Research contributors

Principal Investigators
Beth Burroughs, Montana State University
John Sutton, RMC Research Corp.
David Yopp, University of Idaho

Contributing Researchers
Mark Greenwood, Megan Higgs, and Jennifer Luebeck (Montana State University);
Brandie Good, Clare Heidema, Dan Jesse, and Arlene Mitchell (RMC Research Corp.).

Funded under NSF Award No. 0918326. Any opinions expressed herein are those of the authors and do not necessarily represent the views of the National Science Foundation.
Organizing question

Mathematics classroom coaching is at the intersection of research and practice. It engages our coaching colleagues as mathematics teacher educators.

What are next steps in coaching research, professional development or other collaborations between researchers and coaches?
Agenda

- Overview of the EMC Project
- Instruments to measure coaching knowledge
- Results: Descriptive statistics
- Results: Statistical analysis
- Generating research directions and questions in mathematics coaching
A recent development in mathematics professional development for practicing teachers.

Built on a foundation of coaching in other professions, like business and medicine.

There are a variety of educational coaching models coaches might follow.
EMC is a 5-year research and development project examining the effects of a coach’s knowledge for coaching on a diverse population of K-8 teachers.
Mathematics coach:
EMC definition

A mathematics coach is an on-site professional developer who enhances teacher quality through collaboration, focusing on research-based, reform-based, and standards-based instructional strategies and mathematics content that include the why, what, and how of teaching mathematics.
Coaching cycle for EMC Project

There are three distinct parts to each coaching cycle designed to examine mathematics instruction.

- Pre-Lesson Conference (~15 minutes)
- Lesson Observation (entire class period)
- Post-Lesson Conference (~30 minutes)

Coaches conduct 8 cycles per year, with 4 focused on number and operations.
The effectiveness of a mathematics classroom coach is linked to several domains of knowledge. Coaching knowledge and mathematics content knowledge both contribute to a coach’s effectiveness as measured by positive impact on teacher practice, attitudes, and knowledge.
Knowledge domains

Mathematics Content Knowledge

Knowledge of Student Learning

Coaching Knowledge

Knowledge of Teacher Learning
Empirical coaching results

- Positive effects on teacher practice in schools where coaching is used
- Campbell & Malkus (2011) found that student achievement increased in grades 3, 4, & 5 after 3 years of highly-trained coaches
- Schools with MCP-trained coaches (one-on-one intensive interactions) see higher achievement in students in grades 3 – 6 (Harrison, Higgins, Zollinger, Brosnan & Erchick, 2011)
Impacts of EMC study

- Understanding of **knowledge** needed for effective mathematics coaching.
- Understanding of what **practices** contribute to effective mathematics coaching.
- **Instruments** to evaluate and monitor mathematics coaching.
Research design

- A non-experimental design will answer: To what extent does a coach’s depth of content knowledge in coaching knowledge and mathematics content knowledge correlate to coaching effectiveness?

- An experimental design randomly assigns coaches to one of two groups to answer: To what extent does professional development targeting these two knowledge domains improve coaching effectiveness? and To what extent are the effects of the targeted professional development explained by increases in knowledge?
Crossover design

<table>
<thead>
<tr>
<th>Year 1 2009-10</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provide orientation to EMC coaching model</td>
<td></td>
</tr>
<tr>
<td>Year 2 2010-11</td>
<td>Mathematics Content Knowledge</td>
<td></td>
</tr>
<tr>
<td>Year 3 2011-12</td>
<td></td>
<td>Coaching Knowledge</td>
</tr>
<tr>
<td>Year 4 2012-13</td>
<td>Coaching Knowledge</td>
<td></td>
</tr>
<tr>
<td>Year 5 2013-14</td>
<td></td>
<td>Mathematics Content Knowledge</td>
</tr>
</tbody>
</table>
EMC participants

Washington
Coaches: 2
Teachers: 4

Idaho
Coaches: 15
Teachers: 44

Colorado
Coaches: 11
Teachers: 31

Montana
Coaches: 19
Teachers: 54

N. Dakota
Coaches: 3
Teachers: 8

Wisconsin
Coaches: 4
Teachers: 11

Nebraska
Coaches: 2
Teachers: 6
Agenda

- Overview of the EMC Project
- **Instruments to measure coaching knowledge**
- Results: Descriptive statistics
- Results: Statistical analysis
- Generating research directions and questions in mathematics coaching
Project variables and measures

Coaching Effectiveness
Project variables and measures

Mathematics Content Knowledge

Implementation of Coaching Model

Coaching beliefs, knowledge, skills, and practice

Coaching Effectiveness
Project variables and measures

Coaching Effectiveness

Teacher Variables
- Mathematics Content Knowledge
- Classroom practice
- Teacher anxiety, efficacy, engagement, and preparedness
- Coaching emphasis
- Coaching impact

