower observations were the basis for the data-derived NEE model
of ref. 25, representing monthly 0.5-degree fluxes from 1982 to 2011. The MODIS
(MOD17A337) product provided annual NPP data at 1-km resolution and was
resampled to a resolution of 8 km to match AVHRR-FPAR3g before analysis. Net
biome production from the CMIP5 RCP8.5 ensemble29,38 was merged with the cor-
responding historical simulations to create temporal composites covering the years
1860–2099 for 15 Earth system models (Extended Data Table 4).

Vegetation activity. Measurements of FPAR were modelled from surface reflec-
tance observed aboard the AVHRR and incorporated into the FPAR3g16 data set
(1981–2011). The FPAR3g bimonthly data set was first filtered for low values, within
the range of uncertainty (,2.5%), before compositing to monthly values using a max-
imum values approach. Gridded passive microwave measurements of VOD from39

were aggregated from 0.25-degree resolution to each of the thirteen regional means
at a monthly resolution from 1988 to 2011. The VOD is an indicator of water con-
tent in both woody and leaf components of aboveground biomass. The VOD time
series is based on a multi-source data set consisting of harmonized passive micro-
wave measurements from SSM/I (Special Sensor Microwave Imager, 1988–2007)
and AMSR-E (the Advanced Microwave Scanning Radiometer – Earth Observing
System, July 2002–September 2011) sensors39.
Climate data sets. Precipitation data from satellite (TRMM 3B43v7), reanalysis
(NCEP-DOE Reanalysis II40, 1979-2012), and ground-based observations (CRU
TS3.2111) were compared with one another for annual and seasonal similarities (Ex-
tended Data Fig. 5a and b). Over Australia, annual precipitation was observed as up
to 1205 6 54 mm (in 2010) and 1178 6 71 mm (in 2011) above the long-term
annual average of 555 6 23 mm yr21, with uncertainties presented as the standard
deviation of the three products. An ensemble of climate indices were evaluated (Ex-
tended Data Fig. 4a–d) with data for the MEI from ref. 18, where negative values
indicate the La Niña climate mode.

31. Chapin, F. S. et al. Reconciling carbon-cycle concepts, terminology, and methods.
Ecosystems 9, 1041–1050 (2006).
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Extended Data Figure 1 | The thirteen regions used throughout the analysis, 11 from TRANSCOM, and two additional regions for the African continent
that are semi-arid (see Methods Summary).
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Extended Data Figure 2 | Seasonal AVHRR FPAR anomalies (z score) for
the year 2011. The z score is calculated relative to the long-term seasonal mean

and standard deviation of FPAR (1982–2011); see legend to Fig. 1c. The
seasons DJF, MAM, JJA and SON are defined by the first letter of each month.
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Extended Data Figure 3 | Forcing contribution to NEE and the MEI and
PDO indices. The full climate attribution of the global land sink simulation

by the LPJ DGVM is shown in the bar graph. PDO, Pacific Decadal
Oscillation.
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Extended Data Figure 4 | r and FPAR correlations between climate modes
for NEE at given seasons. Shown is r (on the colour scales) between climate
modes and MAM (a), and JJA (b) NEE simulated by LPJ for each of the

TransCom regions. FPAR correlations between climate modes are shown for
MAM (c) and JJA (d). The correlations were made for 1982–2011. Blank boxes
indicate correlation between 20.1 and 0.1.

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Figure 5 | Global climate anomalies for air temperature and
precipitation. a, Global temperature and precipitation anomalies from CRU
TS3.21 data. The anomalies are with respect to 1979–2012 seasonal means.
b, Seasonal precipitation anomalies (z score) for year 2010. c, Seasonal

precipitation anomalies (z score) for year 2011. The z score for b and c is
calculated relative to the long-term seasonal mean and standard deviation of
precipitation (1979–2011).
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Extended Data Figure 6 | Spatial pattern of the contribution of
precipitation to NEE exchange in 2011. This is calculated as the difference
between NPP (a) and Rh (b) with the all-climate forcing varied and NEE
simulated with the precipitation climatology. This is the same as in Fig. 2c but
for component fluxes of NEE.
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Extended Data Table 1 | Global summary of annual NEE

NEE 5 NPP 2 Rh 2 fire. Its component fluxes are estimated from LPJ, the residual, the MACC-II inversion, and from MODIS, GFED and GFAS. All units are in Pg C yr21.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Table 2 | Annual LPJ-derived NEE

Also shown are the component flux anomalies (Pg C yr21) for each of the 11 TransCom regions (see Extended Data Fig. 1 for region map). The annual LPJ anomalies for 2011 and 2012 are calculated relative to the
2003 to 2012 time period. MODIS NPP anomalies, with respect to 2000–2011, are provided in grey text for comparison (but not used in the NEE calculation). A positive NEE anomaly indicates an increase in the
carbon sink strength and negative fire anomalies mean a decrease in fire emissions. The total global LPJ NEE anomaly for 2011 was 1.4 Pg C yr21.
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Extended Data Table 3 | Total carbon emissions from wildfire for each TransCom region

Emissions are estimated from LPJ, and the GFAS34 and GFED35 data sets for the matching 2002–2012 averaging period, and for the years 2011 and 2012. Units are Pg C yr21.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2014



Extended Data Table 4 | CMIP5 Earth system models from PCMDI node 9 that were accessed and where the RCP8.5 scenario (2005–2099)
was merged with the historical simulation (1860–2005)

Of the total ensemble, 15 models were used in the analysis because a full suite of historical and RCP8.5 simulations was available for the net biome production, air temperature and precipitation variables.
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