Implementation of Coaching Model
- Coaching beliefs, knowledge, skills, and practice
- Mathematics Content Knowledge
Project variables and measures

Mathematical Knowledge for Teaching

Mathematics Content Knowledge

Implementation of Coaching Model

Coaching beliefs, knowledge, skills, and practice

Coach Reflection and Impact

Coaching Effectiveness

Teacher Variables

Mathematics Content Knowledge

Classroom practice

Teacher anxiety, efficacy, engagement, and preparedness

Coaching emphasis

Coaching impact

Measures

Inside the Classroom Observation Protocol

Teacher Survey

Teacher Needs Inventory

Teacher Reflection and Impact Survey

Coaching Knowledge Survey & Coaching Skills Inventory
Project variables and measures

- **Mathematical Knowledge for Teaching**
- **Mathematics Content Knowledge**
- **Classroom practice**
- **Teacher anxiety, efficacy, engagement, and preparedness**
- **Coaching emphasis**
- **Coaching impact**

Teacher Variables

Implementation of Coaching Model

Coaching Effectiveness

- **Mathematics Content Knowledge**
- **Teacher variables**
- **Coaching beliefs, knowledge, skills, and practice**

Coach Reflection and Impact

Coaching Knowledge Survey & Coaching Skills Inventory

Measures

- **Inside the Classroom Observation Protocol**
- **Teacher Survey**
- **Teacher Needs Inventory**
- **Teacher Reflection and Impact Survey**
What is coaching knowledge?

What additional knowledge does a mathematics coach need, beyond what a mathematics classroom teacher needs?
Where to look?

- Coaching authors address the same areas: trust, relationship, feedback, reflective questioning, co-teaching, lesson modeling.
- But, in the details, there is not wide agreement among authors about what coaches know and do.
Defining coaching knowledge

- Three-phase process engaging coaching authors and practitioners

- Panelists responded to an open-ended question to define what coaching knowledge effective instructional coaches hold, as distinct from effective teachers.

- We used qualitative methods to identify domains of knowledge and levels of agreement about definitions for each domain.
Domains: Coaches know about

- Communication
- Student Learning
- Teacher Practice
- Relationships
- Leadership
- Assessment
- Teacher Learning
- Teacher Development
Coaching knowledge topics

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher Learning</td>
<td>Student Learning & Teacher Practices I</td>
<td>Communication for Coaching</td>
<td>Teacher Practices & Student Learning, II</td>
<td>Logistics of Coaching</td>
</tr>
</tbody>
</table>
Coaching Knowledge Survey

- **Practices**

 I meet with a school’s principal to get the principal’s impression of which teachers need to improve their mathematics instruction.

- **Beliefs**

 An effective mathematics coach gets input from a school’s principal on which teachers need to improve their mathematics instruction.
Agenda

- Overview of the EMC Project
- Instruments to measure coaching knowledge
- Results: Descriptive statistics
- Results: Statistical analysis
- Generating research directions and questions in mathematics coaching
Coaching Knowledge Survey

Average Percentage of Conforming Responses

Year 1 (July 2010)
- Aggregate (N = 47)
- PD Group 1 (Coaching PD Summer 2012) (N = 24)
- PD Group 2 (Coaching PD in Summer 2011) (N = 23)

Year 2 (Oct 2010)
- Aggregate (N = 47)
- PD Group 1 (Coaching PD Summer 2012) (N = 24)
- PD Group 2 (Coaching PD in Summer 2011) (N = 23)

Year 3 (Oct 2011)
- Aggregate (N = 47)
- PD Group 1 (Coaching PD Summer 2012) (N = 24)
- PD Group 2 (Coaching PD in Summer 2011) (N = 23)

Year 4 (Oct 2012)
- Aggregate (N = 47)
- PD Group 1 (Coaching PD Summer 2012) (N = 24)
- PD Group 2 (Coaching PD in Summer 2011) (N = 23)

Year 5 (Oct 2013)
- Aggregate (N = 47)
- PD Group 1 (Coaching PD Summer 2012) (N = 24)
- PD Group 2 (Coaching PD in Summer 2011) (N = 23)
Items with high agreement and movement over time

- I collect students’ mathematics work from a teacher’s classroom to guide our coaching conversations.

- When decisions about mathematics instruction are being made, I ensure that the decision-makers interpret research literature accurately.

- I have difficult conversations with teachers, when necessary, about mathematics misconceptions they hold.

- I always make sure that coaching conversations with mathematics teachers are grounded in mathematics content.

- I use student work when coaching mathematics teachers.
Items without great agreement

- When a teacher says she doesn’t want any coaching, an effective mathematics coach respectfully does not try to persuade the teacher to accept coaching (R)

- An effective mathematics coach gets input from a school’s principal on which teachers need to improve their mathematics instruction

- An effective coach sticks to the coaching objectives established with a teacher at the beginning of the school year (R)

- I encourage teachers to include, in each lesson they teach, summaries of what students learned or discovered.
Without agreement (continued)

- I provide feedback to teachers about whether or not the school is meeting its vision for mathematics instruction.
- I ask the principal what she believes the mathematics teachers’ needs are.
- I provide feedback to the principal about whether or not the school is meeting its vision for mathematics instruction.
Classroom observations

Year 1: 2010 (N = 196)
- Level 1: 6%
- Level 2: 8%
- Level 3: Low: 15%
- Level 3: Solid: 14%
- Level 3: High: 26%
- Level 4: 29%

Year 2: 2011 (N = 189)
- Level 1: 2%
- Level 2: 5%
- Level 3: Low: 15%
- Level 3: Solid: 15%
- Level 3: High: 22%
- Level 4: 22%

Year 3: 2012 (N = 169)
- Level 1: 1%
- Level 2: 6%
- Level 3: Low: 11%
- Level 3: Solid: 17%
- Level 3: High: 23%
- Level 4: 23%

Year 4: 2013 (N = 151)
- Level 1: 1%
- Level 2: 12%
- Level 3: Low: 12%
- Level 3: Solid: 15%
- Level 3: High: 18%
- Level 4: 27%
Discuss

- Do you expect that the answers with high agreement identify important coaching practices?
- Why do the low-agreement answers have low agreement?
- Are there other items you would expect identify high-leverage coaching practices?
Agenda

- Overview of the EMC Project
- Instruments to measure coaching knowledge
- Results: Descriptive statistics
- Results: Statistical analysis
- Generating research directions and questions in mathematics coaching
Research question 3

- To what extent are the effects of targeted professional development on coaching effectiveness explained by increases in coaching knowledge and mathematics content knowledge?

- Analysis uses 51 coaches randomly assigned to PD groups; 5 years of data

- Analysis uses linear modeling, and control for outside mathematics or coaching training
Summary of findings for RQ3

- No evidence for direct effects of professional development on coaches’ MKT scores either in terms of differences in groups or differences in changes over time.
- There is evidence of a change over time in MKT scores of the coaches in the study, with the highest average score in the last year of the study.
- There is evidence of a time effect and a PD effect on the mean scores of the CKS.
Research question 2

- To what extent does professional development targeting these two knowledge domains improve coaching effectiveness?
- Control for coaching intensity and outside PD
- Effects are examined on changes in teachers’ MKT, teachers’ attitudes, and teachers’ practice
- Hierarchical linear models
- Four years of data (more to be collected)
Summary of findings for RQ2

- No detected coach-level PD effects on teacher content knowledge or teacher attitude
- Some evidence of PD effects on teacher practice
- Coaching intensity relates to increases in ITCOP scores
- For all models, there are changes over time
- Suggestive evidence that changes happened in the different groups at different times; follow-up analyses will be conducted
Research question 1

- To what extent does a coach’s depth of knowledge in coaching knowledge and mathematics content knowledge influence coaching effectiveness?

- Models examine how variation in these aspects of the coaches propagates into teachers’ measures.

- Four years of data
Summary of findings for RQ1

- Improvements in coaches’ CKS scores and CSI (self-efficacy measure of coaching skills) are related to increases in teachers’ mathematics knowledge.
- Variation in coaching intensity and CSI scores are related to higher classroom practice scores.
- Coaches with higher MKT scores are associated with teachers with higher MKT scores.
Agenda

- Overview of the EMC Project
- Instruments to measure coaching knowledge
- Results: Descriptive statistics
- Results: Statistical analysis
- Generating research directions and questions in mathematics coaching
What’s next?

- Projects and studies have the opportunity to collect data about coaching effectiveness and coaching needs
- What do we need to understand about coaching?
- How do we support coaching?
Discuss

- What research questions about classroom coaching can be answered empirically?
- What do coaches need?
- How can we support coaches?
What we learn from participants

- Coaches want to learn how to have hard conversations with teachers about mathematics content.
- And about student learning.
- Coaches expend a lot of energy on resistant teachers.
- Professional development in coaching knowledge.
Organizing question

Mathematics classroom coaching is at the intersection of research and practice. It engages our coaching colleagues as mathematics teacher educators.

What are next steps in coaching research, professional development or other collaborations between researchers and coaches?
Thank you!

Beth Burroughs
burroughs@math.montana.edu

www.math.montana.edu/~emc